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Efficient and flexible synthesis of new photoactivatable propofol analogs 
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A B S T R A C T   

Propofol is a widely used general anesthetic, which acts by binding to and modulating several neuronal ion 
channels. We describe the synthesis of photoactivatable propofol analogs functionalized with an alkyne handle 
for bioorthogonal chemistry. Such tools are useful for detecting and isolating photolabeled proteins. We designed 
expedient and flexible synthetic routes to three new diazirine-based crosslinkable propofol derivatives, two of 
which have alkyne handles. As a proof of principle, we show that these compounds activate heterologously 
expressed Transient Receptor Potential Ankyrin 1 (TRPA1), a key ion channel of the pain pathway, with a similar 
potency as propofol in fluorescence-based functional assays. This work demonstrates that installation of the 
crosslinkable and clickable group on a short nonpolar spacer at the para position of propofol does not affect 
TRPA1 activation, supporting the utility of these chemical tools in identifying and characterizing potentially 
druggable binding sites in propofol-interacting proteins.   

Propofol (2,6-diisopropylphenol) is an intravenous general anes-
thetic used in millions of surgical procedures worldwide.1 In addition to 
the sedative effects it exerts on the central nervous system, propofol also 
elicits a “burning” sensation upon injection in many patients.2 The 
γ-aminobutyric acid A (GABAA) receptor is the principal target leading 
to the anesthetic properties of propofol,3 whereas Transient Receptor 
Potential Ankyrin 1 (TRPA1), a calcium-permeable ion channel 
expressed in peripheral sensory neurons, has been suggested to be the 
key mediator of propofol-induced pain.4 We recently used a photo-
crosslinkable propofol analog to demonstrate that this analog does 
indeed bind in the TRPA1 site identified by mutagenesis.5 Similar stra-
tegies have identified propofol-binding sites in the GABAA receptor.6,7 

Also, molecular modeling and mutagenesis of the binding pocket resi-
dues corroborate photolabeled sites.8,9 These studies illustrate the 
power of photoaffinity labeling (PAL) to identify the binding-site loca-
tion in complex biological systems, particularly where multiple binding 
sites may exist.5,9 In addition, PAL probes may elucidate new drug tar-
gets and off-target proteins, facilitating drug discovery efforts.10,11 

PAL finds widespread utility in drug discovery as a method to 
identify new macromolecular targets and as a complement to structure 
determination techniques like cryo-EM and X-ray crystallography to 
probe the location and structure of ligand binding sites. Although 

several photoaffinity analogs of propofol exist,6,7,12,13 there is a dearth 
of propofol probes that also contain a chemical handle to enable sub-
sequent isolation of photolabeled protein, limiting the discovery of 
novel propofol-interacting proteins. Thus, it is important to expand the 
library of crosslinkable analogs to provide more tools to understand how 
propofol and similar molecules, like thymol, carvacrol and zingerone, 
which are plant phenols with multiple biological activities, interact with 
their physiological targets. 

One of the ideal traits of a photoaffinity probe is structural similarity 
to the parent molecule. In addition, the choice of crosslinker is impor-
tant; diazirines have favorable specific activities due to their activation 
at relatively long wavelengths, the small size of the photoreactive group, 
and the short half-life of the reactive carbene intermediate.14 The rapid 
quenching of carbenes by reaction with water molecules minimizes 
unspecific labeling, but also causes low yields of photolabeling. To 
facilitate the detection and isolation of photolabeled protein, clickable 
handles such as alkynes provide a convenient post-crosslinking method 
to incorporate an azide-containing biotin or fluorescent tag into the 
photoprobe.15 To the best of our knowledge, the only report of a 
bifunctional propofol analogue has only been demonstrated to retain 
biological activity for the GABAA receptor,6 and has not been tested for 
other targets such as TRPA1 activation. 

* Corresponding author. 
E-mail address: gaudet@mcb.harvard.edu (R. Gaudet).   

1 Present address: Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla 92161, United States.  
2 Present address: Novartis Institutes for BioMedical Research, Cambridge, MA 02139, United States. 

Contents lists available at ScienceDirect 

Bioorganic & Medicinal Chemistry Letters 

journal homepage: www.elsevier.com/locate/bmcl 

https://doi.org/10.1016/j.bmcl.2021.127927 
Received 4 December 2020; Received in revised form 24 February 2021; Accepted 26 February 2021   

mailto:gaudet@mcb.harvard.edu
www.sciencedirect.com/science/journal/0960894X
https://www.elsevier.com/locate/bmcl
https://doi.org/10.1016/j.bmcl.2021.127927
https://doi.org/10.1016/j.bmcl.2021.127927
https://doi.org/10.1016/j.bmcl.2021.127927
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bmcl.2021.127927&domain=pdf


Bioorganic & Medicinal Chemistry Letters 39 (2021) 127927

2

Although photoactive propofol derivatives do exist, several are un-
stable,13 or have cumbersome synthetic routes,12 and only one has a 
click handle.6 We hypothesized that linking the propofol core with a 
short nonpolar aliphatic spacer to separate the diazirine moiety from the 
aryl ring would not only preserve the minimal pharmacophore but also 
facilitate synthetic expediency.7,13 We designed three probes that fulfill 
these criteria, and we synthesized them using relatively short and effi-
cient synthetic sequences (Schemes 1–3), which could readily be applied 
to other similar scaffolds. Following synthesis, we used functional assays 
using calcium influx and binding to a fluorescent indicator as a measure 
of probe activation of TRPA1 to determine their promise in future 
crosslinking experiments. 

We designed our initial crosslinkable probe, XPRO (5), bearing the 
linker and diazirine moiety in the para position to minimize potential 
intramolecular interactions of the reactive carbene intermediate while 
maintaining overall hydrophobicity of the propofol starting point. 
Indeed, a propofol analog with a trifluoromethyl diazirine directly at the 
para position was reported to be a poor photolabel.7,13 Synthesis of 
XPRO was achieved in an expedient 5-step sequence (Scheme 1). Initial 
functionalization of the para-position was achieved through an 
Amberlyst-15-mediated alkylation16 followed by protection of the 
phenol hydroxyl as a TBS silyl ether. The pendant methyl ketone was 
subsequently converted to the requisite diazirine via a two-step 
sequence.17,18 Lastly, deprotection of the TBS ether with TBAF affor-
ded XPRO. Overall yield for this sequence was 22%. 

We next sought to generate an analog with a clickable group to 
enable potential labeling studies. We envisioned placing an alkyne at 
two possible locations within XPRO—in one analog one of the two iso-
propyl groups could be substituted with an alkyne (o-XPRO-Click) and in 
a second analog the alkyne could be appended proximal to the diazirine 
itself (p-XPRO-Click). At the outset, we chose to synthesize and profile 
both designs, since it was unclear which would have the best potency/ 
reactivity profile. 

To synthesize o-XPRO-Click (12; Scheme 2) starting from 2-isopro-
pylphenol (6), Amberlyst-15 was again used to generate the alkyl ke-
tone 7. Subsequent bromination with NBS, Sonogashira coupling with 
TMS-acetylene, and phenol protection yielded the bis-silyl-protected 
intermediate 10. Functionalization of the ketone using previously 
established conditions, followed by deprotection, generated o-XPRO- 
Click. In the case of p-XPRO-Click (18; Scheme 3), Duff formylation 
generated a benzaldehyde intermediate which, after phenol protection, 
was subjected to a Grignard reaction with ethynylmagnesium bromide. 
Subsequent propargylic alkylation19 followed by diazirination and 
deprotection yielded p-XPRO-Click. Moreover, o-XPRO-Click and p- 
XPRO-conjugation experiments with 3-Azido-7-hydroxycoumarin, 
whose fluorescence increases upon a successful click reaction with an 
alkyne,20 demonstrate their ability to react with azide partners (Sup-
plementary fig. 1). 

As a first assessment of the biological activity of our three new 
photocrosslinkable propofol analogs, we tested their ability to activate 

Scheme 1. Synthesis of XPRO. Reagents and conditions: (a) Methyl vinyl ketone, Amberlyst-15, toluene, 50 ◦C, N2, 6 h, 80%; (b) TBSCl, imidazole, DMF, rt, N2, 16 h, 
79%; (c) NH3, MeOH, NH2OSO3H, − 40 ◦C, N2, 7 h; TEA, iodine, MeOH, 45%; (d) TBAF-acetic acid, THF, rt, N2, 16 h, 76%. 

Scheme 2. Synthesis of o-XPRO-Click. Reagents and conditions: (a) Methyl vinyl ketone, Amberlyst-15, toluene, 40 ◦C, N2, 8 h, 44%; (b) NBS, DCM, rt, N2, 16 h, 
54%; (c) PPh3, PdCl2(PPh3)2, CuI, ethynyltrimethylsilane, TEA, rt, N2, 16 h, 59%; (d) TBSCl, imidazole, DMF, rt, N2, 16 h, 82%; (e) NH3, MeOH, NH2OSO3H, − 40 ◦C, 
N2, 7 h; TEA, iodine, MeOH, 32%; (f) TBAF-acetic acid, THF, rt, N2, 16 h, 53%. 

Scheme 3. Synthesis of p-XPRO-Click. Reagents and conditions: (a) Hexamethylenetetramine, TFA, HCl, reflux, 9 h, 90%; (b) TBSCl, imidazole, DCM, rt, N2, 16 h, 
63%; (c) Ethynylmagnesium bromide, THF, − 78 ◦C, N2, 16 h, 83%; (d) cat. Cp*RuCl(µ2-SMe)2RuCP*Cl, NH4BF4, acetone, reflux, N2, 5 h, 83%; (e) NH3, MeOH, 
NH2OSO3H, − 40 ◦C, N2, 7 h; TEA, iodine, MeOH, 52%; (f) TBAF-acetic acid, THF, rt, N2, 16 h, 55%. 
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TRPA1, leveraging our previously developed cell-based calcium-influx 
assay.5 For TRPA1 production, we chose baculovirus-infected insect 
cells, a common heterologous expression system for eukaryotic integral 
membrane proteins.21 Cells were loaded with Fura-2, a calcium- 
sensitive ratiometric fluorescent dye. Ligand binding and activation 
causes ion channels like TRPA1 to open, allowing calcium to flow into 
cells and bind Fura-2, resulting in an absorption shift.22 

After measuring background fluorescence levels, addition of 60 µM 
XPRO or propofol at 60 s elicited a rise in [Ca2+]i in TRPA1-expressing 
cells, resulting in an increase in the 340/380 ratio of the Fura-2 dye 
(Fig. 1A). Expression of TRPA1 in all samples was confirmed by acti-
vation at 180 s with 1 mM AITC, an electrophilic TRPA1 agonist.23,24 

Interestingly, o-XPRO-Click was a weaker TRPA1 agonist than propofol 
(Fig. 1B). We hypothesize that the potency difference was due to 
replacement of a key structural feature of propofol, one of the 2-isopro-
pyl group, with a smaller and non-branched alkyne. Consistent with this 
hypothesis, p-XPRO-Click, which preserves both 2-isopropyl sub-
stituents, was at least as efficient as propofol (Fig. 1C). 

To rule out nonspecific calcium influx due to increased hydropho-
bicity of XPRO relative to propofol, we also tested activation of TRPV1, a 
related channel found on TRPA1-expressing sensory nerves and crucial 
for pain sensation.25 As expected,26 neither propofol nor XPRO activated 
TRPV1 while capsaicin, which serves as a positive control for functional 
TRPV1 expression, was a potent TRPV1 agonist (Fig. 1D). In addition, 
neither o-XPRO-Click nor p-XPRO-Click elicited calcium influx in 
TRPV1-expressing cells (Fig. 1E and 1F). Taken together, calcium-influx 
assays demonstrate that XPRO, o-XPRO-Click, and p-XPRO-Click share 
similar TRPA1 potency with propofol. 

In summary, the structure-function studies highlight promising 
photoactivatable propofol analogs to move forward in crosslinking ex-
periments. We envision our analogs and synthesis schemes will benefit 
future photolabeling strategies in several ways. For example, XPRO and 
p-XPRO-Click retain both isopropyl arms, unlike most previously pub-
lished photoactivatable propofol analogs except p-4-AziC5-Pro,13 and 
both of our new analogs have a shorter linker to the diazirine than p-4- 
AziC5-Pro and a simpler synthetic route. Of note, given their structural 
similarities, we anticipate that XPRO and p-XPRO-Click will activate the 
GABAA receptor both in vitro and in vivo similarly to p-4-AziC5-Pro, 
which was tested in zebrafish tadpoles,13 although pharmacokinetic 

assessments should be performed before using these new compounds in 
vivo. Furthermore, our bifunctional probes, o-XPRO-Click and p-XPRO- 
Click, will facilitate profiling of the propofol proteome under cellular 
conditions, for example enabling tagging to a fluorophore to determine 
the localization of propofol-interacting proteins. The synthetic strategies 
described here are also applicable to alkyl phenols like propofol, such as 
carvacrol and thymol, and molecules that contain an analogous linker in 
the para position, such as zingerone, all of which include TRPA1 mod-
ulation among their biological activities.27 Thus, the combination of the 
diazirine and alkyne functionality enables not only detection and 
enrichment of photolabeled biological targets but also interrogation of 
the propofol-interacting proteome and generation of novel ion channel 
modulators through click chemistry reactions. 
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