Zur Elektronenstruktur hochsymmetrischer Verbindungen der f-Elemente. 41 [1] Synthese, Kristall-, Molekül- und Elektronenstruktur eines Bis(cyclohexylisonitril)-Addukts des Grundkörpers Tris(bis(trimethylsilyl)amido)erbium(III) sowie Elektronenstrukturen ausgewählter Monoaddukte

Electronic Structures of Highly Symmetrical Compounds of f Elements. 41 [1] Synthesis, Crystal, Molecular and Electronic Structure of a Bis(cyclohexylisonitrile) Adduct Derived from the Tris(bis(trimethylsilyl)amido)erbium(III) Moiety and Electronic Structures of Selected Mono Adducts

Stefan Jank, Clemens Guttenberger, Hauke Reddmann, Jan Hanss und Hanns-Dieter Amberger*

Hamburg, Institut für Anorganische und Angewandte Chemie der Universität

Bei der Redaktion eingegangen am 30. Juni 2006.

Abstract. The reaction of tris(bis(trimethylsilyl)amido)erbium(III) (Er(btmsa)₃) with two equivalents of cyclohexylisonitrile yields the corresponding bis adduct [Er(btmsa)₃(CNC₆H₁₁)₂] (1).Complex 1 crystallizes in the monoclinic space group C2/c with a = 2542.9(11) pm, b = 1208.4(4) pm, c = 1783.0(2) pm, β = 122.39(3)°, V = 4.638(5)·10⁹ pm³, Z = 4 and R = 0.0380. The structure of compound 1 features the five coordinate Er³⁺ central ion in a nearly exact trigonal bipyramidal environment, with three btmsa ligands in the equatorial and the two cyclohexylisonitrile molecules in the axial positions. On the basis of the absorption spectra of bis adduct 1 and the mono(tetrahydrofuran) as well as the mono(triphenylphosphine oxide) adducts [Er(btmsa)₃(THF)] (2) and [Er(btmsa)₃(OPPh₃)] (3), respectively, the underlying trun-

cated crystal field (CF) splitting patterns of these compounds could be derived, and simulated by fitting the free parameters of a phenomenological Hamiltonian. Reduced r.m.s. deviations of 13.0 cm^{-1} (42 assignments), 16.0 cm^{-1} (63 assignments) and 17.5 cm^{-1} (55 assignments) could be achieved for compounds **1**, **2** and **3**, respectively. Making use of the phenomenological CF parameters of the fits, the experimentally based non-relativistic molecular orbital schemes of complexes **1**, **2** and **3** were set up, and compared with that of base-free Er(btmsa)₃.

Keywords: Rare-earth compounds; N ligands; X-ray scattering; UV/ VIS spectroscopy; Crystal field analysis; Molecular orbital schemes

Einleitung

Homoleptische Tris(silylamido)lanthanid(III)-Komplexe mit dem sterisch anspruchsvollen Bis(trimethylsilyl)amido-(Btmsa)-Liganden können ein oder zwei [2–5] und die mit dem weniger voluminösen Bis(dimethylsilyl)amido(Bdmsa)-Liganden üblicherweise zwei Donormoleküle B addieren [4, 6–8]. Letztere sind entweder gewinkelt (wie bei [Nd(Bdmsa)₃(THF)₂] [6]) oder axial (wie bei [Nd(Bdmsa)₃(OPPh₃)₂] [7–9]) angeordnet, während im

Institut für Anorganische und Angewandte Chemie der Universität Martin-Luther-King-Platz 6 D-20146 Hamburg Fax: +49 40 42838-2893 e-Mail: fc3a501@uni-hamburg.de Falle von [Ln(Btmsa)₃(B)₂]-Komplexen die B-Ln-B-Bindungswinkel immer bei ca. 180° liegen [3-5]. Bei den [Ln(Btmsa)₃(B)]-Monoaddukten ist eine weitgehend trigonal-pyramidale Koordination des Ln³⁺-Zentralions verwirklicht [2, 4]. Durch Variation der bekannten Kristallfeld(KF)-Parameter von basenfreiem Nd(Btmsa)₃ [10, 11] im Sinne der vom elektrostatischen Punktladungsansatz (EPL) [12] sowie des angular-overlap-Modells (AOM) [13, 14] vorhergesagten Trends für Mono- und Bisaddukte [15] gelang ohne größere Schwierigkeiten die Simulation der KF-Aufspaltungsmuster von [Nd(Btmsa)₃(THF)] [16] und [Nd(Btmsa)₃(CNC₆H₁₁)₂] [5] sowie von [Nd(Bdmsa)₃(THF)₂] [9] auf der Grundlage des phänomenologischen KF-Ansatzes [12, S. 189].

Diese Vorgehensweise ließ sich jedoch nicht auf $[Nd(Bdmsa)_3(OPPh_3)_2]$ übertragen, da sich sowohl die optischen [17] als auch die magnetochemischen Eigen-

^{*} Prof. Dr. H.-D. Amberger

schaften [18] der axialsymmetrischen Verbindungen $[Nd(Bdmsa)_3(OPPh_3)_2]$ und $[Nd(Btmsa)_3(CNC_6H_{11})_2]$ gravierend unterscheiden. Offenbar sind mit beiden transständigen Ligandenpaaren stark differierende Feldstärken verbunden, die zu unterschiedlichen Sequenzen der KF-Zustände führen.

Dieser Befund legt nahe, zunächst die vermutlich nicht so deutlich ausfallende und deshalb möglicherweise zu interpretierende Veränderung der optischen Eigenschaften anhand von Monoaddukten zu untersuchen. Da wir im Gegensatz zu Andersen [19] [Ln(Btmsa)₃(CNC₆H₁₁)] weder spektral- noch analysenrein synthetisieren konnten (es fielen zusätzlich sowohl Kristalle der Zusammensetzung $Ln(Btmsa)_3$ als auch $[Ln(Btmsa)_3(CNC_6H_{11})_2]$ aus), empfiehlt sich die Untersuchung des Monoadduktpaares [Ln(Btmsa)₃(THF)] und [Ln(Btmsa)₃(OPPh₃)]. Die dabei im Rahmen parametrischer Analysen beobachtbaren Trends der KF-Parameter bzw. der hieraus ableitbaren experimentorientierten nichtrelativistischen Molekülorbital(MO)-Schemata im f-Bereich gestatten möglicherweise die spätere Aufklärung der Elektronenstrukturen von Bisaddukten der Stöchiometrie [Ln(Bdmsa)₃(OPPh₃)₂].

Das oben erwähnte Monoadduktpaar mit Ln = Nd wäre wegen der bereits bekannten KF-Parameter von [Nd(Btmsa)₃(THF)] [16] natürlich ein naheliegender Ausgangspunkt. Ähnlich wie bei der von *Bradley* et al. berichteten Erstsynthese von [Ln(Btmsa)₃(OPPh₃)] (Ln = La, Eu, Lu) [2] war jedoch das von uns angestrebte [Nd(Btmsa)₃(OPPh₃)] nicht spektralrein, sondern geringfügig mit [Nd₂(Btmsa)₄(O₂)(OPPh₃)₂] verunreinigt. Im Falle von Ln = Er gelang jedoch die Reindarstellung, so daß im folgenden auf die entsprechenden Er-Verbindungen [Er(Btmsa)₃(CNC₆H₁₁)₂] (1), [Er(Btmsa)₃(THF)] (2) und [Er(Btmsa)₃(OPPh₃)] (3) ausgewichen wird.

Ergebnisse und Diskussion

Kristall- und Molekülstruktur von $[Er(Btmsa)_3(CNC_6H_{11})_2]$

Ähnlich wie die entsprechende Nd-Verbindung [5, Abb. 1] kristallisiert auch Komplex 1 in der monoklinen Raumgruppe C2/c mit vier Molekülen in der Elementarzelle. Da die dreizähligen Hauptdrehachsen der vier Moleküle einheitlich ausgerichtet sind, besteht prinzipiell die Möglichkeit, optische Polarisations-, paramagnetische Suszeptibilitäts- und EPR-spektroskopische Messungen an orientierten Einkristallen vorzunehmen. Im Gegensatz zu den trigonalen basenfreien Ln(Btmsa)₃-Komplexen (hier sind die Hauptdrehachsen parallel zur c-Achse der stabförmigen Kristalle angeordnet [4, 20]) liegt beim monoklinen Bisaddukt 1 keine einfache Beziehung zwischen Kristallmorphologie und molekularer Hauptdrehachse vor, so daß zur Durchführung der oben erwähnten Einkristall-Untersuchungen 22] ähnlich wie [21, bei $[Nd(Btmsa)_3(CNC_6H_{11})_2]$ [5] – aufwendige Justierarbeiten vorgenommen werden müßten, auf die hier jedoch verzichtet werden kann (vide infra).

Abb. 1 Molekülstruktur von [Er(Btmsa)₃(CNC₆H₁₁)₂] im Kristall.

Tabelle 1 Ausgewählte Bindungslängen /pm und -winkel /° von $[Er(Btmsa)_3(CNC_6H_{11})_2].$

Bindungslängen		Bindungswinkel	
Er = N(1)	224.3(3)	N(1)-Er-N(1a)	119.97(14)
Er - N(1a)	224.3(3)	N(1) - Er - N(2a)	120.02(7)
Er - N(2)	225.0(3)	N(1a) - Er - N(2)	120.02(7)
Er - C(10)	257.6(5)	N(1) - Er - C(10a)	90.74(14)
Er-C(10a)	257.6(5)	N(1a) - Er - C(10a)	88.71(14)
		N(2) - Er - C(10a)	90.55(7)
		C(10) - Er - C(10a)	178.9(2)

Die Molekülstruktur von Verbindung 1 ist in Abbildung 1 veranschaulicht, und ausgewählte Bindungslängen und -winkel sind in Tabelle 1 angegeben. Mit $178.9(2)^{\circ}$ ist der C-Er-C-Winkel nahezu digonal, die beiden Er-C-Abstände sind gleich (257.6(5) pm) und die drei N-Er-N-Winkel sind im Mittel 120°, wobei die Streuung sehr gering ist (vgl. Tabelle 1).

Die Ebenen, die durch das N- und durch die zwei Si-Atome der drei N(SiMe₃)₂-Liganden definiert werden, schließen diedrische Winkel von 45° mit der Ebene ein, die durch das Er³⁺-Zentralion und die drei N-Atome definiert ist. Hierdurch werden die van der Waals-Kontakte zwischen den SiMe3-Gruppen minimiert und es werden chirale Moleküle gebildet, die im Einkristall stereoselektiv kristallisieren.

Der mittlere Er-N-Abstand (Amid-N) ist bei Komplex 1 mit 224.5 pm größer als bei Er(Btmsa)₃ (222.0 pm) [6] und Y(Btmsa)₃ (222.4 pm) [3], jedoch kleiner als bei $[Y(Btmsa)_3(NCC_6H_5)_2]$ (225.7 pm) [3]. Dagegen sind die axialen Bindungslängen bei letzterem Komplex mit 248.3 pm [3] kürzer als beim Bisaddukt 1 (257.6 pm). Der mittlere N-Si-Abstand von 1 ist mit 172 pm genauso groß wie bei $[Y(Btmsa)_3(NCC_6H_5)_2]$ [3], und der mittlere Si-N-Si-Winkel von Komplex 1 (119.2°) ist mit dem von $[Y(Btmsa)_3(NCC_6H_5)_2]$ (119.3°) [3] nahezu identisch.

Betrachtet man nur die N- und C-Atome der ersten Koordinationssphäre, so ist das Er³⁺-Zentralion nahezu exakt trigonal-bipyramidal koordiniert und es liegt somit ein effektives KF der Symmetrie D_{3h} vor. Berücksichtigt man zusätzlich die Si-Atome der zweiten Koordinationssphäre, dann reduziert sich die Molekülsymmetrie von D3h nach D₃.

Die Existenz von Mono-THF-Addukten des Grundkörpers Ln(Btmsa)₃ wurde bereits früher durch NMR- [3], absorptions- und lumineszenzspektroskopische [16, 23] sowie durch Dipolmomentmessungen [24] belegt. Nähere strukturelle Befunde liegen allerdings noch nicht vor, jedoch ist gemäß den obigen Untersuchungen davon auszugehen, daß bei Addukt 2 das Er³⁺-Zentralion einem effektiven KF der Symmetrie C_{3v} ausgesetzt ist.

Bislang wurden zwar diverse [Ln(Btmsa)₃(OPPh₃)]-Addukte synthetisiert und spektroskopisch charakterisiert [2, 23], Ergebnisse einer Röntgenstrukturanalyse wurden jedoch nur im Falle von Ln = La mitgeteilt [2]. Danach steht die P-O-La-Bindung nahezu senkrecht auf der Ebene, die durch die drei N-Atome aufgespannt wird, so daß auch bei 3 ein effektives KF der Symmetrie C3v vorliegen dürfte.

Symmetriebetrachtungen und phänomenologische Hamilton-Operatoren

Das freie f¹¹-System Er³⁺ gibt zu Multipletts ^{2S+1}L_J mit $1/2 \le J \le 15/2$ Anlaß [25]. Bei Vorliegen von Kristallfeldern der Symmetrien D_{3h} bzw. C_{3v} zerfallen diese Multipletts in KF-Zustände der Symmetrien Γ_7 , Γ_8 und Γ_9 [12, S. 262] bzw. Γ_4 und $\Gamma_{5/6}$ [12, S. 264].

Im Falle glasartig erstarrter Lösungen, polykristallinen Materials (Pillen) und nichtorientierter Einkristalle von 1 gelten die in Tabelle 2 angegebenen Auswahlregeln für erzwungene elektrische Dipolübergänge.

Gemäß diesen Auswahlregeln werden im 4 K-Absorptionsspektrum von 1 bei Vorliegen eines KF-Grundzustandes der Symmetrie Γ_8 ein, und im Falle von KF-Grundzuständen der Symmetrien Γ_7 oder Γ_9 zwei "kalte" Übergänge zu den beiden Komponenten (der Symmetrien Γ_8 und Γ_9) der Multipletts ${}^4S_{3/2}$ und ${}^4F_{3/2}$ erwartet (s. Tabelle

Tabelle 2 Auswahlregeln für erzwungene elektrische Dipol-Übergänge gelöster oder polykristalliner ungeradzahliger fn-Systeme, die Kristallfeldern der Symmetrie D_{3h} [12, S. 255] bzw. C_{3v} [12, S. 256] ausgesetzt sind.

D _{3h}	Γ_7	Γ_8	Γ_9	C_{3v}	Γ_4	$\Gamma_{5/6}$
Γ ₇ Γ ₈ Γ ₉	_a) + +	+ - +	+ + +	$\Gamma_4 \\ \Gamma_{5/6}$	+ +	+ +

a) - verboten, + erlaubt.

2). Da jeweils nur ein Übergang beobachtet wurde (vgl. Abb. 2), muß demnach ein KF-Grundzustand der Symmetrie Γ_8 vorliegen.

Das Verbot von $\Gamma_8 \rightarrow \Gamma_8$ -Übergängen wird allerdings nicht bei allen Multipletts streng befolgt (vgl. Abb. 3a, Tabelle 3). Der Grund hierfür dürfte bevorzugt darin liegen, daß bei Vorliegen eines effektiven KF der Symmetrie D₃ (bei Berücksichtigung der Si-Atome der zweiten Koordinationssphäre (vide supra)) eine Symmetrieerniedrigung von Γ_8 nach Γ_4 erfolgt und die ursprünglich verbotenen $\Gamma_8 \rightarrow \Gamma_8$ zu erlaubten $\Gamma_4 \rightarrow \Gamma_4$ -Übergängen werden [12, S. 257].

Bei optischer Untersuchung glasartig erstarrter Lösungen von 2 oder 3 bzw. von Pillen oder unorientierter Einkristalle von 3 sind sämtliche Übergänge zwischen den resultierenden KF-Zuständen der Symmetrien Γ_4 und $\Gamma_{5/6}$ erlaubt (vgl. Tabelle 2), so daß pro angeregtem Multiplett (angesichts der bei f¹¹-Systemen auftretenden Multipletts mit halbzahligen Gesamtdrehimpulsquantenzahlen J) jeweils $J + \frac{1}{2}$ "kalte" Signale zu erwarten sind [26].

Wie nachstehend beschrieben, können die Energieniveaus innerhalb einer fⁿ-Konfiguration (2 < n < 12) als Summe eines Hamilton-Operators des freien Ions (HFI) und des KF (H_{KF}) ausgedrückt werden:

$$H = H_{FI} + H_{KF}$$
, wobei

$$\begin{split} H_{\rm FI} &= \sum_{k \,=\, 0, 2, 4, 6} \, f_k F^k({\rm nf}, {\rm nf}) \,+\, a_{\rm SB} \zeta_{\rm 4f} \,+\, \alpha L(L \,+\, 1) \,+\, \beta G(G_2) \\ &+\, \gamma G(R_7) \,+\, \sum_{i \,=\, 2, 3, 4, 6, 7, 8} \, t_i T^i \,+\, \sum_{k \,=\, 0, 2, 4} \, m_k M^k \,+\, \sum_{k \,=\, 2, 4, 6} \, p_k P^k \ [27], \end{split}$$

$$H_{KF}(D_{3h}) = B_0^2 C_0^{(2)} + B_0^4 C_0^{(4)} + B_0^6 C_0^{(6)} + B_6^6 (C_{-6}^{(6)} + C_6^{(6)})$$
[28], und

$$\begin{split} H_{KF} \left(C_{3v} \right) &= B_0^2 \ C_0^{(2)} + B_0^4 \ C_0^{(4)} + B_3^4 \ (C_{-3}^{(4)} - C_3^{(4)}) + B_0^6 \ C_0^{(6)} + B_3^6 \ (C_{-3}^{(6)} - C_3^{(6)}) + B_6^6 \ (C_{-6}^{(6)} + C_6^{(6)}) \ [28]. \end{split}$$

Die $F^{k}(nf,nf)$ und ζ_{4f} stellen dabei die Radialanteile der Coulomb-Abstoßung und der Spin-Bahn-Kopplung der f-Elektronen dar, während fk und asB für die winkelabhängigen Teile dieser Wechselwirkungen stehen. Mit α , β und γ werden die Parameter der Zweiteilchen- und mit Ti die der Dreiteilchen-Konfigurationswechselwirkungen bezeichnet. $G(G_2)$ und $G(R_7)$ sind die Casimir-Operatoren der Gruppen G₂ und R₇, L der Gesamtbahndrehimpuls und t_i Dreiteilchenoperatoren. Die Parameter Mk berücksichtigen die Spin-Spin- und Spin-andere Bahn-Wechselwirkungen, und

Abb. 2 Absorptionsspektren im Bereich des Überganges ${}^{4}I_{15/2}$ -> ${}^{4}F_{5/2}/{}^{4}F_{3/2}$: (a) von [Er(Btmsa)₃(CNC₆H₁₁)₂], KBr-Pille, ca. 4 K; (b) von [Er(Btmsa)₃·(THF)], glasartig erstarrte Lösung, ca. 30 K; (c) von [Er(Btmsa)₃·(OPPh₃)], unorientierter Einkristall, ca. 30 K (der "kalte" Übergang zum Zustand 31 Γ_4 ist in diesem Spektrum nicht sichtbar).

die Parameter P^k tragen elektrostatischen Spin-Bahn-Wechselwirkungen mit höheren Konfigurationen Rechnung, wobei m_k und p_k die entsprechenden Operatoren sind [27]. Die Wechselwirkung des KF für D_{3h}- bzw. C_{3v}-Symmetrie wird durch Produkte der anzupassenden KF-Parameters B^k_q und den Tensor-Operatoren C^(k)_q beschrieben [28].

Analyse der optischen Spektren und Parametrisierung der experimentell ermittelten KF-Aufspaltungsmuster

Im Gegensatz zu zahlreichen anderen Er^{III}-Verbindungen fluoreszieren die Komplexe **1**, **2** und **3** nicht (außerdem sind bei tiefen Temperaturen keine elektronischen Raman-Übergänge zu verzeichnen [23]), so daß die Energien der KF-Zustände des Grundmultipletts ⁴I_{15/2} aus teilweise recht breiten "heißen" Übergängen der Raumtemperatur-Absorptionsspektren gefolgert werden müssen und deshalb nur ungenau angebbar sind.

Den Tieftemperatur-Absorptionsspektren unorientierter Einkristalle, grobkristallinen Materials sowie Pillen der Komplexe 1 und 3 bzw. einer glasartig erstarrten Lösung

Abb. 3 Absorptionsspektren im Bereich des Überganges ${}^{4}I_{15/2}$ -> ${}^{4}F_{7/2}$: (a) von [Er(Btmsa)₃(CNC₆H₁₁)₂], KBr-Pille, ca. 4 K; (b) von [Er(Btmsa)₃·(THF)], glasartig erstarrte Lösung, ca. 30 K; (c) von [Er(Btmsa)₃·(OPPh₃)], unorientierter Einkristall, ca. 30 K.

der Verbindung **2** (s. Experimenteller Teil) wurden die in den Tabellen 3, 4 und 5 angegebenen, jedoch vorläufig noch nicht zugeordneten KF-Folgeenergien der angeregten Multipletts entnommen.

Im Falle der Monoaddukte **2** und **3** sind (mit Ausnahme von zufälligen Entartungen) im allgemeinen jeweils die erwarteten $J+^{1/2}$ "kalten" Übergänge zu den angeregten Multipletts $^{2S+1}L_J$ (s. Abb. 2, 3, Tabellen 4, 5) zu verzeichnen, so daß man – ähnlich wie bei [Nd(Btmsa)₃(THF)] [16] – davon ausgehen kann, daß hier bei tiefen Temperaturen tatsächlich einheitliche Monoaddukte untersucht wurden und somit höhersymmetrische Bisaddukte – wie im Falle von Nd(Btmsa)₃ [29] und Eu(Btmsa)₃ postuliert [30] – auszuschließen sind.

Durch die KF-theoretische Analysen der optischen Spektren von [Pr(Btmsa)₃(CNR)₂] (R = C₆H₁₁, ^tBu [31]) und [Nd(Btmsa)₃(CNC₆H₁₁)₂] [5] haben wir bereits einen "Master"-KF-Parametersatz für trigonal-bipyramidal koordinierte Ln³⁺-Ionen abgeleitet. Gleichfalls führte die Simulation der KF-Aufspaltungsmuster von [Pr(Btmsa)₃(THF)] [23] und [Nd(Btmsa)₃(THF)] [16] zu einem "Master"-KF-Parametersatz für die parametrische Analyse der optischen Spektren des Monoaddukts **2**. Im Falle von Monoaddukt **3** waren die in Lit. [23] angegebenen KF-Parameter der entsprechenden Nd-Verbindung wegen deren unvollkommener

Tabelle 3 Vergleich des angepaßten und des experimentell erfaßtenKF-Aufspaltungsmusters von $[Er(Btmsa)_3(CNC_6H_{11})_2]$ (in cm^{-1}).

Tabelle 4 Vergleich des angepaßten und des experimentell erfaßten KF-Aufspaltungsmusters von [Er(Btmsa)₃(THF)] (in cm⁻¹)

Multiplett	KF-Zu	stand	ber. Energie	exp. Energie ^{a)}	Multiplett	KF-Zustand		ber. Energie	exp. Energie
$\begin{array}{l} 41_{1152} \text{ b)} \\ 41_{152} \text{ b)} \\ 41_{152} \text{ c)} \\ 41_{$	$1\Gamma_8 c^0$ $2\Gamma_8$ $1\Gamma_9$ $1\Gamma_7$ $2\Gamma_9$ $2\Gamma_7$ $3\Gamma_9$ $3\Gamma_8$ $4\Gamma_8$ $4\Gamma_9$ $3\Gamma_7$ $5\Gamma_8$ $4\Gamma_7$ $5\Gamma_9$ $6\Gamma_8$ $6\Gamma_9$ $5\Gamma_7$ $7\Gamma_8$ $6\Gamma_7$ $7\Gamma_8$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_8$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_7$ $8\Gamma_9$ $8\Gamma_7$	$\begin{array}{c} \pm 11/2 \ d) \\ \pm 13/2 \\ \pm 9/2 \\ \pm 7/2 \\ \pm 5/2 \\ \pm 5/2 \\ \pm 11/2 \\ \pm 11/2 \\ \pm 11/2 \\ \pm 11/2 \\ \pm 7/2 \\ \pm 13/2 \\ \pm 13/2 \\ \pm 11/2 \\ \pm 5/2 \\ \pm 3/2 \\ \pm 11/2 $	0 20 62 122 207 330 357 375 6529 6547 6604 6723 6777 6811 10190 10222 10234 10295 10336 10357 12320 12450	$\begin{array}{l} 0 \\ = 20 \ ^{\rm e)} \\ = 20 \ ^{\rm e)} \\ = 20 \ ^{\rm e)} \\ = 210 \ ^{\rm e)} \\ = 210 \ ^{\rm e)} \\ = 210 \ ^{\rm e)} \\ \hline \end{array}$	$\label{eq:starting} \begin{array}{l} {}^{4}S_{3/2} \\ {}^{2}H_{211/2} \\ {}^{4}F_{71/2} \\ {}^{4}F$	$\begin{array}{c} 11\Gamma_8 \\ 12\Gamma_9 \\ 12\Gamma_8 \\ 13\Gamma_8 \\ 13\Gamma_9 \\ 11\Gamma_7 \\ 14\Gamma_9 \\ 12\Gamma_7 \\ 14\Gamma_8 \\ 15\Gamma_9 \\ 13\Gamma_7 \\ 14\Gamma_7 \\ 15\Gamma_8 \\ 16\Gamma_9 \\ 15\Gamma_7 \\ 16\Gamma_8 \\ 17\Gamma_9 \\ 16\Gamma_7 \\ 18\Gamma_9 \\ 17\Gamma_8 \\ 19\Gamma_9 \\ 17\Gamma_8 \\ 19\Gamma_9 \\ 18\Gamma_8 \end{array}$	$\begin{array}{c} \pm 1/2 \\ \pm 3/2 \\ \pm 11/2 \\ \pm 11/2 \\ \pm 1/2 \\ \pm 5/2 \\ \pm 1/2 \\ \pm 3/2 \\ \pm 5/2 \\ \pm 1/2 \\ \pm 3/2 \\ \pm 5/2 \\ \pm 1/2 \\ \pm 1/2 \\ \pm 1/2 \end{array}$	18286 18425 19084 19187 19157 19194 19218 19256 20369 20451 20508 20614 22096 22129 22211 22409 22213 22409 22409 24491 24525 24540 24525 24540	18437 19084 19135 19164 19186 20309 20462 20509 20614 22104 22104 22148 22624 24540 24540 24625
${}^{4}I_{9/2} \\ {}^{4}I_{9/2} \\ {}^{4}I_{9/2} \\ {}^{4}F_{9/2} \\ {}^{4}F_{9/2} \\ {}^{4}F_{9/2} \\ {}^{4}F_{9/2} \\ {}^{4}F_{9/2} \\ {}^{4}F_{9/2} $	8Γ ₇ 9Γ ₈ 9Γ ₉ 9Γ ₇ 10Γ ₉ 10Γ ₈ 10Γ ₇ 11Γ ₉	$\pm 5/2$ $\pm 1/2$ $\pm 9/2$ $\pm 5/2$ $\pm 3/2$ $\pm 1/2$ $\pm 7/2$ $\pm 9/2$	12493 12524 12562 15206 15243 15270 15272 15484	12486 12536 12583 15209 15223 15251 15300 15492	${}^{4}G_{11/2}\\ {}^{4}G_{11/2}\\ {}^{4}G_{11/2}\\ {}^{4}G_{11/2}\\ {}^{4}G_{11/2}\\ {}^{4}G_{11/2}$	19Г ₈ 20Г9 18Г7 21Г9 19Г7	±11/2 ±3/2 ±5/2 ±9/2 ±7/2	26232 26262 26371 26397 26448	26219

^{a)} Den Absorptionsspektren (s. Experimenteller Teil) bei ca. 4 K entnommen

^{b)} Dominierendes, zugrundeliegendes Multiplett

^{c)} Hier wird die Bethesche Γ -Symbolik für die Doppelgruppe D_{3h}' verwendet. Die einzelnen irreduziblen Darstellungen Γ_i sind (bei festgehaltenem i) nach steigender Energie geordnet

 $^{d)}$ Die KF-Zustände werden hier durch ihre dominierenden Quantenzahlen $\pm M_J$ grob charakterisiert

^{e)} Den Absorptionsspektren bei Raumtemperatur entnommen

Spektralreinheit (vide supra) nicht völlig verläßlich, jedoch als Startparameter hinreichend plausibel. Aus diesem Grunde können die Endzustände der beobachteten KF-Übergänge der Komplexe 1, 2 und 3 auf der Basis der sogenannten "rechnerischen Identifizierung" [31] zugeordnet werden.

Erfahrungsgemäß reduzieren sich die Beträge der KF-Parameter beim Gang von den Anfangs- zu den Endgliedern der Lanthaniden-Serie häufig um ca. 25-40 % [12, S. 121]. Die Diagonalisierung der Energiematrix des f¹¹-Systems Er³⁺, in die die Parameter des freien Ions von Er(Btmsa)₃ [11] und die um 35 % reduzierten KF-Parameter von [Nd(Btmsa)₃(CNC₆H₁₁)₂] [5] bzw. von [Nd(Btmsa)₃(THF)] [16] sowie [Nd(Btmsa)₃(OPPh₃)] [23] eingesetzt worden waren, führten zu Eigenwerten, die mit den experimentellen KF-Energien der Verbindungen 1, 2 und 3 vergleichbar sind und zudem im Falle des Bisadduktes 1 den spektroskopisch gefolgerten KF-Grundzustand der Symmetrie Γ_8 korrekt wiedergeben. Unter der Annahme, daß die zuvor erwähnten Identifizierungen die tatsächlichen Sequenzen der KF-Zustände der Komplexe 1, 2 und 3 liefern, wurden die freien Parameter des oben beschriebenen phänomenologischen Hamilton-Operators den Energien der so identifizierten

Multiplett	KF-Zus	tand	ber. Energie	er. exp. Multiplett KF-Zustand Energie Energie ^{a)}		KF-Zustand		exp. Energie	
⁴ I _{15/2} b)	1Γ _{5/6} c)	±15/2 ^d)	0	0	⁴ F _{5/2}	29Γ4	±1/2	22088	22095
⁴ I _{15/2}	$1\Gamma_4$	±13/2	108	$\approx 100^{\circ}$	⁴ F _{5/2}	16F _{5/6}	$\pm 3/2$	22090	22095
4I _{15/2}	214	±11/2	160	≈160 e)	4F5/2	301'4	±5/2	22213	22193
⁴ I _{15/2}	$2\Gamma_{5/6}$	±9/2	243	≈250 ^{e)}	⁴ F _{3/2}	$31\Gamma_4$	$\pm 1/2$	22392	22406
⁴ I _{15/2}	$3\Gamma_4$	±7/2	331	$\approx 340^{\circ}$	⁴ F _{3/2}	$17\Gamma_{5/6}$	±3/2	22717	22707
4I15/2	414	±5/2		390	4F9/2	321 5/6	±3/2	24508	24498
41 _{15/2}	31'5/6	±3/2	40.4	445 470 c)	⁴ F _{9/2}	1814	±5/2	24520	24522
⁴ 1 _{15/2}	514	±1/2	484	≈4/0 c)	4F9/2	3314	±1/2	24570	24582
41 41	61 ₄	±13/2 ±11/2	6541	6527	4E	341 4 10E	± //2	24642	24631
41	/1 4 4E	±11/2 ±0/2	6678	6601	4C	191 5/6 25 F	±9/2 ±1/2	24000	24033
41	41 5/6 9 F	+7/2	6752	6741	4G	201	+2/2	20239	26274
113/2	014	1112	0755	0741	G11/2	201 5/6	1312	20200	20274
⁴ I _{13/2}	$9\Gamma_4$	±5/2	6826	6800	⁴ G _{11/2}	$36\Gamma_4$	$\pm 11/2$	26330	26330
⁴ I _{13/2}	$5\Gamma_{5/6}$	$\pm 3/2$	6882	6866	⁴ G _{11/2}	$37\Gamma_4$	±5/2	26410	26413
⁴ I _{13/2}	$10\Gamma_4$	±1/2	6918	6935	⁴ G _{11/2}	38Г4	±7/2	26466	26448
⁴ I _{11/2}	$11\Gamma_4$	±11/2	10210	10220	⁴ G _{11/2}	$21\Gamma_{5/6}$	±9/2	26476	26487
4I _{11/2}	61'5/6	±9/2	10276	10293	² K _{15/2}	221 5/6	±15/2	27102	
⁴ 111/2 4	1214	±7/2	10333	10347	² K _{15/2}	391.4	±13/2	27226	2720.6
4T	1514	±3/2 ±2/2	10387	10384	4G9/2	231 5/6	±9/2	27204	27285
41	/1 5/6 14E	± 5/2 +1/2	10428	10417	4G	401 4 41 F	±1/2 +7/2	27304	27252
4Lon	8Γ ₂ μ	+9/2	12449	12488	4Ga/2	42 1 4	+5/2	27368	27360
4Io/2	8Γ ₅	+1/2	12495	12520	⁴ Go/2	24 L 4	+3/2	27373	27375
4I0/2	9Γ ₄	+7/2	12540	12542	${}^{2}K_{15/2}$	43E4	+11/2	27417	21010
⁴ I _{9/2}	9Γ _{5/6}	±3/2	12601	12596	² K _{15/2}	25Γ _{5/6}	±9/2	27629	
⁴ Ior	1754	+1/2	12624	12633	² K 15/2	44 Γ 4	+7/2	27819	
4 For	18	+1/2	15200	15175	⁴ G _{7/2}	45Γ₄	+1/2	27952	27956
4F9/2	10F5/6	$\pm 3/2$	15251	15249	${}^{4}G_{7/2}$	26 5/6	$\pm 3/2$	27979	
⁴ F _{9/2}	19F4	±5/2	15305	15300	${}^{4}G_{7/2}$	46Γ ₄	±7/2	27989	
4 _{Eoro}	20174	+7/2	15382	15366	4Gau	47 🛙	+5/2	27999	28003
4Fo/2	111546	+9/2	15567	15559	² K _{15/2}	48T4	+5/2	28026	28027
4S3/2	21 \[4	+1/2	18284	18285	² K15/2	27 5/6	+3/2	28133	20027
⁴ S _{3/2}	1215/6	$\pm 3/2$	18478	18522	${}^{2}K_{15/2}$	49Γ ₄	$\pm 1/2$	28192	
$^{2}H_{211/2}$	22F4	$\pm 1/2$	19138	19120	10/2				
$^{2}H2_{11/2}$	23Γ ₄	±11/2	19154	19135					
$^{2}H2_{11/2}$	13Γ _{5/6}	$\pm 3/2$	19173	19164					
² H2 _{11/2}	$24\Gamma_4$	±5/2	19222	19227					
² H2 _{11/2}	$14\Gamma_4$	±7/2	19284	19279					
² H2 _{11/2}	$25\Gamma_{5/6}$	±9/2	19295	19294					
⁴ F _{7/2}	$26\Gamma_4$	±1/2	20380	20354					
⁴ F _{7/2}	$15\Gamma_{5/6}$	±3/2	20411	20450					
*F _{7/2}	$27\Gamma_4$	±5/2	20547	20555					
·F'7/2	2814	±7/2	20712	20725					

^{a)} Dem Absorptionsspektrum der MeTHF/THF-Lösung bei ca. 30 K entnommen

^{b)} Dominierendes, zugrundeliegendes Multiplett

^{c)} Hier wird die Bethesche Γ -Symbolik für die Doppelgruppe C_{3v} ' verwendet. Die einzelnen irreduziblen Darstellungen Γ_i sind (bei festgehaltenem i) nach steigender Energie geordnet

^{d)} Die KF-Zustände werden hier durch ihre dominierenden Quantenzahlen $\pm M_J$ grob charakterisiert

e) Dem Absorptionsspektrum bei Raumtemperatur entnommen

KF-Zustände angepaßt. Um die Zahl der offenen Parameter zu reduzieren, wurden die Parameter α , β , γ , Tⁱ, M^k und P^k des freien Ions auf die bei LaCl₃:Er³⁺ gefundenen Werte [32] (die auch bei Er(Btmsa)₃ verwendet wurden [11]) konstant gehalten; die restlichen Parameter wurden frei variiert. Im Falle der Verbindungen **1**, **2** und **3** wurden dabei ungewöhnlich kleine reduzierte r.m.s. (σ)-Werte [12, S. 164] von 13 cm⁻¹ (bei 42 Zuordnungen), 16 cm⁻¹ (bei 63 Zuordnungen) bzw. 17.5 cm⁻¹ (bei 55 Zuordnungen) erzielt. Die verwendeten Parameter dieser Anpassungen sind in Tabelle 6 angeführt.

Der Parameter $\frac{N_v}{\sqrt{4\pi}} = \sqrt{\sum_{k,q} \frac{1}{2k+1} (B_q^k)^2}$ wird als ein

relatives Maß für die Stärke des KF betrachtet [33]. Die Einsetzung der numerischen Werte der KF-Parameter B_q^k der Verbindungen 1, 2 und 3 in obige Beziehung führt zu

Tabelle 5	Vergleich	des ang	gepaßten	und	des	experime	ntell	erfaß-
ten KF-Au	ifspaltungs	musters	s von [Er	(Btm	sa) ₃ ((OPPh ₃)]	(in ci	m^{-1})

Multiplett	KF-Zu	stand	ber. Energie	exp. Energie ^{a)}	Multiplett	KF-Zu	stand	ber. Energie	exp. Energie
⁴ I15/2 b)	1Γ4 ^{c)}	±7/2 ^{d)}	0	0	4F5/2	29Г4	±1/2	21985	21993
⁴ I15/2	115/6	+15/2	2	0	4F5/2	16 5/6	+3/2	21996	22022
4I15/2	215/6	+9/2	28	≈40 ^{e)}	4F5/2	30E4	+5/2	22033	22051
4I15/2	21 5/0	+11/2	61	≈65 ^{e)}	4F2/2	31174	$\pm 1/2$	22339	22316
4L15/2	314	$\pm 13/2$	120	≈95 e)	4F20	17 54	+3/2	22333	22310
⁴ I _{15/2}	$4\Gamma_4$	±5/2	204	≈190 ^{e)}	⁴ F _{9/2}	$32\Gamma_4$	±5/2	24376	22452
4 I	317.016	+3/2	237		⁴ Eor	185-16	+3/2	24406	24414
41.5/2	51 5/6	+1/2	276		4F	335.	$\pm 1/2$	24400	24450
41.5/2	6Γ.	+13/2	6506	6502	4F	10	+0/2	24484	24408
⁴ I _{13/2}	$7\Gamma_4$	$\pm 11/2$ $\pm 11/2$	6534	0502	⁴ F _{9/2}	$34\Gamma_4$	±7/2	24434	24498
41.00	4Γ <i></i>	+9/2	6537		⁴ Guua	35177	+1/2	26133	26110
41.5/2	80.	+7/2	6559		4G11/2	20	+3/2	26153	26137
41.3/2	οr ₄	+5/2	6636		4G.u.	201 5/6 26E	+11/2	26164	26185
413/2	514	+2/2	6666		4G	275	+7/2	26252	20103
413/2	105	+1/2	0000		40	201	+1/2	20233	26274
113/2 4	101.4	±1/2	0090	10124	40	381.4	±1/2	26280	26274
⁴ I _{11/2}	111.4	±11/2	10131	10134	⁴ G _{11/2}	211 5/6	±9/2	26293	26295
⁴ I _{11/2}	61 5/6	±9/2	10154	10158	² K _{15/2}	221 5/6	±15/2	26293	26295
⁴ I _{11/2}	1214	±7/2	10160	10167	*G9/2	391.4	±1/2	27145	27137
⁴ I _{11/2}	1314	±5/2	10200	10208	*G9/2	231 5/6	±9/2	27146	27137
⁴ I _{11/2}	$7\Gamma_{5/6}$	$\pm 3/2$	10222	10225	4G9/2	$40\Gamma_4$	±7/2	27189	
⁴ I _{11/2}	$14\Gamma_4$	$\pm 1/2$	10238	10235	⁴ G _{9/2}	$24\Gamma_{5/6}$	$\pm 3/2$	27197	
⁴ I _{9/2}	$15\Gamma_4$	±5/2	12302		⁴ G _{9/2}	$41\Gamma_4$	$\pm 5/2$	27202	27203
⁴ I _{9/2}	8Γ _{5/6}	±9/2	12336	12350	${}^{2}K_{15/2}$	$42\Gamma_4$	±13/2	27289	27293
⁴ I _{9/2}	9Γ _{5/6}	±9/2	12413	12398	${}^{2}K_{15/2}$	$25\Gamma_{5/6}$	±15/2	27289	27293
⁴ I _{9/2}	$16\Gamma_4$	±7/2	12433	12455	${}^{2}K_{15/2}$	$43\Gamma_4$	$\pm 11/2$	27349	27345
⁴ I _{9/2}	$17\Gamma_4$	$\pm 1/2$	12482		${}^{2}K_{15/2}$	$26\Gamma_{5/6}$	±9/2	27460	
⁴ F _{9/2}	$18\Gamma_4$	$\pm 1/2$	15138	15129	${}^{2}K_{15/2}$	$44\Gamma_4$	±7/2	27543	27541
⁴ F _{9/2}	$10\Gamma_{5/6}$	$\pm 3/2$	15168	15145	${}^{2}K_{15/2}$	$45\Gamma_4$	±5/2	27643	27624
⁴ F _{9/2}	$19\Gamma_4$	$\pm 5/2$	15192	15168	$^{2}K_{15/2}$	$27\Gamma_{5/6}$	$\pm 3/2$	27691	
⁴ F _{9/2}	$20\Gamma_4$	±7/2	15240	15228	$^{2}K_{15/2}$	$46\Gamma_4$	±1/2	27717	
⁴ F _{9/2}	11Γ _{5/6}	±9/2	15302	15282	⁴ G _{7/2}	$47\Gamma_4$	±1/2	27794	27785
⁴ S _{3/2}	$21\Gamma_4$	$\pm 1/2$	18209	18228	${}^{4}G_{7/2}$	$28\Gamma_{5/6}$	$\pm 3/2$	27823	
⁴ S _{3/2}	$12\Gamma_{5/6}$	$\pm 3/2$	18276	18308	⁴ G _{7/2}	$48\Gamma_4$	$\pm 5/2$	27827	
² H2 _{11/2}	$22\Gamma_4$	$\pm 11/2$	18972	18954	⁴ G _{7/2}	$49\Gamma_4$	±7/2	27829	27847
² H2 _{11/2}	$23\Gamma_4$	$\pm 1/2$	18995	18972					
² H2 _{11/2}	$13\Gamma_{5/6}$	±3/2	19001	18990					
² H2 _{11/2}	$24\Gamma_4$	±5/2	19050	19051					
² H2 _{11/2}	$25\Gamma_4$	$\pm 1/2$	19069	19073					
² H2 _{11/2}	1415/6	±9/2	19087	19095					
⁴ F _{7/2}	15F _{5/6}	$\pm 3/2$	20335	20321					
⁴ F _{7/2}	26Γ4	±1/2	20341	20367					
4F7/2	27Γ4	$\pm 5/2$	20406	20404					
40-12	2814	±7/2	20465	20467					

^{a)} Den Absorptionsspektren der MeTHF-Lösung, einer KBr-Pille sowie eines Kristalls bei ca. 30 K entnommen.

^{b)} Dominierendes, zugrundeliegendes Multiplett.

^{c)} Hier wird die Bethesche Γ -Symbolik für die Doppelgruppe C_{3v} verwendet. Die einzelnen irreduziblen Darstellungen Γ_i sind (bei festgehaltenem i) nach steigender Energie geordnet.

^{d)} Die KF-Zustände werden hier durch ihre dominierenden Quantenzahlen $\pm M_I$ grob charakterisiert.

^{e)} Den Absorptionsspektren bei Raumtemperatur entnommen.

 $\frac{N_v}{\sqrt{4\pi}}$ -Werten von 753, 920 bzw. 491 cm⁻¹, die deutlich nied-

riger sind als der von Er(Btmsa)₃ (1027 cm⁻¹ [11]). Dieser Befund ist zumindest teilweise auf die merklich verlängerten Er-N-Abstände von Verbindung 1 (vide supra) (und mutmaßlich auch der Komplexe 2 und 3) verglichen mit Er(Btmsa)₃ [6] zurückzuführen (im Falle der La-Analoga [La(Btmsa)₃(OPPh₃)] [2] und La(Btmsa)₃ [34] wurde dies röntgenographisch belegt).

Bei Verbindung 3 ist – vordergründig betrachtet – der ungewöhnlich niedrige Betrag des quadratischen KF-Parameters B_0^2 für die vergleichsweise niedrige Ligandenfeldstärke verantwortlich. Hierfür können die nachstehenden Gründe angeführt werden, die allerdings ohne die Verfügbarkeit von Strukturdaten für das Paar [Ln(Btmsa)₃(THF)]/

Tabelle 6 Vergleich der Parametersätze von [Er(Btmsa)₃- $(CNC_6H_{11})_2]$, $[Er(Btmsa)_3(THF)]$ und $[Er(Btmsa)_3(OPPh_3)]$, Er(Btmsa)₃ und LaCl₃:Er³⁺ (in cm⁻¹).

Parameter	$\begin{array}{l} [Er(Btmsa)_3\\ (CNC_6H_{11})_2], \end{array}$	[Er(Btmsa) ₃ (THF)]	[Er(Btmsa) ₃ (OPPh ₃)]	Er(Btmsa) ₃ ^{a)}	LaCl ₃ :Er ^{3+ b)}
F^2	95900	95193	94796	94772	98203
F^4	67063	67457	67742	67699	69647
F ⁶	52429	51916	51086	51052	49087
ζ _{4f}	2363	2362	2361	2348	2370
α	[15.9] ^{c)}	[15.9]	[15.9]	[15.9]	15.9
β	[-632]	[-632]	[-632]	[-632]	-632
γ	[2017]	[2017]	[2017]	[2017]	2017
T^2	[300]	[300]	[300]	[300]	300
T ³	[48]	[48]	[48]	[48]	48
T^4	[18]	[18]	[18]	[18]	18
T ⁶	[-342]	[-342]	[-342]	[-342]	-342
T^7	[214]	[214]	[214]	[214]	214
T ⁸	[449]	[449]	[449]	[449]	449
M^0	[4.5]	[4.5]	[4.5]	[4.5]	4.5
M^2	[2.52]	[2.52]	[2.52]	[2.52]	2.52
M^4	[1.71]	[1.71]	[1.71]	[1.71]	1.71
P^2	[667]	[667]	[667]	[667]	667
P^4	[500]	[500]	[500]	[500]	500
P^6	[333.5]	[333.5]	[333.5]	[333.5]	333.5
B_0^2	-1059	-1733	-585	-1983	+216
B_0^4	+1677	+477	+211	+489	-271
B_0^6	-127	-297	-350	-141	-411
B_{3}^{4}	-	-966	-811	-1021	-
B_{3}^{6}	-	-183	+106	-109	_
B ₆	±437	-73	+262	+195	+462
$N_v/\sqrt{4\pi}$	753	920	491	1027	252
σ	13.0 (42) ^{d)}	16.0 (63)	17.5 (55)	25.3 (45)	e)

Lit. [11] entnommen.

Lit. [32] entnommen.

Eingeklammerte Werte wurden auf dem jeweiligen Wert von Cl₃:Er³⁺ [32] konstant gehalten.

Anzahl angepaßter Energien.

In Lit. [32] nicht angegeben.

[Ln(Btmsa)₃(OPPh₃)] naturgemäß noch etwas spekulativer Natur sind:

Modellrechnungen im Rahmen der Näherungen des EPL und des AOM sagen voraus, daß durch die Addition eines bzw. zweier axial angeordneter Liganden an eine trigonalplanare Ausgangsverbindung der dominante KF-Parameter B_0^2 der resultierenden Addukte zunehmend positiver wird [15]. Dies gilt offenbar zwar für die Verbindungen 2 und 1 (relativ zu Er(Btmsa)₃), jedoch nicht für 3, dessen (negativer) quadratischer KF-Parameter - ähnlich wie bei [Nd(Btmsa)₃(OPPh₃)] [23] – drastisch angehoben ist (vgl. Tabelle 6).

Das O-Atom des "speerförmigen" [35] OPPh₃-Liganden wird sich dem Zentralion des Ln(Btmsa)₃-Grundkörpers mehr nähern als das des sterisch anspruchsvolleren THF-Liganden, und außerdem dürfte aufgrund der zwitterionischen Natur des OPPh₃-Liganden das O-Atom von 3 eine größere negative Ladung als das von 2 tragen, wodurch der (negative) Parameter B₀² der Er(Btmsa)₃-Einheit bei 3 stärker "positiviert" wird als bei Addukt 2. Diese Ansicht wird sowohl durch die niedrige Wellenzahl von 1132-1139 cm⁻¹ der O-P-Valenzschwingung [2] (1195 cm⁻¹ im freien Liganden [2]) als auch durch den verhältnismäßig großen O–P-Abstand von 152.0 pm bei [La(Btmsa)₃(OPPh₃)] (148.7 pm im freien orthorhombischen [36], 148.4 pm im freien monoklinen OPPh₃-Liganden [37]) bestätigt.

Die N-La-N- und die O-La-N-Bindungswinkel von $[La(Btmsa)_3(OPPh_3)]$ ähneln mit 112.8° bzw. 105.9° [2] dem idealen Tetraederwinkel von 109.5°. Bei exakt tetraedrischer Koordination hat der KF-Parameter B_0^2 den Wert 0, so daß sich der kleine Betrag des quadratischen KF-Parameters bei Addukt 3 auch durch dessen tetraederähnliche Molekülstruktur erklären läßt.

Falls der Slater-Parameter F² und der Spin-Bahn-Kopplungsparameter ζ_{4f} sowohl des betrachteten Komplexes als auch des entsprechenden gasförmigen freien Ions bekannt ist, wird die Kovalenz dieser Verbindung anhand der Werte des nephelauxetischen Parameters beta = $F^{2}(Komplex)/$ F^2 (freies Ion) und des relativistischen nephelauxetischen Parameters beta' = ζ_{4f} (Komplex)/ ζ_{4f} (freies Ion) diskutiert [38]. Da F² und ζ_{4f} von gasförmigem Er³⁺ nicht verläßlich bekannt sind, können naturgemäß keine beta- und beta'-Werte für die Verbindungen 1, 2 und 3 angegeben werden. Ersatzweise wird für die Aufstellung einer empirischen nephelauxetischen Reihe die Energiedifferenz zwischen den energetischen Schwerpunkten der Multipletts ⁴F_{3/2} und ⁴I_{15/2} herangezogen [39]. Im Falle der Verbindungen 1, 2 und 3 beträgt diese Energiedifferenz 22332, 22287 bzw. 22271 cm⁻¹ (vgl. Tabellen 3, 4, 5) und bei Er(Btmsa)₃ 22238 cm⁻¹ [11] (experimentell nicht erfaßte KF-Energien wurden dabei jeweils durch die entsprechenden berechneten Werte ersetzt). Dieser Trend wird auch durch die abnehmenden Werte des Slater-Parameters F² und des Spin-Bahn-Kopplungsparameters ζ_{4f} beim Gang vom Bisaddukt 1 über die Monoaddukte 2 und 3 zum basenfreien Er(Btmsa)₃ reflektiert (vgl. Tabelle 6). Damit weist auch im Falle von $Ln = Er - \ddot{a}hnlich$ wie bei Ln = Nd [5] - die basenfreie Verbindung die höchste, und das Bisaddukt die niedrigste Kovalenz auf.

Magnetische Eigenschaften und EPR-Spektren

Um die Adäquatheit der berechneten Wellenfunktionen und KF-Energien zu belegen, wurden die prinzipiell EPRspektroskopisch zugänglichen spektroskopischen Aufspaltungsfaktoren und die Temperaturabhängigkeit der paramagnetischen Suszeptibilität der Verbindungen 1, 2 und 3 berechnet. Im Gegensatz zu magnetisch verdünntem [Cp₃Er(CNC₆H₁₁)] [40] oder [Cp₃Er(THF)] [41] waren im Falle von $[Er_{0.05}Y_{0.95}(Btmsa)_3(CNC_6H_{11})_2]$ bei ca. 4 K keine auf die Er-Verbindung zurückzuführenden EPR-Signale zu verzeichnen [42]. Außerdem waren die μ^2_{eff} -Werte des Bisadduktes 1 innerhalb des Meßbereiches zwischen 4.2 und 292 K höher [43] als der gemäß der Faustformel μ^2_{eff} = $g_L^2 J(J+1) = 91.8 \mu_B^2$ berechenbare Grenzwert. Ähnliche Erfahrungen wurden bereits früher bei pulverisiertem (zermahlene, vollkommen transparente Einkristalle) Er(Btmsa)₃ gemacht [11]. Aus den oben angegebenen Gründen wurde auf die aufwendigen EPR-spektroskopischen

Abb. 4 Vergleich der experimentorientierten nicht-relativistischen MO-Schemata von: (a) $[Er(Btmsa)_3(CNC_6H_{11})_2]$; (b) $[Er(Btmsa)_3(THF)]$; (c) $[Er(Btmsa)_3(OPPh_3)]$; (d) $Er(Btmsa)_3$. Im Falle von (a) ist aufgrund des unbestimmten Vorzeichens von B_6^6 in D_{3h} -Symmetrie die Zuordnung von $|+3\rangle$ und $|-3\rangle$ willkürlich.

und magnetochemischen Untersuchungen der Verbindungen 2 und 3 verzichtet.

Ableitung der experimentorientierten nichtrelativistischen MO-Schemata von $[Er(Btmsa)_3(CNC_6H_{11})_2],$ $[Er(Btmsa)_3(THF)]und [Er(Btmsa)_3(OPPh_3)] im$ f-Bereich

Das sogenannte experimentorientierte nichtrelativistische MO-Schema (im f-Bereich) einer betrachteten Verbindung wird dadurch erhalten, daß die phänomenologischen KF-Parameter der Anpassung in die Energiematrix des (fiktiven) spinfreien f¹-Systems eingesetzt und diese diagonalisiert wird [15]. In Abbildung 4 werden die experimentorientierten nichtrelativistischen MO-Schemata der Verbindungen 1, 2 und 3 mit dem von Er(Btmsa)₃ verglichen.

Wie bereits durch die vergleichsweise schwache KF-Aufspaltung des kalten Absorptionsüberganges ${}^{4}I_{15/2} \rightarrow {}^{4}F_{7/2}$ von Monoaddukt 3 angedeutet wird (s. Abb. 3), ist auch dessen Totalaufspaltung der f-Orbitale im MO-Schema erheblich geringer als bei den Komplexen 1 und 2. Außerdem ändert sich die Sequenz der Molekülorbitale $|\pm M_{J}\rangle$ beim Übergang von Er(Btmsa)₃ zu Monoaddukt 2 nicht, jedoch beim Übergang zu Komplex 3.

Bislang wurden noch keine Ergebnisse absoluter Modellrechnungen der Elektronenstrukturen des Grundkörpers Ln(Btmsa)₃ sowie dessen Mono- und Bisaddukten mitgeteilt. Die Anwendung der INDO-Näherung auf basenfreies Ln(Btmsa)₃ (Ln = Eu, Yb) führte zu unrealistisch großen energetischen Aufspaltungen der f-Orbitale [44] in der Größenordnung von 5500 cm⁻¹ (Ln = Eu) bzw. 23700 cm⁻¹ (Ln = Yb). Außerdem war – im Gegensatz zu unseren Befunden – die berechnete Aufspaltung im Falle des Monoaddukts [Eu(Btmsa)₃(OPH₃)] mit 11200 cm⁻¹ mehr als doppelt so groß wie die der basenfreien Verbindung [44].

Schlußfolgerungen

Bei den bislang erfolgten KF-theoretischen Analysen der optischen Spektren elektrisch neutraler Mono- und Bisaddukte kovalenterer Ln-Grundkörper wurden bevorzugt Addukte mit CNC_6H_{11} -, $NCCH_3$ -, THF- und Essigsäurealkylester-Liganden behandelt [5, 9, 16, 23, 31, 40, 41, 45–50]. Im Rahmen dieser Arbeiten stellte sich heraus, daß mit diesen Basen vergleichbare KF-Aufspaltungseffekte verbunden sind. Bei Berücksichtigung der unterschiedlichen Koordinationsverhältnisse gilt das im wesentlichen auch für die Verbindungen 1 und 2. Bei Monoadduktbildung mit dem Grundkörper $Er(Btmsa)_3$ bewirkt jedoch das Sauerstoffatom des OPPh₃-Liganden erheblich geringere KF-Aufspaltungseffekte als das des THF-Liganden. Dies

äußert sich vor allem in einem stark erniedrigten $\frac{N_v}{\sqrt{4\pi}}$ -Wert

(vgl. Tabelle 6) und in einer geringeren Totalaufspaltung der f-Orbitale im nichtrelativistischen experimentorientierten MO-Schema (s. Abb. 4), aber auch in unterschiedlichen Sequenzen der KF-Zustände sowohl bei diversen Multipletts (s. Abb. 3, Tabellen 4, 5) als auch in den nichtrelativistischen experimentorientieren MO-Schemata der Monoaddukte **2** und **3** (s. Abb. 4).

Ohne Kenntnis der Molekülstrukturen (inbesondere der Er–O-Abstände) der Monoaddukte **2** und **3** kann nicht aufgeschlüsselt werden, zu welchem Grad elektronische bzw. strukturelle Gründe hierfür verantwortlich sind. Ohne diese Information können die hier beobachteten ungewöhnlich starken Änderungen der KF-Effekte beim Übergang von der basenfreien Verbindung Er(Btmsa)₃ zum Monoad-dukt **3** nicht ohne weiteres auf die Bisaddukte der Stöchiometrie [Ln(Bdmsa)₃(OPPh₃)₂] extrapoliert werden. Um die Elektronenstrukturen dieser Verbindungsklasse doch noch aufklären zu können, planen wir parametrische Analysen der KF-Aufspaltungsmuster strukturell bekannter THF-und OPPh₃-Monoaddukte mit kovalenteren Ln-Grundkörpern [51]. Eine alternative Vorgehensweise wird nachstehend skizziert.

Vorläufige Ergebnisse einer Röntgenstrukturanalyse von $[Nd(Bdmsa)_3(OPPh_3)_2]$ weisen auf die trigonale Raumgruppe R3c (Nr. 161) mit sechs einheitlich ausgerichteten Molekülen pro Elementarzelle hin [8]. Aus diesem Grunde sollten optische Polarisationsmessungen an orientierten (optisch verdünnten) Einkristallen [21, 22] und damit die weitgehend zweifelsfreie Zuordnung der KF-Zustände prinzipiell möglich sein. Da die Auswahlregeln für erzwungene elektrische Dipolübergänge bei geradzahligen fⁿ-Systemen von D_{3h}-Symmetrie erheblich selektiver sind als bei ungeradzahligen [12, S. 255], und bei [Pr(Bdmsa)_3(OPPh_3)_2] neben Absorptions- auch Lumineszenzübergänge auftreten [52], empfiehlt sich eher die KF-theoretische Analyse der Polarisationseigenschaften der Pr-Verbindung.

Experimenteller Teil

Darstellung der Substanzen

Alle Arbeiten wurden unter einer Atmosphäre von getrocknetem Reinstargon durchgeführt, die Lösungsmittel mit Hilfe der üblichen Verfahren absolutiert und mit Argon gesättigt.

Das Ausgangsprodukt $Er(Btmsa)_3$ wurde nach der von *Herrmann* et al. beschriebenen Methode dargestellt [6].

Bis(cyclohexylisonitril)-tris(bis(trimethylsilylamido))erbium(III) (1). Eine Suspension von 3.24 g Er(Btmsa)₃ (5 mmol) in 70 ml n-Hexan wird in einem Schlenkrohr so lange erhitzt, bis sich eine klare Lösung bildet. Nach Zugabe von 1.20 g Cyclohexylisonitril (11 mmol) wird die Lösung eine Stunde unter Rückfluß gerührt. Bei Abkühlung dieser Lösung zunächst auf Raumtemperatur und dann auf ca. -30 °C scheidet sich das Bisaddukt 1 in Form violettrosa gefärbter Quader ab. Die Ausbeute war dabei nahezu quantitativ. Um kleinere (für eine Einkristall-Röntgenstrukturanalyse geeignete) und größere transparente (für optische Untersuchungen) Einkristalle zu züchten, wird das grobkristalline Produkt 1 in einer siedenden Mischung von n-Hexan und Toluol aufgelöst, bis eine nahezu gesättigte Lösung entstanden ist, und in ein 10 1-Dewargefäß gegeben, das mit ca. 80 °C warmem Wasser gefüllt ist. Nach fünf Tagen ist die Lösung auf Raumtemperatur abgekühlt und typischerweise fallen dabei mehrere kleine und ein bis zwei größere Einkristalle (mit einem Volumen bis 1000 mm³) aus.

IR: 2947s, 2897sh, 2862sh, 2206s, 1453m, 1366m, 1352w, 1257sh, 1244vs, 1039m, 943vs, 894w, 866s, 841vs, 825vs, 776s, 752sh, 697s, 665s, 612s, 539m.

Raman: 378m, 616s, 664m, 781m, 840w, 2205m, 2860m, 2908s, 2945s.

Mono(tetrahydrofuran)-tris(bis(trimethylsilylamido))erbium(III) (2). Monoaddukt 2 wird durch Lösung von grobkristallinem Er(Btmsa)₃ in einer Mischung von THF und dem glasartig erstarrenden Lösungsmittel 2-MeTHF (im Verhältnis 1:3) erhalten. Bei ausschließlicher Verwendung von 2-MeTHF resultiert lediglich ein reversibles temperaturabhängiges Gleichgewicht des MeTHF-Addukts und der basenfreien Verbindung, das – vermutlich aus Entropiegründen [53] – bei tiefen Temperaturen zum Addukt hin verschoben wird. Verwendet man dagegen das oben angegebene Lösungsmittelgemisch, dann liegt dieses Gleichgewicht bereits bei Raumtemperatur weitgehend auf der Seite des Adduktes. Wegen seiner exzellenten Löslichkeit und der Labilität der Ln–O-Bindung kann der Komplex 2 nicht als Feststoff isoliert werden.

Mono(triphenylphosphanoxid)-tris(bis(trimethylsilylamido))-erbium(III) (3). Monoaddukt 3 wurde in Anlehnung an die von *Bradley* et al. für [La(Btmsa)₃(OPPh₃)] angegebenen Synthesevorschrift [2] dargestellt.

Physikalische Messungen

Für die Aufnahme der UV/VIS/NIR-Spektren stand das Gerät Cary 5e der Firma Varian zur Verfügung. Die Absorptionsspektren des Bisadduktes 1 wurden bei Übergängen mit geringen molaren dekadischen Extinktionskoeffizienten anhand unorientierter Einkristalle aufgenommen. Im Falle mittelstarker Signale wurden mit Methylcyclohexan "angeteigte" Kristallbreie (zwischen KBr-Platten) und bei starken Banden KBr-Preßlinge verwendet. Die Absorptionsspektren der oben angegebenen Materialien von Verbindung 1 sind innerhalb experimenteller Fehlergrenzen identisch. Die optischen Eigenschaften des Monoadduktes 2 wurden in gelöster Form bestimmt. Es wurde dabei das glasartig erstarrende Lösungsmittelgemisch 2-MeTHF/THF (im Verhältnis 3:1) benützt. Die Absorptionsspektren von Monoaddukt 3 wurden sowohl in Form von KBr-Preßlingen, unorientierten Einkristallen sowie MeTHF-Lösungen vermessen, wobei die Spektren innerhalb experimenteller Fehlergrenzen identisch waren. Für die Tieftemperatur-Absorptionsmessungen von Verbindung 1 wurde ein He-Badkryostat, und im Falle der Komplexe 2 und 3 ein "Displex Closed-cycle Refrigerator System"(Modell CSW 202 der Firma Air Products) verwendet. Die Probentemperatur dürfte bei der Verbindung 1 ca. 4 K, und bei den Monoaddukten 2 und 3 ca. 30 K betragen haben. Das IR-Spektrum von Verbindung 1 wurde als KBr-Preßling mit Hilfe des Perkin-Elmer-Spektrometers 1720 FT-IR, und das Raman-Spektrum unter Verwendung des Raman-Spektrometers U 1000 der Firma Jobin Yvon aufgenommen. Es wurde dabei von den Erregerlinien bei 476.5 und 458 nm eines Ar⁺-Lasers (Innova 70 der Firma Coherent) Gebrauch gemacht.

Röntgenstrukturbestimmung

Ein für die Kristallstrukturanalyse geeigneter Einkristall von 1 wurde nujolbedeckt in dünnwandige Lindemann-Röhrchen eingeschmolzen. Der Cyclohexylteil ist über zwei Positionen fehlgeordnet. Die C=N-Dreifachbindung und beide N-C-Einfachbindungen der beiden fehlgeordneten Strukturen haben jeweils die gleiche Bindungslänge. Die C-C-Bindungen des größeren Anteils (73 %) haben alle die gleiche Bindungslänge, die des kleineren Anteils (27 %) wurden auf der beim größeren Anteil berechneten Bindungslänge fixiert. Alle Nichtwasserstoffatome außer der des kleineren Fehlordnungsanteils wurden anisotrop verfeinert. Wasserstoffatome erhielten ideale Plätze, und ihre isotropen Auslenkungsparameter wurden verfeinert. Eine Auflistung ausgewählter Bindungslängen und -winkel befindet sich in Tabelle 1. Meßparameter und kristallographische Daten von 1 sind Lit. [54] zusammengefaßt.¹⁾

Die Autoren danken *Prof. Dr. R. A. Andersen* (University of California, Berkeley) und *Dr. N. M. Edelstein* (Lawrence Berkeley National Laboratory) dafür, ihr Interesse auf KF-theoretische Analysen der Elektronenstrukturen von Mono-THF- und Bisisonitril-Addukten des Grundkörpers Ln(Btmsa)₃ gelenkt zu haben, sowie *Prof. Dr. Dinse* (Eduard-Zintl-Institut für Anorganische und Physikalische Chemie der TU Darmstadt) und *Dr. C. Apostolidis* (Europäische Kommission, Gemeinsame Forschungsstelle, Institut für Transurane) für die Veranlassung von EPR- bzw. Suszeptibilitätsmessungen. Die vorliegende Arbeit wurde durch Sachbeihilfen der **Deutschen Forschungsgemeinschaft** (SPP 1166 "Lanthanoidspezifische Funktionalitäten in Molekül und Material") sowie des **Fonds der Chemischen Industrie** gefördert.

Literatur

- Zur Elektronenstruktur hochsymmetrischer Verbindungen der f-Elemente. 40: H. Reddmann,C. Apostolidis, O. Walter, H.-D. Amberger, Z. Anorg. Allg. Chem. 2006, 632, 1405.
- [2] D. C. Bradley, J. S. Ghotra, F. A. Hart, M. B. Hursthouse, P. R. Raithby, J. Chem. Soc., Dalton Trans. 1977, 1166.
- [3] M. Westerhausen, M. Hartmann, A. Pfitzner, W. Schwarz, Z. Anorg. Allg. Chem. 1995, 621, 837.
- [4] R. Anwander, *Top. Curr. Chem.* 1996, 179, 33, und dort angegebene Literaturzitate.
- [5] S. Jank, J. Hanss, H. Reddmann, H.-D. Amberger, N. M. Edelstein, Z. Anorg. Allg. Chem. 2002, 628, 1355.
- [6] W. A. Herrmann, R. Anwander, F. C. Munck, W. Scherer, V. Dufaud, N. W. Huber, G. R. J. Artus, Z. Naturforsch. 1994, 49b, 1789.
- [7] W. A. Herrmann, F. C. Munck, G. R. J. Artus, O. Runte, R. Anwander, Organometallics 1997, 16, 682.
- [8] G. Gerstberger, Dissertation, München 1999.
- [9] G. Gerstberger, R. Anwander, S. Jank, H. Reddmann, H.-D. Amberger, "Electronic Structures of Bis Base Adducts of the Tris(bis(dimethylsilyl)amido)neodymium(III) Moiety", International Conference on f Elements, Paris (France), September 14–18, 1997, Poster P2-35.
- [10] H.-D. Amberger, S. Jank, H. Reddmann, N. M. Edelstein, *Mol. Phys.* **1997**, *90*, 1013.
- [11] S. Jank, H.-D. Amberger, N. M. Edelstein, *Spectrochim. Acta Part A* **1998**, *54*, 1645.
- [12] C. Görller-Walrand, K. Binnemans, Rationalization of Crystal-Field Parametrization, in: *Handbook on the Chemistry and Physics of Rare Earths*, K. A. Gschneidner, Jr., L. Eyring (Hrsg.), Elsevier Science B. V., Amsterdam 1996, Band 23, Kap. 155, S. 121.
- [13] C. K. Jørgensen, R. Pappalardo, H. H. Schmidtke, J. Chem. Phys. 1963, 39, 1422.
- [14] W. Urland, Chem. Phys. 1976, 14, 393.
- [15] S. Jank, H.-D. Amberger, Acta Phys. Polon. 1996, A 90, 21.
- [16] S. Jank, H. Reddmann, H.-D. Amberger, Mat. Sci. For. 1999, 315-317, 457.
- [17] B. Unrecht, S. Jank, H.-D. Amberger, unveröffentlichte Ergebnisse.
- [18] B. Kanellakopulos, Privatmitteilung.
- [19] R. A. Andersen, Inorg. Chem. 1979, 18, 1507.
- [20] R. A. Andersen, D. H. Templeton, A. Zalkin, *Inorg. Chem.* 1978, 17, 2317.
- [21] B. Nordèn, Appl. Spectrosc. Rev. 1978, 14, 157.
- [22] D. S. Kliger, J. W. Lewis, C. E. Randall, *Polarized Light in Optics and Spectroscopy*, Academic Press, San Diego, 1990.
- [23] S. Jank, Dissertation, Univ. Hamburg, 1998.
- [24] R. Maier, B. Kanellakopulos, C. Apostolidis, J. Organomet. Chem. 1992, 427, 33.
- [25] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Interscience Publishers, New York, 1968.
- [26] G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups, MIT Press, Cambridge (Mass.), 1963.
- [27] W. T. Carnall, J. V. Beitz, H. Crosswhite, K. Raynak, J. B. Mann, in: *Systematics and the Properties of the Lanthanides*, NATO ASI Series no. 109, S. P. Sinha (Hrsg.), D. Reidel, Dordrecht 1983, S. 393.
- [28] B. G. Wybourne, Spectroscopic Properties of Rare Earths, Wiley, New York, 1965, S. 164.

¹⁾ Die kristallographischen Daten der in dieser Veröffentlichung beschriebenen Strukturen wurden beim Cambridge Crystallographic Data Centre unter der Hinterlegungsnummer CCDC-619243 hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse angefordert werden: The Director, CCDC, 12 Union Rd., Cambridge CB2 1EZ, UK (Fax: Int.+44-(0)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

- [29] F. T. Edelmann, A. Steiner, D. Stalke, J. W. Gilje, S. Jagner, M. Ha;ankansson, *Polyhedron* 1994, 13, 539.
- [30] D. C. Bradley, Y. C. Gao, Polyhedron 1982, 1, 307.
- [31] H.-D. Amberger, S. Jank, H. Reddmann, N. M. Edelstein, Spectrochim. Acta Part A 2002, 58, 379.
- [32] W. T. Carnall, H. Crosswhite, H. M. Crosswhite, *Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃*, ANL Report 1977, Appendix 1, Tab. 1, unveröffentlicht.
- [33] F. Auzel, O. L. Malta, J. Phys. (Paris) 1983, 44, 201.
- [34] W. Scherer, G. Gerstberger, R. Anwander, More about Homoleptic Lanthanide Bis(trimethylsilyl)amide Complexes, Poster, XVIIIth International Conference on Organometallic Chemistry ICOMC '98, München, 16.–21. August, 1998.
- [35] G. B. Deacon, G. D. Fallon, C. M. Forsyth, B. M. Gatehouse, P. C. Junk, A. Philosof, P. A. White, *J. Organomet. Chem.* **1998**, 565, 201.
- [36] J. A. Thomas, T. A. Hamor, Acta Crystallogr. 1993, C49, 355.
- [37] A. L. Spek, Acta Crystallogr. 1987, C43, 1233.
- [38] A. B. P. Lever, *Inorganic Electronic Spectroscopy*, Elsevier, B. V., Amsterdam, 1984.
- [39] C. K. Jørgensen, R. Pappalardo, J. Flahaut, J. Chim. Phys. 1965, 62, 444.
- [40] H. Reddmann, H. Schultze, H.-D. Amberger, N. M. Edelstein, J. Organomet. Chem. 2000, 604, 296.
- [41] H. Reddmann, S. Jank, H. Schultze, H.-D. Amberger, N. M. Edelstein, *Inorg. Chim. Acta* 2003, 344, 243.
- [42] P. Jakes, Privatmitteilung.
- [43] C. Apostolidis, Privatmitteilung.
- [44] J. Ren, G. Xu, Scientia Sinica (Series B) 1987, 30, 337.

- [45] H. Reddmann, H. Schultze, H.-D. Amberger, G. V. Shalimoff, N. M. Edelstein, J. Organomet. Chem. 1991, 411, 331.
- [46] H. Schulz, H.-D. Amberger, J. Organomet. Chem. 1993, 443, 71.
- [47] H. Schulz, H. Reddmann, H.-D. Amberger, J. Organomet. Chem. 1993, 461, 69.
- [48] H.-D. Amberger, H. Schulz, H. Reddmann, S. Jank, N. M. Edelstein, C. Qian, B. Wang, *Spectrochim. Acta* 1996, 52A, 429.
- [49] H. Schulz, H. Reddmann, H.-D. Amberger, B. Kanellakopulos, C. Apostolidis, J. Rebizant, N. M. Edelstein, J. Organomet. Chem. 2001, 622, 19.
- [50] H. Schulz, C. Hagen, H. Reddmann, H.-D. Amberger, Z. Anorg. Allg. Chem. 2004, 630, 268.
- [51] H.-D. Amberger, L. Zhang, H. Reddmann, C. Apostolidis, O. Walter, Z. Anorg. Allg. Chem. 2006, 632, 2467.
- [52] G. Gerstberger, R. Anwander, L. Zhang, H. Reddmann, H.-D. Amberger, unveröffentlichte Ergebnisse.
- [53] R. A. Andersen, Privatmitteilung.
- [54] *Datensammlung*: C₃₂H₇₆N₅ErSi₆ (M = 866.78 g/mol), T = 153 K, Mo-K_α, (λ = 0.71073 Å), Graphit-Monochromator, monoklin, C2/c (No. 15), a = 2549.2(11) pm, b = 1208.4(4) pm, c = 1783.0(2) pm, β = 122.39(3)°, V = 4.638(5)*10⁹ pm³, Z = 4, ρ_{ber} = 1.241 g/cm³, exp. Absorptionskorrektur, 20/ω-Scan, 20-scan-range (4.5° < 20 < 60.0°), 5917 gemessene Reflexe, 5016 unabhängige Reflexe, 4678 beobachtbare Reflexe (I > 2σ), 234 verfeinerte Parameter (23 Restraints), maximale Restelektronendichte 1.88/-2.68 e/Å³, R = 0.0380, wR2 = 0.0955, GooF = 1.117, Diffraktometer: Hilger&Watts (Y290).