

# Enantioselective syn- and anti-Alkoxyallylation of Aldehydes via Brønsted Acid Catalysis

Shang Gao and Ming Chen\*®

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States

**(5)** Supporting Information

**ABSTRACT:** A diastereo- and enantioselective alkoxyallylation via phosphoric acid catalysis was reported. Under the developed conditions, either 1,2-*syn*- or 1,2-*anti*-alkoxyallylation adducts were obtained in good yields with high enantioselectivities.



E nantioenriched 1,2-syn- and anti-3-ene-diols are important building blocks in organic synthesis. In particular, they are key structural motifs in numerous biologically active natural products (Figure 1).<sup>1</sup> Consequently, many efforts have been



Figure 1. Selected natural products containing 1,2-syn and *anti*-3-ene-diols.

devoted to diastereo- and enantioselective syntheses of 3-ene-1,2-diols.<sup>2</sup> The addition of enantioselective  $\gamma$ -alkoxyallyl organometallic reagents to carbonyl compounds is one classic approach to synthesize these 1,2-diols, although a stoichiometric amount of chiral auxiliaries is often required for the asymmetric induction.<sup>3,4</sup> Similarly, reactions of carbonyl compounds with masked enantioselective  $\gamma$ -alkoxy allylmetal reagents, such as  $\gamma$ boryl or γ-silyl reagents, also produce chiral 3-ene-1,2-diols upon oxidation of the resulting adducts.<sup>5</sup> Recently, several key advances have been achieved to access enantioenriched 1,2anti-3-ene-diols without resorting to chiral auxiliaries. For example, Krische and co-workers developed an elegant Ircatalyzed allylation strategy for the syntheses of bisbenzoylprotected 1,2-anti-3-ene-diols (Scheme 1, eq 1).<sup>6a</sup> A chiralitytransfer approach was reported by the Ito group using enantioenriched  $\gamma$ -alkoxyallylboron reagents,<sup>6b</sup> and monopro-tected 1,2-*anti*-3-ene-diols were obtained with excellent conservation of enantioselectivities (Scheme 1, eq 2).

© XXXX American Chemical Society

Enantioselective addition of  $\gamma$ -alkoxyallylboron reagents to imines was recently disclosed by the Hoveyda group.<sup>6c</sup> In comparison to the available methods to synthesize 1,2-*anti*-3ene-diols, catalytic asymmetric approaches that allow access to analogous 1,2-*syn*-3-ene-diols are underdeveloped. One notable example is the addition of chiral, nonracemic  $\gamma$ -alkoxysubstituted allylstannanes to aldehydes developed by Marshall and co-workers (Scheme 1, eq 3).<sup>7</sup> The toxicity and sensitive nature associated with the organo-tin reagents, however, make them less desirable in a practical scale. Therefore, development of nontoxic reagents and practical methods to synthesize enantioenriched 1,2-*syn*-3-ene-diols is an important objective in organic synthesis.

In 2010, the Antilla group reported the first chiral phosphoricacid-catalyzed enantioselective allylboration to obtain homoallylic alcohols with high enantiomeric excess.<sup>8</sup> It is wellestablished that the reaction of an aldehyde with either (Z)- or (*E*)-crotylboronate proceeds through a chair-like transition state to give either syn- or anti-homoallylic alcohol with high fidelity of stereochemistry.<sup>9</sup> Therefore, it was envisaged that 1,2-syn- and 1,2-anti-3-ene-diols should be accessible with high diastereoand enantioselectivities through the reaction of aldehydes with either a (Z)- or (E)-( $\gamma$ -alkoxyallyl)boron reagent by proper selection of a chiral phosphoric acid catalyst. To our surprise, there is only a single example of chiral phosphoric-acid-catalyzed addition of (E)- $(\gamma$ -silyloxyallyl)boronate to benzaldehyde to give monosilyl-protected 1,2-anti-3-ene-diol with 17% ee.<sup>10</sup> To the best of our knowledge, there is no report for the phosphoricacid-catalyzed enantioselective syntheses of 1,2-syn-3-ene-diols with achiral ( $\gamma$ -alkoxyallyl)boronates. Inspired by the previous work on chiral phosphoric-acid-catalyzed enantioselective carbonyl addition reactions,<sup>11–13</sup> we report herein asymmetric  $\gamma$ -alkoxyallylation of aldehydes with (Z)- or (E)- $\gamma$ -alkoxyallylboronate, 1 or 3, to provide 1,2-syn- or 1,2-anti-alkoxyallylation

Received: August 20, 2018

Scheme 1. Approaches for Catalytic, Asymmetric Synthesis of 1,2-syn- or anti-3-Ene-diols



products, **2** or **4**, in good yields with high enantiomeric excess (Scheme 1).

We began our studies on asymmetric *syn*-alkoxyallylation by examining the reaction between (*Z*)-( $\gamma$ -methoxymethoxyallyl)boronate **1** and benzaldehyde.<sup>14</sup> In the presence of 4 Å molecular sieves with 5 mol % of phosphoric acid (*R*)-**A** as the catalyst, the reaction of benzaldehyde with (*Z*)-allylboronate **1** at -45 °C in toluene provided the *syn*-adduct **2a** in 73% yield with 91% ee as a single diastereomer.



The reaction without the addition of 4 Å molecular sieves gave product **2a** with much lower enantioselectivity. In addition, it is crucial to conduct the reaction at temperatures below -40 °C to obtain homoallylic alcohol **2a** with high enantioselectivity. Product **2a** was formed with low enantiomeric excess when the reaction was performed at ambient temperature.

We next explored the scope of aldehydes that underwent the *syn*-alkoxyallylation reaction with allylboronate 1 (Scheme 2). Under the standard reaction conditions, a variety of aldehydes with diverse electronic properties participated in the reaction to give *syn*-products 2 in good yields with high enantioselectivities. Aromatic aldehydes with an alkyl or aryl group at the *para*position reacted to give products 2b,c in 70–86% yields with



"Reaction conditions: allylboronate 1 (0.13 mmol, 1.3 equiv), aldehyde (0.1 mmol, 1.0 equiv), phosphoric acid (R)-A (5 mol %), 4 Å molecular sieves (50 mg), toluene (0.3 mL), -45 °C. <sup>b</sup>Enantioselectivities were determined by HPLC analysis using a chiral stationary phase. 'Yields of isolated products are listed.

92–94% ee. Aldehydes with an electron-donating group, an electron-withdrawing group, or a halogen atom at either the *para-* or *meta-*position are also suitable substrates for the reaction. Alcohols 2d-i were obtained in 56–94% yields with 92–94% ee. The reaction of allylboronate 1 with heteroaromatic aldehyde, for example, 3-thiophene carboxaldehyde, proceeded smoothly to give product 2j in 62% yield with 86% ee. Significantly, aliphatic aldehyde, such as hydrocinnamic aldehyde, also reacted to give product 2k in 60% yield with 90% ee. The absolute configuration of the secondary hydroxyl groups in the products was determined by modified Mosher ester analysis of 2e.<sup>15</sup> In general, aldehydes bearing an electron-withdrawing group showed a reactivity much higher than that of aromatic aldehydes substituted with an electron-donating group in the arene.

To access 1,2-anti-alkoxyallylation products, we then examined reactions of various aldehydes with (E)- $\gamma$ -ethoxyallylboronate 3.<sup>16</sup> As summarized in Scheme 3, the standard reaction conditions tolerated a broad scope of aldehydes, and anti-ethoxyallylation products 4 were formed as a single diastereomer in 74–97% yield with high enantioselectivities. Benzaldehyde and aromatic aldehydes containing an aryl, an electron-donating group, or an electron-withdrawing group at the para-position reacted with (E)-allylboronate 3 to give products 4a–f in excellent yields with 94–97% ee. Reactions with para-halogen-substituted aromatic aldehydes afforded alcohols 4g–i in 93–97% yields with 96–97% ee. These halogen-containing adducts provide a platform for further elaborations (e.g., cross-coupling reactions). Similar results were



<sup>*a*</sup>Reaction conditions: allylboronate **3** (0.13 mmol, 1.3 equiv), aldehyde (0.1 mmol, 1.0 equiv), phosphoric acid (R)-**A** (5 mol %), **4** Å molecular sieves (50 mg), toluene (0.3 mL), -45 °C. <sup>*b*</sup>Enantioselectivities were determined by HPLC analysis using a chiral stationary phase. <sup>c</sup>Yields of isolated products are listed. <sup>*d*</sup>The ee was determined by modified Mosher ester analysis. <sup>15</sup>

obtained with aromatic aldehydes with various substitutions at the *meta-* or *ortho*-position to furnish products 4j-m in 74-93%yield with 93-97% ee. Reactions with 2-naphthaldehyde and piperonal occurred to provide alcohols 4n, o in 76-91% yields with 96% ee.  $\alpha,\beta$ -Unsaturated aldehydes and heteroaromatic aldehydes were also tolerated under the reaction conditions to generate alcohol products 4p-s in 80-93% yields with 94-97%ee. The reaction of hydrocinnamic aldehyde with allylboronate **3** gave product **4t** in 89% yield with 87% ee. The absolute configuration of the secondary hydroxyl groups in the products was determined by modified Mosher ester analysis<sup>15</sup> of **4a**, **4m**, and **4r**. Additionally, double stereodifferentiation reaction<sup>17</sup> of allylic boronate **3** with an enantioenriched aldehyde was conducted. The *anti,anti*-stereoisomer **4u** was obtained in 89% yield with a synthetically useful diastereoselectivity (8:1). We also prepared (*E*)- $\gamma$ -benzyloxyallylboronate **5**, and the reaction of **5** with benzaldehyde under the standard conditions gave product **6** in 89% yield with 95% ee (Scheme 4).



To demonstrate the synthetic utility of this method, further derivatization of the *syn-* or *anti-*alkoxyallylation products was conducted. As shown in Scheme 4, hydroboration of TBS ether 7 followed by oxidative workup gave alcohol 8 in 91% yield. Cross-metathesis<sup>18</sup> of 7 with (*Z*)-2-butene-1,4-diol in the presence of 10 mol % of Grubbs second generation catalyst and subsequent TBS deprotection with TBAF gave diol 9 in 64% yield in two steps.

The syn-alkoxyallylation adduct ent-2a was used as the starting material for the synthesis of the  $C_{1-7}$  fragment of natural product, aetheramide A (Scheme 4).<sup>19</sup> First, the methoxymethyl ether (MOM group) of ent-2a was deprotected under acidic conditions to give diol 10. In the presence of 10 mol % of Hoveyda-Grubbs second generation catalyst, cross-metathesis<sup>18</sup> of 10 with acrolein generated aldehyde 11. Horner–Wads-

## **Organic Letters**

worth–Emmons olefination of aldehyde 11 provided ester 12, which represents the  $C_{1-7}$  fragment of aetheramide A.

In summary, we developed a chiral phosphoric-acid-catalyzed *syn-* and *anti-*alkoxyallylation of aldehydes. The *syn-* and *anti-*3- ene-1,2-diol derivatives are useful building blocks in organic synthesis as illustrated in the synthesis of the  $C_{1-7}$  fragment of aetheramide A. Other synthetic applications of this method are currently ongoing.

# ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.8b02653.

<sup>1</sup>H and <sup>13</sup>C NMR spectra for all new compounds (PDF)

## AUTHOR INFORMATION

Corresponding Author

\*E-mail: mzc0102@auburn.edu.

ORCID

Ming Chen: 0000-0002-9841-8274 Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

Financial support provided by Auburn University is gratefully acknowledged. We thank AllylChem for a generous gift of  $B_2Pin_2$ .

# REFERENCES

(1) (a) Cragg, G. M.; Grothaus, P. G.; Newman, D. Chem. Rev. 2009, 109, 3012. (b) Plaza, A.; Garcia, R.; Bifulco, G.; Martinez, J. P.; Hüttel, S.; Sasse, F.; Meyerhans, A.; Stadler, M.; Müller, R. Org. Lett. 2012, 14, 2854. (c) Fuchser, J.; Zeeck, A. Liebigs Ann. Recueil 1997, 1997, 87. (d) Pace-Asciak, C. R.; Lee, W.-S. J. Biol. Chem. 1989, 264, 9310.

(2) For selected reviews, see: (a) Lombardo, M.; Trombini, C. Chem. Rev. 2007, 107, 3843. (b) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2013, 113, 5595. (c) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.

(3) For selected examples, see: (a) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535. (b) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. 1992, 114, 2321. (c) Roush, W. R.; VanNieuwenhze, M. S. J. Am. Chem. Soc. 1994, 116, 8536. (d) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1995, 60, 1920. (e) Marshall, J. A.; Hinkle, K. W. J. Org. Chem. 1996, 61, 105. (f) Ganesh, P.; Nicholas, K. M. J. Org. Chem. 1997, 62, 1737. (g) Chika, J.-i.; Takei, H. Tetrahedron Lett. 1998, 39, 605. (h) Yamamoto, Y.; Miyairi, T.; Ohmura, T.; Miyaura, N. J. Org. Chem. 1999, 64, 296. (i) Muñoz-Hernández, L.; Soderquist, J. A. Org. Lett. 2009, 11, 2571. (j) Muñoz-Hernández, L.; Seda, L. A.; Wang, B.; Soderquist, J. A. Org. Lett. 2014, 16, 4052.

(4) (a) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308.
(b) Deligny, M.; Carreaux, F.; Toupet, L.; Carboni, B. Adv. Synth. Catal.
2003, 345, 1215. (c) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628. (d) Lessard, S.; Peng, F.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 9612. (e) Penner, M.; Rauniyar, V.; Kaspar, L. T.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 14216.

(5) (a) Roush, W. R.; Gover, P. T.; Lin, X. Tetrahedron Lett. 1990, 31, 7563. (b) Barrett, A. G. M.; Malecha, J. W. J. Org. Chem. 1991, 56, 5243.
(c) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. (d) Hunt, J. A.; Roush, W. R. J. Org. Chem. 1997, 62, 1112. (e) Kister, J.; DeBaillie, A. C.; Lira, R.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14174.
(f) Winbush, S. M.; Roush, W. R. Org. Lett. 2010, 12, 4344.

(6) (a) Han, S. B.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 1760. (b) Yamamoto, E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc. 2014, 136, 16515. (c) Morrison, R. J.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2018, 57, 11654. (d) Kim, D.; Lee, J. S.; Kong, S. B.; Han, H. Angew. Chem., Int. Ed. 2013, 52, 4203.

(7) (a) Marshall, J. A. Chem. Rev. **1996**, 96, 31. (b) Marshall, J. A. Chem. Rev. **2000**, 100, 3163. (c) Marshall, J. A. J. Org. Chem. **2007**, 72, 8153. (d) Marshall, J. A.; Welmaker, G. S.; Gung, B. W. J. Am. Chem. Soc. **1991**, 113, 647.

(8) Jain, P.; Antilla, J. C. J. Am. Chem. Soc. 2010, 132, 11884.

(9) (a) Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920. (b) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000; p 403. (c) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (d) Lachance, H.; Hall, D. G. Org. React. 2008, 73, 1. (e) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.

(10) Miura, T.; Nishida, Y.; Morimoto, M.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 11497.

(11) For selected examples, see: (a) Xing, C.-H.; Liao, Y.-X.; Zhang, Y.; Sabarova, D.; Bassous, M.; Hu, Q.-S. Eur. J. Org. Chem. 2012, 2012, 1115. (b) Incerti-Pradillos, C. A.; Kabeshov, M. A.; Malkov, A. V. Angew. Chem., Int. Ed. 2013, 52, 5338. (c) Huang, Y.; Yang, X.; Lv, Z.; Cai, C.; Kai, C.; Pei, Y.; Feng, Y. Angew. Chem., Int. Ed. 2015, 54, 7299. (d) Barrio, P.; Rodríguez, E.; Saito, K.; Fustero, S.; Akiyama, T. Chem. Commun. 2015, 51, 5246. (e) Clot-Almenara, L.; Rodríguez-Escrich, C.; Osorio-Planes, L.; Pericàs, M. A. ACS Catal. 2016, 6, 7647. (f) Miura, T.; Nakahashi, J.; Murakami, M. Angew. Chem., Int. Ed. 2017, 56, 6989. (g) Miura, T.; Nakahashi, J.; Zhou, W.; Shiratori, Y.; Stewart, S. G.; Murakami, M. J. Am. Chem. Soc. 2017, 139, 10903. (h) Park, J.; Choi, S.; Lee, Y.; Cho, S. H. Org. Lett. 2017, 19, 4054.

(12) For computational studies, see: (a) Grayson, M. N.; Pellegrinet, S. C.; Goodman, J. M. J. Am. Chem. Soc. 2012, 134, 2716. (b) Wang, H.; Jain, P.; Antilla, J. C.; Houk, K. N. J. Org. Chem. 2013, 78, 1208.
(c) Grayson, M. N.; Goodman, J. M. J. Am. Chem. Soc. 2013, 135, 6142.
(d) Grayson, M. N.; Yang, Z.; Houk, K. N. J. Am. Chem. Soc. 2017, 139, 7717.

(13) (a) Jain, P.; Wang, H.; Houk, K. N.; Antilla, J. C. Angew. Chem., Int. Ed. 2012, 51, 1391. (b) Reddy, L. R. Org. Lett. 2012, 14, 1142.
(c) Chen, M.; Roush, W. R. J. Am. Chem. Soc. 2012, 134, 10947.
(d) Reddy, L. R. Chem. Commun. 2012, 48, 9189. (e) Wang, M.; Khan, S.; Miliordos, E.; Chen, M. Org. Lett. 2018, 20, 3810.

(14) (a) Hoffmann, R. W.; Kemper, B. Tetrahedron Lett. **1982**, 23, 845. (b) Hoffmann, R. W.; Metternich, R.; Lanz, J. W. Liebigs Ann. Chem. **1987**, 1987, 881.

(15) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
(b) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092. (c) Hoye, T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451.

(16) Zhang, P.; Roundtree, I. A.; Morken, J. P. Org. Lett. 2012, 14, 1416.

(17) Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.

(18) (a) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. **2003**, 125, 11360. (b) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. **2010**, 110, 1746.

(19) (a) Ghosh, A. K.; Rao, K. V.; Akasapu, S. Tetrahedron Lett. 2014, 55, 5191.
(b) Gerstmann, L.; Kalesse, M. Chem. - Eur. J. 2016, 22, 11210.
(c) Qi, N.; Allu, S. R.; Wang, Z.; Liu, Q.; Guo, J.; He, Y. Org. Lett. 2016, 18, 4718.
(d) Qi, N.; Wang, Z.; Allu, S. R.; Liu, Q.; Guo, J.; He, Y. J. Org. Chem. 2016, 81, 12466.

Letter