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The cross-coupling reaction of o,f-unsaturated aldehydes with primary alcohols to give 2-hydroxymethyl ketones was achieved using
RuHCI(CO)(PPhy); as a catalyst. This atom-economical reaction is likely to proceed via the hydroruthenation of o,f-unsaturated aldehydes
followed by an aldol reaction of the resultant enolates with aldehydes to give o-formylated ketones, which undergo transfer hydrogenation
with primary alcohols leading to o-hydroxymethyl ketones. The reduction step can generate aldehydes, participating in the next catalytic

cycle.

Development of new catalytic coupling processes accom-
panied with atom economy is highly desirable in organic
synthesis.' In this regard, we are interested in the potentials
of ruthenium hydride-catalyzed bond forming reactions in
conjunction with the use of readily available oxygenated
substrates, such as alcohols, ketones, and aldehydes.3_5
Recently, we have reported that dimerization of primary
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unsaturated alcohols** and reductive dimerization of oS-
unsaturated aldehydes® were effectively catalyzed by RuH-
CI(CO)(PPh3);. In the latter homocoupling reaction of enals,
secondary alcohols such as isopropanol act as a hydrogen
source, which is converted to acetone, an inert compound
in the system (Scheme 1, eq 1). Since the pioneering work
of Gregorio and co-workers on catalytic dimerization of
primary alcohols,® many researchers have pursued the
potential of cross-coupling reactions of primary alcohols via
transfer hydrogenation.” In this regard, recent work by
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Krische and co-workers that demonstrates Ru- and Ir-
catalyzed cross-coupling of alcohols with unsaturated C—C
double and triple bonds is noteworthy.® We thought that if
primary alcohols, such as benzyl alcohol, are employed as a
hydrogen source, the resulting aldehydes would act as a
coupling partner to give cross-coupling products (Scheme
1, eq 2). We report herein the Ru—H-catalyzed atom-
economical cross-coupling reaction of a,f3-unsaturated al-
dehydes with primary alcohols leading to a-hydroxymethyl
ketones.

Scheme 1. Ru—H Catalyzed Coupling Reactions of Enals
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When a benzene solution of benzyl alcohol (1a, 1.2 equiv)
and 2-hexenal (2a) in the presence of RuHCI(CO)(PPh;);
(10 mol %) was heated under reflux for 2 h (Procedure A,
Scheme 2), 2-hydroxymethyl-1-phenyl-1-hexanone (3a) was
obtained in 40% yield. In this case, a significant amount of
dimer derived by reductive coupling of 2a was formed as
byproduct (3a/dimer = 5/1). To suppress the undesired
dimerization course, 2a was added slowly using a syringe
pump over the period of 1 h, then the resulting mixture was
stirred for another 1 h (Procedure B). In this case, the desired
3a was obtained in 61% yield. Since in the initial stage of
the reaction 2a was consumed by transfer hydrogenation to
produce benzaldehyde, we decided to add a small amount
of aldehyde beforehand (Procedure C). This caused further
improvement of the yield of 3a up to 72%.

Scheme 2. Optimization of the Reaction Conditions
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Having an optimized procedure C in hand, we then
examined the generality of the present cross-coupling reaction
with various alcohols and enals (Table 1). The reactions of
2-hexenal (2a) with several benzylic alcohols, having an
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Table 1. Cross-Coupling Reaction of a,/3-Unsaturated
Aldehydes with Benzylic Alcohols”
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¢ Conditions: 1 (1.2 equiv), 2 (0.8 mmol), corresponding aldehyde (10
mol %), RuHCI(CO)(PPh3); (0.08 mmol), benzene (4 mL). A benzene
solution of 1 (5 mL) was added using a syringe pump over the period of
1 h, then the mixture was heated at reflux for 1 h. ” Isolated yield after
flash chromatography on SiO,. © A benzene solution of 1g and 2a was added
over the period of 1 h.
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electron-donating substituent or an electron-withdrawing
substituent, gave the 2-hydroxymethyl ketone 3 in good
yields (entries 1—6). The reaction also worked well with
alcohols having heteroaromatic rings such as 2-thiophen-
emethanol (1g) and 2-furanmethanol (1h) (entries 7 and 8).
In the case of the alcohol 1g, transfer hydrogenation of 1g
and 2a leading to 2-thiophenecarboxyaldehyde and 1-hexanol
was fast with the procedure C. Thus, syringe pump addition
of a mixture solution of 1g and 2a was examined, giving
the desired coupling product 3g in good yield. Disubstituted
enal 2c¢ also reacted with 1a, whereas the yield of 3j was
rather modest (entry 10). Enals having an aromatic substitu-
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ent at the (-position, such as 2d and 2e, gave the corre-
sponding 2-hydroxymethyl ketones in good yields (entries
11 and 12). The reaction of nonbenzylic type alcohol 1i also
gave the coupling 3m in 30%, which requires further efforts
for yield optimization.

A possible mechanism for this enal/alcohol coupling
reaction is shown in Scheme 3 with an example of the
reaction of 1la and 2a. The hydroruthenation of 2a would
give ruthenium enolate A,”'® which then undergoes aldol
reaction with benzaldehyde.'""'? AB-Elimination from the
resulting aldol adduct B would lead to the keto aldehyde C.
Finally, transfer hydrogenation'® between the aldehyde
moiety of C and benzyl alcohol (1a) gives 2-hydroxymethyl
ketone 3a and benzaldehyde which then reacts with another
molecule of ruthenium enolate A, creating a catalytic cycle.

Scheme 3. Possible Mechanism for the Coupling of 1a and 2a
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In summary, we have shown that a novel cross-coupling
reaction of enals with primary alcohols is effectively
catalyzed by RuHCI(CO)(PPh;);, which leads to good yields
of 2-hydroxymethyl ketones. The reaction is likely to proceed
via an aldol reaction of a ruthenium enolate followed by a
transfer hydrogenation, where primary alcohols act as both
a hydrogen source and a latent aldehyde. The simplicity, atom
efficiency, mild reaction conditions, and short reaction times
make this an appealing methodology for accessing 2-hy-
droxymethyl ketones. Synthetic applications of the present
reaction are currently underway in this laboratory.
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