Synthesen und Strukturen von Übergangsmetall-Komplexen mit Dithiophosphinato- und Trithiophosphonato-Liganden

Syntheses and Structures of Transition Metal Complexes with Dithiophosphinato and Trithiophosphinato Ligands

Maryam Shafaei-Fallah^a, Weifeng Shi^a, Dieter Fenske^{a,b,*} und Alexander Rothenberger^{a,b}

Karlsruhe, a Institut für Anorganische Chemie der Universität und b Institut für Nanotechnologie, Forschungszentrum Karlsruhe GmbH

Bei der Reaktion eingegangen am 25. Januar 2006.

Professor Hansgeorg Schnöckel zum 65. Geburtstag gewidmet

Abstract. The reactions of $MnCl_2$ with $Ph_2P(S)(SSiMe_3)$ produced $[Mn(S_2PPh_2)_2(thf)_2]$ (1) and $[Mn(S_2PPh_2)_2(dme)]$ (2) (DME = 1, 2-Dimethoxyethane). The compounds $[Co_6(S_3PPh)_2(\mu^4-S)_2(\mu^3-S)_2(PPh_3)_4]$ (3), $[Co_2(S_3PPh)_2(PPh_3)_2]$ (4), $[Ni(S_2PPh)(PPhEt_2)_2]$ (5), $[Ni(S_3PPh)(PPhEt_2)_2]$ (6) and $[Cu_4(S_3PPh)_2(dppp)_2]$ (8) [dppp = 1, 3-Bis(diphenylphosphanyl)propane] were obtained from reactions of first-row transition metal halides with $PhP(S)(SSiMe_3)_2$ in the

presence of tertiary phosphines. In a reaction of $PhP(S)(SSiMe_3)_2$ with $PhPEt_2 PhPEt_2PS_2Ph$ (7) was isolated. All compounds were characterized by X-ray crystallography.

Keywords: Manganese; Nickel; Cobalt; P ligands; S ligands; Crystal structures

Einleitung

Seitdem die Bedeutung von Übergangsmetallsalzen von Dithiophosphinsäuren R₂P(S)SH und Trithiophosphonsäuren $RP(S)(SH)_2$ (R = Alkyl-, Aryl-Rest) in verschiedenen Bereichen wie z.B. bei der Vulkanisierung und als Stabilisatoren für Olefine erkannt worden ist, gibt es einige Arbeitsgruppen, die sich mit der Synthese und strukturellen Charakterisierung von Metallkomplexen mit P-S-Liganden beschäftigt haben [1-4]. Liganden vom Typ $[R_2PS_2]^-$ (R = -O-C_{Alkvl}) sind ausführlich erforscht und an Dialkyldithiophosphato-Metallkomplexen $[S_2P(OR)_2]^-$ konnten verschiedene Koordinationsmoden beobachtet werden [5, 6]. Ein ähnliches Koordinationsverhalten ist von Dithiophosphinato-Liganden $[R_2P(S)S]^-$ (R = Phenyl) zu erwarten, da diese Liganden wie Dithiophosphato-Liganden über Schwefelatome an Metallatome koordinieren könnten. Beispiele für diese Verbindungsklasse sind Goldkomplexe wie $[PhP{SAu(PPh_3)}_3]^+[BF_4]^-,$ $1/_{\infty}[Au_2(S_2PPh_2)_2]_{\infty}$ und $[Ph_2P{SAu(PPh_3)}_2]^+[BF_4]^-$, in denen Trithiophosphonato- und Dithiophosphinato-Liganden an das Goldatom ge-

* Prof. Dr. D. Fenske Institut für Anorganische Chemie der Universität Karlsruhe Engesserstraße 15 76131 Karlsruhe FAX: 0721-6088440 E-mail: dieter.fenske@chemie.uni-karlsruhe.de $MnCl_{2} + Ph_{2}P(S)(SSiMe_{3}) \xrightarrow{} P^{n}Pr_{3} \xrightarrow{} [Mn(S_{2}PPh_{2})_{2}(thf)_{2}] (1)$ $[Mn(S_{2}PPh_{2})_{2}(dme)] (2)$

Schema 1 Synthese von 1 und 2.

bunden sind. Sie wurden über die freie Dithiophosphinsäure und über Trithiophosphonsäure-Silylester dargestellt [7–9]. Andere Synthesemöglichkeiten für Trithiophosphonate sind die Reaktionen von Perthiophosphonsäureanhydrid, $R_2P_2S_4$ (R = Aryl, Alkyl) mit Li₂S und Übergangsmetallsalzen oder die direkte Umsetzung von Perthiophosphonsäureanhydriden mit Metallcarboxylaten oder Alkoholaten [10, 11]. Die vor einiger Zeit untersuchten Reaktionen von silylierten P-S-Derivaten mit Münzmetallsalzen ermöglichen ebenfalls einen einfachen Zugang zu Trithiophosphonato- und Dithiophosphinato-Komplexen [12]. Über Synthesen und Strukturen von 3d-Übergangsmetallkomplexen mit Liganden vom Typ [R_2PS_2]⁻ und [RPS_3]²⁻ wird in dieser Arbeit berichtet.

Ergebnisse und Diskussion

Die Reaktionen, die wir in diesem Zusammenhang mit $Ph_2P(S)(SSiMe_3)$ und $MnCl_2$ durchführten, ergaben die Verbindungen 1 und 2 (Schema 1).

In Gegenwart von $P^n Pr_3$ erhält man farblose Kristalle der Verbindung [Mn(S₂PPh₂)₂(thf)₂] (1). 1 kristallisiert in der triklinen Raumgruppe $P\overline{1}$ mit einer Formeleinheit pro Ele-

Abb. 1 Molekülstruktur von 1 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: O(1)-Mn(1) 2.212(1), P(1)-S(1) 1.997(1), P(1)-S(2) 2.0051(7), Mn(1)-S(2) 2.6090(6), Mn(1)-S(1) 2.6188(6), S(1)-P(1)-S(2) 113.10(3), O(1)-Mn(1)-S(2) 90.97(4), O(1)-Mn(1)-S(2A) 89.03(4), O(1)-Mn(1)-S(1A) 88.94(4), S(2)-Mn(1)-S(1) 79.40(2), S(2A)-Mn(1)-S(1) 100.59(2).

Abb. 2 Molekülstruktur von 2 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: O(1)-Mn(1) 2.266(3), P(1)-S(1) 2.003(2), P(1)-S(2) 2.005(1), Mn(1)-S(2) 2.593(2), Mn(1)-S(1) 2.620(1), S(1)-P(1)-S(2) 111.53(6), O(1A)-Mn(1)-O(1) 71.55(16), S(2A)-Mn(1)-S(2) 172.13(6), S(1A)-Mn(1)-S(1) 103.97(6).

mentarzelle. Das Mn-Atom in 1 wird dabei von je zwei S-Atomen der beiden axialen $[Ph_2PS_2]^{2-}$ -Liganden und von den O-Atomen der zwei THF-Moleküle oktaedrisch koordiniert (Abb. 1). Umsetzungen von MnCl₂ mit tertiären

Schema 2 Synthesen von 3-8 [dppp = 1,3-Bis(diphenylphosphanyl)propan].

Phosphanen und PhP(S)(SSiMe₃)₂ in verschiedenen Lösungsmitteln ergaben bisher keine Trithiophosphonato-Komplexe in reiner Form. [Mn(S₂PPh₂)₂(dme)] (**2**) erhält man durch Umkristallisation von **1** aus DME. **2** kristallisiert in der monoklinen Raumgruppe *C*2/c mit vier Formeleinheiten pro Elementarzelle. Im Unterschied zu **1** liegt in **2** eine verzerrt oktaedrische Koordinationsumgebung am Mn-Atom vor (Abb. 2). Neben der literaturbekannten Verbindung [(Et₂PS₂)₂Mn]₂ sind **1** und **2** die einzigen bisher bekannten Mn-Verbindungen mit Dithiophosphinato-Liganden [13]. Trotz Variation der Reaktionsbedingungen konnten bisher keine mehrkernigen Mn-Komplexe erhalten werden, die über S-Atome von P-S Liganden miteinander verbunden sind und eventuell interessante magnetische Eigenschaften haben könnten.

Analoge Untersuchungen der Reaktionen von $FeCl_2$ mit $Ph_2P(S)(SSiMe_3)$ oder $PhP(S)(SSiMe_3)_2$ erwiesen sich ebenfalls als schwierig. Im folgenden werden Ergebnisse beschrieben, die aus Reaktionen von $PhP(S)(SSiMe_3)_2$ mit Kobalt(II)-, Nickel(II)- und Kupfer(I)salzen erhalten wurden (Schema 2).

Setzt man $[Co(PPh_3)_2Cl_2]$ mit PhP(S)(SSiMe_3)_2 um, so erhält man $[Co_6(S_3PPh)_2(\mu^4-S)_2(\mu^3-S)_2(PPh_3)_4]$ (3). 3 kristallisiert in der monoklinen Raumgruppe C2/c mit vier Formeleinheiten pro Elementarzelle. Die Struktur von 3 im Festkörper besteht aus einem zentrosymmetrischen Arrangement zweier flächenverknüpfter Co₆S₆-Würfel, in denen zwei Sulfidionen durch $[PhPS_3]^{2-}$ -Liganden ersetzt wurden (Abb. 3).

Die P-Atome der Triphenylphosphan-Liganden sind an die äußeren verzerrt-tetraedrisch koordinierten Co-Atome Co(2) und Co(3) gebunden, während Co(1) ausschließlich von Sulfidionen verzerrt-tetraedrisch umgeben ist. **3** ist die erste Verbindung, in der Co-Atome von P–S-Liganden und Sulfidionen verbrückt werden. Die Bildung von Sulfidionen ist auf eine bisher nicht näher untersuchte aber schon häufiger beobachtete Zerfallsreaktionen von PhP(S)(SSiMe₃)₂ zurückzuführen und ermöglicht offenbar die Bildung mehrkerniger Komplexe [12]. Bisher sind ausschließlich einkernige Co-Komplexe mit [R₂PS₂]⁻-Anionen (R = OCH₃) bekannt [14, 15]. Im weiteren Verlauf der Untersuchungen

Abb. 3 Molekülstruktur von 3 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: Co-S 2.1392(16)-2.251(2), Co(2)-P(2) 2.239(2), Co(3)-P(3) 2.233(1), S-P 2.028(2)-2.040(2), S-Co-S 101.41(6)-135.70(7), S-Co-P 92.04(6)-111.26(9).

wurde eine Mischung von S(SiMe₃)₂ und PhP(S)(SSiMe₃)₂ eingesetzt. Überraschenderweise erhielt man jedoch den reinen Trithiophosphonato-Komplex $[Co_2(S_3PPh)_2(PPh_3)_2]$ (4) (Schema 2). 4 kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit zwei Formeleinheiten pro Elementarzelle. Im Festkörper existiert 4 als zentrosymmetrisches Dimer aus zwei $[Co(S_3PPh)(PPh_3)]$ -Einheiten, die über S-Atome von $[PhPS_3]^{2-}$ -Liganden miteinander verknüpft sind (Abb. 4). Co(1) ist verzerrt-tetraedrisch von drei S-Atomen der P-S-Liganden und vom Triphenylphosphan P-Atom umgeben.

Die Synthesen von 3 und 4 zeigen, dass potentiell für Kobalt noch weitere Verbindungen mit Trithiophosphinatound Sulfido-Liganden zugänglich sein sollten, wenn die Reaktionsbedingungen weiter modifiziert werden.

Setzt man NiCl₂ mit PPhEt₂ und PhP(S)(SSiMe₃)₂ in Diethylether um, lassen sich gelbe Kristalle von $[Ni(S_2PPh)(PPhEt_2)_2]$ (5) und rote Kristalle von $[Ni(S_3PPh)(PPhEt_2)_2]$ (6) isolieren (Schema 2). 5 kristallisiert in der monoklinen Raumgruppe P2₁ mit zwei Formeleinheiten in der Elementarzelle. Im Festkörper ist das Nikkel-Atom in 5 quadratisch-planar koordiniert (Abb. 5). P(3) hat eine verzerrt-tetraedrische Umgebung.

Es ist anzunehmen, dass in 5 der [PhPS₂]²⁻-Ligand beim Zerfall von PhP(S)(SSiMe₃)₂ entsteht und in Konkurrenz zu der Reaktion von PhP(S)(SSiMe₃)₂ mit NiCl₂ eine Oxidation der eingesetzten Phosphanliganden PPhEt₂ zur Bildung von PhP(SSiMe₃)₂ und P(S)PhEt₂ führt. Über die Reaktion von PhP(SSiMe₃)₂ mit NiCl₂ ließe sich die Bildung von 5 erklären. 6 kristallisiert aus derselben Reaktionsmi-

Abb. 4 Molekülstruktur von 4 im Festkörper.

Abb. 5 Molekülstruktur von 5 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: Ni(1)-P(1) 2.148(3), Ni(1)-P(2) 2.223(3), Ni(1)-P(3) 2.143(3), Ni(1)-S(1) 2.220(3), S(1)-P(3) 2.023(4), S(2)-P(3) 1.976(4), P(3)-Ni(1)-P(1) 100.4(1), P(3)-Ni(1)-S(1) 55.2(1), P(1)-Ni(1)-S(1) 155.6(1), P(3)-Ni(1)-P(2) 155.6(1), P(1)-Ni(1)-P(2) 103.7(1), S(1)-Ni(1)-P(2) 100.6(1), S(2)-P(3)-S(1) 121.7(2), S(2)-P(3)-Ni(1) 125.2(2), S(1)-P(3)-Ni(1) 64.3(1).

schung wie **5** in der orthorhombischen Raumgruppe $Pna2_1$ mit vier Formeleinheiten pro Elementarzelle aus. Ni(1) in [Ni(S₃PPh)(PPhEt₂)₂] (**6**) ist verzerrt-quadratisch planar

Abb. 6 Molekülstruktur von 6 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: Ni(1)-P(3) 2.219(1), Ni(1)-P(2) 2.223(1), Ni(1)-S(1) 2.230(1), Ni(1)-S(2) 2.230(1), S(2)-P(1) 2.064(1), S(1)-P(1) 2.062(2), S(3)-P(1) 1.956(2), P(3)-Ni(1)-P(2) 96.53(4), P(3)-Ni(1)-S(1) 89.77(4), P(2)-Ni(1)-S(1) 171.47(4), P(3)-Ni(1)-S(2) 174.92(4), P(2)-Ni(1)-S(2) 88.34(4), S(1)-Ni(1)-S(2) 85.55(4), S(3)-P(1)-S(1) 117.43(6), S(3)-P(1)-S(2) 117.30(7), S(1)-P(1)-S(2) 94.46(6).

Abb. 7 Molekülstruktur von 7 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: P(1)-S(1) 1.9672(9), P(1)-S(2) 1.9651(9), P(1)-P(2) 2.2455(9), S(2)-P(1)-S(1) 122.42(5), S(2)-P(1)-P(2) 103.33(4), S(1)-P(1)-P(2) 103.23(4).

von P(2) und P(3) der Phosphanliganden und den Schwefelatomen S(1) und S(2) der $[PPhS_3]^{2-}$ -Einheit koordiniert (Abb. 6). Die Abstände zwischen Ni und S bzw. Ni und P entsprechen den zu erwartenden Werten für die jeweiligen Bindungen [16]. Der P–S-Abstand zum nicht-koordinierenden S-Atom P(1)–S(3) ist mit 1.957(2) Å etwas kürzer als die übrigen P-S-Bindungen.

Die Verzerrung der quadratisch-planaren Koordination kommt hier, wie auch in 5, durch den sterischen Anspruch der Phosphanliganden zustande. Dies drückt sich im P(2)-Ni(1)-P(3)-Winkel von 96.5° aus. Um die Bildung von 5 und 6 zu verstehen wurde der Reaktionsverlauf genauer untersucht. Setzt man PPhEt₂ und PhP(S)(SSiMe₃)₂ in DME um, so lassen sich farblose Kristalle von [Et₂PhP-PS₂Ph] (7) isolieren (Schema 2). 7 kristallisiert in der orthorhombischen Raumgruppe $P2_12_12_1$ mit vier Formeleinheiten in der Elementarzelle. 7 hat eine Betain-Struktur, die bislang im Festkörper nicht beobachtet wurde (Abb. 7). Erste Vertreter

Abb. 8 Molekülstruktur von 8 im Festkörper.

Ausgewählte Bindungslängen /Å und Winkel /deg: Cu(1)-P(2) 2.243(1), Cu(2)-P(3) 2.230(1), Cu(1)-S(1) 2.286(1), Cu(1)-S(2A) 2.378(1), Cu(1)-S(3A) 2.660(1), Cu(2)-S(3A) 2.267(1), Cu(2)-S(2) 2.323(1), Cu(2)-S(1) 2.800(1), P(1)-S(1) 2.025(2), P(1)-S(3) 2.031(2), P(1)-S(2) 2.042(2), P(2)-Cu(1)-S(1) 112.91(4), P(2)-Cu(1)-S(2A) 116.41(4), S(1)-Cu(1)-S(2A) 116.82(4), P(2)-Cu(1)-S(3A) 109.82(4), S(1)-Cu(1)-S(3A) 115.11(4), S(2A)-Cu(1)-S(3A) 82.07(4), P(3)-Cu(2)-S(3A) 113.49(5), P(3)-Cu(2)-S(2) 123.17(4), S(3A)-Cu(2)-S(2) 121.01(4), P(3)-Cu(2)-S(1) 94.66(4), S(3A)-Cu(2)-S(1) 110.68(4), S(2)-Cu(2)-S(1) 80.99(4), S(1)-P(1)-S(2) 110.74(7), S(3)-P(1)-S(2) 108.93(6).

dieser Substanzklasse wurden aber bereits vor fast 40 Jahren von *Fluck* et al. über die Reaktion von Perthiophosphonsäureanhydriden mit tertiären Phosphanen hergestellt [17].

Die Bildung von 7 deutet auf das Vorliegen komplexer Gleichgewichte in Lösung hin. Dabei könnte die Abspaltung von [SSiMe₃]₂ bei der Reaktion von PhP(S)(SSiMe₃)₂ mit PhEt₂P zur Bildung von 7 führen. Der Verlauf der Reaktion ist ³¹P-NMR-spektroskopisch äußerst schwierig zu verfolgen, da viele Signale detektiert werden, die nicht zweifelsfrei zugeordnet werden können. Lediglich das Produkt konnte durch Vergleich mit dem ³¹P-NMR-Sprektrum des reinen 7 als ein Dublett von Dubletts im ³¹P-NMR-Spektrum identifiziert werden. Die P-P-Bindungslänge in 7 ist mit 2.2457(9) À fast gleich mit der gefundenen P-P-Bindungslänge in $1/\infty$ [{Ag₂(PhS₂P-PS₂Ph)dppe}·dppe]_∞ von 2.262(3) Å [12b]. Da 7 auch als Nebenprodukt in der Reaktion auftritt, die zur Bildung von 5 und 6 führt, bleibt festzuhalten, dass die Reaktion von PhP(S)(SSiMe₃)₂ mit tertiären Phosphanen und NiCl₂ zu einer Vielzahl von Verbindungen führt (5-7 konnten bisher identifiziert werden), die in Lösung nebeneinander vorliegen und nur in kristalliner Form manuell voneinander zu trennen sind.

 $[Cu_4(S_3PPh)_2(dppp)_2]$ (8) [dppp = 1,3-Bis(diphenylphosphanyl)propan] wurde aus der Reaktion von CuO'Bu mit $PhP(S)(SSiMe_3)_2 in Gegenwart von dppp erhalten (Schema$ $2). 8 kristallisiert in der monoklinen Raumgruppe <math>P2_1/n$.

	1	2	3	4	5	6	7	8	
	-	-		•		•	•		
	$C_{32}H_{36}MnO_2P_2S_4$	$C_{28}H_{30}MnO_2P_2S_4$	$\begin{array}{c} C_{84}H_{70}Co_{6}P_{6}S_{10}\cdot \\ 4thf \end{array}$	$\begin{array}{c} C_{48}H_{40}Co_{2}P_{4}S_{6}\cdot\\ 2thf \end{array}$	$C_{26}H_{35}NiP_3S_2$	C ₂₆ H ₃₅ NiP ₃ S ₃	$C_{16}H_{20}P_{2}S_{2} \\$	$C_{66}H_{62}Cu_4P_6S_6$ 2thf	
Molmasse	697.73	643.64	2227.82	1195.11	563.28	595.34	338.38	1631.70	
Temperatur /K	200(2)	200(2)	110(2)	100(2)	193(2)	200(2)	203(2)	203(2)	
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	
Kristallsystem	triklin	monoklin	monoklin	monoklin	monoklin	orthorhombisch	orthorhombisch	monoklin	
Raumgruppe	PĪ	C2/c	C2/c	$P2_1/c$	$P2_1$	$Pna2_1$	$P2_{1}2_{1}2_{1}$	$P2_1/n$	
Gitterkonstanten	a = 6.908(1)	a = 29.247(6)	a = 34.267(7)	a = 11.337(1)	a = 8.893(2)	a = 17.704(4)	a = 7.765(2)	a = 12.008(1)	
/A , °	b = 9.090(1)	b = 8.288(2)	b = 15.146(3)	b = 11.510(1)	b = 17.563(4)	b = 9.083(2)	b = 12.588(3)	b = 13.442(1)	
	c = 13.724(2)	c = 13.856(3)	c = 24.472(5)	c = 21.249(2)	c = 9.109(2)	c = 17.622(4)	c = 17.591(4)	c = 22.705(2)	
	$\alpha = 84.90(1)$	$\beta = 112.04(3)$	$\beta = 129.54(3)$	$\beta = 93.040(7)$	$\beta = 92.20(3)$			$\beta = 96.986(9)$	
	$\beta = 82.45(1)$								
7 11 1 (Å 3	$\gamma = 85.71(1)$	2112 1/11	0.50.5(2)	05(0.1(4)	1 401 5(5)	2022 ((10)	1510.4(0)	2(27.0(7)	
Zellvolumen /A ³	849.2(3)	3113.1(11)	9795(3)	2/69.1(4)	1421.7(5)	2833.6(10)	1719.4(6)	3637.8(5)	
Z, Dichte	1, 1.364	4, 1.3/3	4, 1.511	2, 1.433	2, 1.316	4, 1.395	4, 1.307	2, 1.490	
/g·cm ⁻¹	0.756	0.010	1 255	0.002	1.011	1.000	0.494	1 502	
μ /mm · $E(000)$	0.750	0.819	1.555	0.982	1.011	1.089	0.464	1.303	
r(000) 20 Densiels	5 22 51 80	5 70 51 00	4384	1230	392 4 64 51 90	1240	/12	1080	
20 Bereich	5652 / 2026	5.70-51.90 7584 / 2051	3.08-32.12 24851 / 0125	3.00-30.40	4.04-31.80	4.00-34.10	3.98-31.02	4.30-31.74	
unabhängige	$[\mathbf{D} - 0.0232]$	(D - 0.0575)	2463179133 [D = 0.0097]	1403570135 [D = 0.1384]	1310 / 3034 10 - 0.11861	2103470100 [P - 0.0888]	1024373088 [P - 0.0552]	1308370439 [D - 0.0768]	
Refleve	$[K_{int} - 0.0232]$	$[R_{int} = 0.0575]$	$[R_{int} - 0.0987]$	$[R_{int} = 0.1564]$	$[\mathbf{R}_{\text{int}} = 0.1180]$	$[\mathbf{R}_{\text{int}} = 0.0000]$	$[\mathbf{R}_{int} = 0.0552]$	$[\mathbf{R}_{\text{int}} = 0.0708]$	
verfeinerte	187	168	568	316	289	298	181	415	
Parameter	107	100	500	510	207	270	101	415	
$R1 [I > 2\sigma(I)]$	0.0314	0.0459	0.0582	0.0648	0.0712	0.0400	0.0293	0.0443	
wR^2 (alle Daten)	0 1107	0 1293	0 1264	0 1707	0 1931	0.0821	0.0933	0 1056	
Max /min	0.325 / -0.285	0.472 / -0.462	0.521 / -0.799	1 134 / -0.696	0.488 / -0.581	0.385 / -0.610	0.304 / -0.433	0.420 / -0.501	
Restelektronen- dichte /eÅ ⁻³	0.220, 0.200	011127 01102	0.0217	111217 01020	011007 01201	0.000, 0.010	0.201, 01.22	0.1.207 0.001	

Tal	belle	1	Daten	zu	den	k	Kristal	1	str	ul	ktι	ıra	ına	ıly	/sen	ί.
-----	-------	---	-------	----	-----	---	---------	---	-----	----	-----	-----	-----	-----	------	----

Die vier Cu-Atome werden von zwei $[PhPS_3]^{2-}$ -Anionen in einem verzerrt kuboktaedrischen Käfig zusammengehalten, dessen Grundflächen aus zwei viergliedrigen $[Cu_2S_2]$ -Einheiten bestehen (Abb. 8).

Die μ_3 -S-Atome S(1-3) der zwei Trithiophosphonat-Liganden koordinieren jeweils an zwei Cu-Atome. Alle Cu-Atome sind verzerrt tetraedrisch von drei S-Atomen und jeweils einem P-Atom eines dppp-Liganden umgeben. Die Strukturbestimmung von **8** zeigt, dass die Verwendung unterschiedlicher Phosphanliganden in dieser Reaktion nur einen geringen Einfluss auf die entstehenden Produkte hat. So wurde in Gegenwart von PMe₃ die Käfigverbindung [Cu₄(S₃PPh)₂(PMe₃)₅] erhalten [12].

Zusammenfassend lässt sich sagen, dass über den hier vorgestellten Syntheseweg eine Reihe von Verbindungen erhalten werden konnte, die Strukturmotive zeigen, wie sie zum Teil schon in Festkörperstrukturen von Münzmetallkomplexen mit Thiophosphat-Liganden gefunden wurden. Die Reaktionen von $RP(S)(SSiMe_3)_2$ (R = Alkyl-, Arylrest) mit Metallsalzen haben vor allem dann beträchtliches Potential für die Darstellung neuartiger hauptgruppenelement-verbrückter Käfigverbindungen, wenn im Laufe der Reaktion Sulfidionen gebildet werden, die die Ausbildung größerer molekularer Spezies ermöglichen.

Experimentelles

Alle Arbeiten wurden unter Ausschluss von Sauerstoff und Feuchtigkeit unter gereinigtem Stickstoff durchgeführt. Die verwendeten Lösungsmittel wurden über Natrium/Benzophenon getrocknet und vor der Benutzung frisch destilliert. PhP(S)(SSiMe₃)₂, PⁿPr₃ und PPhEt₂ wurden nach Literaturvorschriften dargestellt [18, 19]. Mangan-, Nickel und Kobaltsalze wurden von der Fa. Aldrich erworben und ohne weitere Reinigung eingesetzt. Die C-, H- und P-Analysen von 1-8 entsprechen den zu erwartenden Werten.

 $[Mn(S_2PPh_2)_2(thf)_2]$ (1) und $[Mn(S_2PPh_2)_2(dme)]$ (2): 0.13 g (1.0 mmol) MnCl₂ werden in 20 mL THF suspendiert. Man gibt bei Raumtemperatur 0.4 mL (2.0 mmol) PⁿPr₃ zu. Unter starkem Rühren werden 0.64 mL (2.0 mmol) Ph₂P(S)(SSiMe₃) zugetropft, wobei sich die Suspension auflöst und die Lösung gelb wird. Nach zweistündigem Rühren wird die Lösung auf die Hälfte eingeengt und das Produkt unter Erwärmen umkristallisiert. Man erhält farblose Kristalle von 1 in einer Ausbeute von 60 %. Umkristallisation von 1 aus DME ergibt 2 in einer Ausbeute von 50 %.

 $[Co_6(S_3PPh)_2(\mu^4-S)_2(\mu^3-S)_2(PPh_3)_4]$ (3): Zu einer Lösung von 0.33 g (0.50 mmol) $[CoCl_2(PPh_3)_2]$ in 40 mL THF werden bei Raumtemperatur 0.4 mL (1.00 mmol) PhP(S)(SSiMe_3)_2 getropft. Die Reaktionsmischung wird im Vakuum auf 30 mL eingeengt und mit 0.5 mL Hexan versetzt. Lagerung der Reaktionslösung für eine Woche bei Raumtemperatur ergibt dunkelbraune Kristalle von 3 in einer Ausbeute von 40 %.

 $[Co_2(S_3PPh)_2(PPh_3)_2]$ (4): Eine Lösung von 0.33 g (0.50 mmol) $[CoCl_2(PPh_3)_2]$ in 40 mL THF wird bei Raumtemperatur mit 0.04 mL (0.25 mmol) S(SiMe_3)_2 und 0.2 mL (0.50 mmol) PhP(S)(SSiMe_3)_2 versetzt und über Nacht gerührt. Die braune Reaktionsmischung wird im Vakuum auf 25 mL eingeengt und mit 0.5 mL Hexan versetzt. Lagerung der Reaktionslösung bei Raumtemperatur für ca. 3h ergibt schwarze Kristalle von 4 zusammen mit blauen Kristallen von nicht abreagiertem Startmaterial $[CoCl_2(PPh_3)_2]$, die sich manuell abtrennen lassen. Ausbeute 40 %. $[Ni(S_2PPh)(PPhEt_2)_2]$ (5) und $[Ni(S_3PPh)(PPhEt_2)_2]$ (6): Zu einer Suspension aus 0.1 g (0.78 mmol) NiCl₂ in 20 mL Diethylether werden bei Raumtemperatur 0.27 mL (1.56 mmol) PPhEt₂ gegeben. Unter starkem Rühren werden 0.16 mL (0.4 mmol) PhP(S)(SSiMe₃)₂ zugesetzt. Die gelbe Suspension färbt sich nach fünfzehnstündigem Rühren dunkelrot. Die Reaktionsmischung wird filtriert. Hellgelbe kleine Plättchen von **5** und rote Blöcke von **6** bilden sich bei 0 °C in wenigen Tagen. Ausbeute 23 % (**5**), 30 % (**6**).

PhPEt₂PS₂Ph (7): Zu einer Lösung von 0.13 mL (0.77 mmol) PPhEt₂ in 15 ml DME werden bei Raumtemperatur 0.08 mL (0.2 mmol) PhP(S)(SSiMe₃)₂ gegeben. Die farblose Lösung wird 12 h gerührt und auf die Hälfte eingeengt. Lagerung der Lösung bei 0 °C für drei Tage ergibt farblose Kristalle von 7 in einer Ausbeute von 48 %. ³¹P-NMR (101.256 MHz, C₆D₆, 25 °C, 65 %H₃PO₄) δ = 71.1 (d, ¹J_{PP} = 94 Hz, PhPS₂), 52.4 (d, ¹J_{PP} = 94 Hz, PhEt₂P-).

 $[Cu_4(S_3PPh)_2(dppp)_2]$ (8): Eine Lösung von 0.14 g (1.00 mmol) [CuO'Bu] und 0.21 g (0.51 mmol) dppb in 20 mL THF wird bei Raumtemperatur mit 0.08 mL (0.50 mmol) S(SiMe₃)₂ und 0.4 mL (1.00 mmol) PhP(S)(SSiMe₃)₂ versetzt und 12h gerührt. Die gelbe Lösung wird im Vakuum auf 15 mL eingeengt und mit 0.4 mL Hexan versetzt. Nach Lagerung der Reaktionslösung bei Raumtemperatur für ca. 1h erhält man farblose Kristalle von 8 in einer Ausbeute von 50 %.

Kristallstrukturanalysen

Die Verbindungen wurden auf STOE-Diffraktometern mit Flächendetektor (IPDS I an Schneider-Drehanode: 1, 2, 5, 7, 8; IPDS II: 4, 6; IPDS IIT an Siemens Drehanode: 3) gemessen (Tabelle 1).

Für die Lösung und Verfeinerung der Kristallstrukturen wurde das SHELXTL Programmpaket benutzt [20]. CCDC Nr. 295488–295495 enthalten weitere Einzelheiten zu den Kristallstrukturanalysen. Kopien der Daten können unter Angabe der CSD Nummern kostenlos bei folgender Adresse angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ UK [Fax: (+44)-1223-336033; E-mail: deposit@ccdc.cam.ac.uk]

Unser Dank gilt dem DFG Zentrum für funktionelle Nanostrukturen und dem Fonds der Chemischen Industrie für die großzügige Unterstützung dieser Arbeit.

Literatur

- J. A. McCleverty, R. S. Z. Kowalski, N. A. Bailey, R. Mulvaney, D. A. Ocleirigh, J. Chem. So., Dalton Trans. 1983, 627.
- [2] H. Keck, A. Kruse, W. Kuchen, J. Mathow, H. Wunderlich, Z. Naturforsch. 1987, 42b, 1373.
- [3] G. Thiele, G. Liehr, E. Linder, Chem. Ber. 1974, 107, 442.
- [4] S. Chaudhury, V. K. Jain, V. S. Jakkal, K. Venkatasubramanian, J. Organomet. Chem. 1992, 424, 115.
- [5] M. G. B. Drew, R. J. Hobson, P. P. E. M. Mumba, D. A. Rice, *Dalton Trans.* **1987**, 1569.
- [6] C. W. Liu, B.-J. Liaw, L.-S. Liou, J.-C. Wang, Chem. Commun. 2005, 1983.
- [7] M. Preisenberger, A. Bauer, A. Schier, H. Schmidbaur, J. Chem. Soc., Dalton Trans. 1997, 4753.
- [8] W. E. van Zyl, J. Lopez-de-Luzuriaga, J. Fackler, R. J. Staples, *Can. J. Chem.* 2001, 79, 896.
- [9] G. Siasios, E. R. T. Tiekink, Z. Kristallogr. 1995, 210, 698.
- [10] T. B. Rauchfuss, G. A. Zank, Organometallics 1984, 3, 1191.
- [11] W. Shi, M. Shafaei-Fallah, C. E. Anson, A. Rothenberger, *Dalton Trans.* 2005, 3909.
- [12] a) D. Fenske, A. Rothenberger, M. Shafaei-Fallah, Z. Anorg. Allg. Chem. 2004, 630, 943; b) D. Fenske, A. Rothenberger, M. Shafaei-Fallah, Eur. J. Inorg. Chem. 2005, 59; c) M. Shafaei-Fallah, C. E. Anson, D. Fenske, A. Rothenberger, Dalton Trans. 2005, 2300.
- [13] C. Denger, H. Keck, W. Kuchen, J. Mathow, H. Wunderlich, *Inorg. Chim. Acta* 1987, 132, 213.
- [14] J. F. McConnell, A. Schwartz, Acta Crystallogr. 1972, B28, 1546.
- [15] H-L. Liu, H-Y. Mao, C. Xu, H-Y. Zhang, H-W. Hou, Q-a. Wu, Y. Zhu, B-X. Ye, L-J. Yuan, *Polyhedron* 2004, 23, 1799.
- [16] P. S. Shetty, Q. Fernando, Acta Crystallogr. 1969, B25, 1294.
- [17] E. Fluck, H. Binder, Angew. Chem. 1966, 78, 677; Angew. Chem. Int. Ed. Engl. 1966, 5, 666.
- [18] a) J. Hahn, T. Nataniel, Z. Anorg. Allg. Chem. 1986, 543, 7;
 b) W. Kuchen, H. Steigenberger, Z. Anorg. Allg. Chem. 1975, 413, 266.
- [19] K. Sasse: "Phosphine, Carbonsäure-Phosphide und verwandte Verbindungen" in Houben-Weyl: "Methoden der Organischen Chemie", Band 1, Thieme Verlag Stuttgart 1963, 32.
- [20] SHELXTL-97, G. M. Sheldrick, University of Göttingen, 1997.