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The Ugi-4C reaction employing Nb-protected-amino alkyl isonitrile, amino acid ester, aldehyde, and gly-
cosyl acid has resulted in novel glycosylated peptidomimetics. The extension of MCR products for the
synthesis of N,N0-orthogonally protected glycosylated peptidomimetics has also been demonstrated.
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Isonitriles have unique reactive features due to their ability to
form reactive a-adducts on reaction with both nucleophiles and
electrophiles at the same atom under mild conditions. Isonitrile
based multicomponent reactions1,2 (IMCRs) such as Ugi four-com-
ponent reaction3 (U4CR) and Passerini three-component reaction4

(P3CR) have shown tremendous synthetic potential for the conver-
gent synthesis of plethora of diverse molecular scaffolds over the
last decade. The U4CR involves mainly, condensation of an amine,
aldehyde, isonitrile, and a carboxylic acid bearing substrates to
generate a plethora of peptide-like molecules.5–7 Robustness of this
reaction makes it possible to access molecular complexity and
diversity which is useful for organic synthesis and drug discovery
program, simply by suitable design of the starting materials in an
atom- and step-economical way. Thus far, the majority of the re-
ports on Ugi-MCR have employed isocyano esters/carboxamides
that are prepared by the dehydration of formyl-amino esters/
amides as the isonitrile components.4b Nb-protected amino alkyl
isonitriles prepared through carboxy modification of correspond-
ing b-amino acids were first reported by our group as an alternate
class of isonitriles derived from amino acids.8 Switching the isoni-
trile position from N- to C-terminus of the amino acid skeleton
leads to an entirely new repertoire of Ugi products that were hith-
erto not accessible by classical isonitrile esters. Presently, we are
engaged in demonstrating its synthetic utility in isonitrile based
MCRs leading to novel peptidomimetics as well as
glycopeptidomimetics.9
Glycopeptides play a significant role in cell growth regulation,
cancer cell metastasis, protein folding, cell adhesion, viral, bacte-
rial, and parasitical infections.10,11 Also there is a pressing need
for methods that provide access to glycopeptides to explore vari-
ous biological functions such as in cellular differentiation, cell–cell
communication, immune response, and also for the development
of glycopeptide-based drugs with improved pharmacokinetic
properties.12 Due to this wide spread application several groups
have reported the synthesis of glycopeptide derivatives via Ugi
four-component condensation (4CC) reaction.13–15 Recently,
Volonterio and co-workers reported the synthesis of diverse pep-
tide sugar conjugates through a regiospecific four-component
reaction.16 Thus in view of their biological significance there is
an untiring interest over the protocols that generate diverse glyco-
peptides and glycopeptidomimetics.17 An interesting application of
N-protected-b-amino alkyl isonitriles in the Ugi MCR for generat-
ing a new variety of glycosylated peptidomimetics has been dem-
onstrated in the present work.

To execute the designed protocol, the essential starting materi-
als are N-protected-b-amino alkyl isonitriles, sugars equipped with
a carboxylic group, a-amino alkyl esters, and commercially avail-
able aldehydes. Nb-protected amino alkyl isonitriles were prepared
as reported by us previously.8 A further task at this stage was to
equip sugar components with a carboxy group, that is, to install
a carboxy group on the sugar or to attach a carboxy functionalized
molecule to a suitably protected sugar. Thus, three different kinds
of sugar acids were prepared following established protocols18–23

and employed in this study (Fig. 1).
For the synthesis of galactose-6-acid 1, initially, a-D-galactose

was protected as (1,2),(3,4)-diacetylgalactopyranose by treating
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Figure 2. Conformations of protonated iminium ion of amino acid ester for high
diastereoselectivity via Ugi-MCR.
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Figure 1. Sugar acids employed in Ugi-MCR.
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with CuSO4/cat. H2SO4 in acetone and later subjected to oxidation
using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl [TEMPO] to convert
C6–CH2OH into COOH.18 The glycosyl acid 2 was obtained by a
reaction of 2,3,4,6-tetra-O-benzoyl-a-D-glucopyranosyl-1-bro-
mide19 with Gly-OMe in the presence of K2CO3 followed by the es-
ter hydrolysis. The sugar acid 3 was prepared by Cu-mediated
‘click’ reaction of sugar-1-azide with propiolic acid.20,21 The latter
molecule would be interesting by itself owing to the presence of
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Scheme 1. Synthesis of N-glycosylate
biologically significant triazole moiety.20,22,23 Commercially avail-
able benzaldehyde, isovaleraldehyde, and furfuraldehyde were
used as the aldehyde components, while methyl esters of several
amino acids as amine components in the present work.

In an initial experiment, equimolar quantities of benzaldehyde
and H-Phe-OMe were stirred in MeOH to generate an imine. After
the complete formation of the imine (by TLC analysis), Fmoc-Ala-
w[CH2NC] 4a and (1,2),(3,4)-diacetylgalactopyranosyl-6-acid 1 in
MeOH were added. The reaction mixture was stirred at rt for
48 h. A simple aqueous work-up followed by chromatographic
purification afforded the glycoconjugate 5a in 85% yield.24 How-
ever, the possible diastereomers generated due to the new chiral
center at aldehydic carbon, could not be separated through column
chromatography. The chiral HPLC analysis of 5a showed the diaste-
reomers in 97.5:2.5 ratio.25 The high diastereoselectivity observed
for the Ugi 4CR product can be attributed to the use of amino acid
ester as the amine component, which is in agreement with the ear-
lier reports.3,9,26 According to the well known Ugi-4CC mechanism,
diastereoselectivity can be explained by the preferential attack of
carbenoid carbon of isocyanide on protonated imine from top face,
as described in Figure 2. In a similar way, two other glycosylated
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Table 1
List of Ugi products prepared
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peptides 5b and 5c were obtained based on sugar acid 1. In the
next set of experiments sugar acid components 2 and 3 were also
used successfully in the Ugi MCR to afford corresponding adducts
6a and 7a–c (Scheme 1, Table 1) 27. Chiral HPLC analysis of the
products 6a and 7a revealed two peaks corresponding to the two
diastereomeric products in the ratios 97:3 and 95:5, respectively.

Thus obtained Ugi-adducts were stable and available to be in-
serted into a peptide chain upon deprotection of either terminus
as per the design. We demonstrated terminal extensions on a
few selected Ugi-adducts either by N-deprotection and coupling
with another N-protected amino acid or by hydrolysis of the ester
followed by carboxy activation and coupling to an amine head
(Scheme 2).

In the second part of the study, another variety of glycopepti-
domimetics viz., N,N0-orthogonally protected glycosylated peptides
were prepared simply by exchanging the amine and carboxy con-
tributors in the above described reaction. In effect, the reaction in-
volved 2,3,4,6-tetra-O-acetyl-glucopyranosyl-1-amine and an Na-
protected amino acid along with Nb-protected amino alkyl isoni-
trile and aldehyde. Orthogonality for the N-protecting groups of
the participating reactants viz., isonitrile and acid was maintained
so as to enable selective deprotection/chain extension after the
assembly of MCR adducts (Scheme 3). Thus 12a and 12b were ob-
tained in 88% and 85% yields, respectively, using a combination of
Fmoc/Z and Z/Boc groups, respectively. The reaction was facile and
the products were characterized by NMR and mass spectral analy-
ses. The orthogonality of the protecting groups on compounds 12
allowed the selective chain extension on either terminus which
was demonstrated by preparing 13a and 13b from their parent
Ugi-adducts 12a and 12b, respectively (Scheme 4).

In summary, N-protected amino alkyl isonitriles have been em-
ployed in the Ugi multi-component reaction for constructing a new
class of neoglycopeptidomimetics. Three different types of glycosyl
acids were employed to obtain novel Ugi scaffolds. All the Ugi-ad-
ducts are isolated as stable compounds, characterized, and some of
them were engaged in chain extension on either terminus to dem-
onstrate their further synthetic utility. With the ever expanding
importance of glycoconjugates in various drug discovery programs,
the molecular scaffolds that are presented in this work expand the
repertoire of arsenal at the disposal of chemists working in this
exciting area.
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(s, 12H), 2.11 (s, 3H), 2.38 (t, J = 4.8 Hz, 2H), 3.35 (m, 2H), 4.12 (m, 1H), 4.25 (d,
J = 5.2 Hz, 2H), 4.51 (m, 1H), 4.68 (m, 1H), 4.71 (m, 1H), 5.12 (m, 1H), 5.25 (s,
2H), 5.68 (s, 1H), 6.01 (m, 1H), 6.12 (s, 1H), 6.20 (m, 1H), 6.25 (d, J = 5.8 Hz, 1H),
7.05–7.25 (m, 11H), 6.98 (br s, 2H), 8.11 (s, 1H); 13C NMR (DMSO-d6, 100 MHz)
d 16.8, 20.5, 27.9, 28.3, 30.5, 43.1, 49.8, 52.5, 55.3, 58.1, 65.1, 67.7, 70.8, 71.3,
75.2, 78.9, 89.3, 105.6, 109.8, 126.7, 128.9, 129.8, 131.5, 134.5, 141.8, 143.7,
152.3, 155.5, 162.1, 168.5, 170.1, 171.5; ESI-MS calcd for C48H58N6O16S m/z
1029.35 [M+Na]+, found 1029.40.
Compound 8a: 1H NMR (DMSO-d6, 400 MHz) d 1.18 (s, 3H), 1.45 (s, 12H), 3.01
(d, J = 5.2 Hz, 2H), 3.25 (d, J = 5.2 Hz, 2H), 3.51 (m, 2H), 3.65 (s, 3H), 4.12 (m,
1H), 4.21 (m, 1H), 4.35 (m, 1H), 4.48 (d, J = 5.6 Hz, 1H), 4.85–4.93 (m, 3H), 5.12
(d, J = 5.2 Hz, 1H), 5.35 (s, 2H), 5.51 (s, 1H), 6.91–6.99 (m, 3H), 7.12–7.20 (m,
20H); 13C NMR (DMSO-d6, 100 MHz) d 19.1, 25.1, 33.8, 36.9, 45.3, 51.2, 52.5,
54.4, 58.6, 63.3, 65.1, 66.2, 67.2, 71.1, 71.9, 98.9, 106.9, 109.8, 125.7, 127.1,
127.7, 128.6, 129.1, 129.7, 135.7, 139.4, 141.1, 155.5, 168.1, 169. 3, 171.5; HR-
MS calcd for C50H58N4O12 m/z 929.3949 [M+Na]+, found 929.3944.
Compound 9b: 1H NMR (DMSO-d6, 400 MHz) d 0.95 (d, J = 6.0 Hz, 12H), 1.37 (s,
9H), 1.43 (s, 12H), 1.45–1.51 (m, 5H), 1.62 (m, 2H), 1.81 (m, 2H), 2.99 (d,
J = 5.4 Hz, 2H), 3.25 (m, 2H), 3.65 (s, 3H), 4.11 (d, J = 4.8 Hz, 2H), 4.25 (m, 2H),
4.40 (m, 1H), 4.55 (m, 2H), 4.81–4.88 (m, 3H), 5.15 (d, J = 5.0 Hz, 1H), 6.85–6.91
(m, 4H), 7.05–7.21 (m, 5H); 13C NMR (DMSO-d6, 100 MHz) d 18.1, 21.2, 21.5,
22.7, 22.8, 26.4, 28.1, 34.8, 37.9, 39.5, 41.3, 44.8, 45.9, 49.3, 50.4, 51.0, 52.3,
66.2, 66.8, 71.5, 72.1, 78.9, 98.7, 125.7, 127.1, 128.5, 155.5, 168.5, 169.6, 171.5,
172.0; HR-MS calcd for C44H69N5O13 m/z 898.4790 [M+Na]+, found 898.4795.
Compound 11a: 1H NMR (DMSO-d6, 400 MHz) d 0.99 (d, J = 5.6 Hz, 6H), 1.29 (d,
J = 5.2 Hz, 3H), 1.81 (m, 2H), 2.05 (s, 15H), 2.31 (t, J = 4.8 Hz, 2H), 2.61 (m, 1H),
3.12 (m, 2H), 3.66 (s, 3H), 4.12 (d, J = 4.6 Hz, 2H), 4.25 (m, 1H), 4.35 (t,
J = 4.2 Hz, 1H), 4.50 (m, 1H), 4.58 (d, J = 5.0 Hz, 1H), 4.63 (m, 1H), 4.68 (m, 1H),
4.73 (m, 1H), 4.80 (d, J = 5.0 Hz, 2H), 5.13 (m, 1H), 5.35 (s, 1H), 5.98 (s, 1H), 6.04
(d, J = 5.4 Hz, 1H), 6.12 (m, 1H), 6.29 (d, J = 5.6 Hz, 1H), 6.98–7.04 (m, 4H), 7.17–
7.68 (m, 14H), 8.12 (s, 1H); 13C NMR (DMSO-d6, 100 MHz) d 17.5, 17.7, 18.0,
20.9, 30.1, 30.8, 31.5, 42.5, 46.6, 47.1, 48.5, 52.5, 54.8, 57.5, 59.5, 65.6, 67.4,
68.1, 71.0, 72.1, 75.2, 91.3, 105.3, 110.4, 125.1, 126.7, 127.1, 128.0, 128.5, 129.0,
129.5, 131.0, 135.6, 141.1, 141.9, 143.5, 143.9, 151.6, 155.6, 161.8, 168.5, 168.9,
170.1, 170.9, 171.5; HR-MS calcd for C60H70N8O18S m/z 1245.4426 [M+Na]+,
found 1245. 4430.
Compound 12a: 1H NMR (DMSO-d6, 400 MHz) d 1.21 (d, J = 6.8 Hz, 3H), 1.99 (s,
12H), 2.56 (d, J = 6.2 Hz, 2H), 3.35 (m, 2H), 4.12 (t, J = 4.8 Hz, 1H), 4.25 (m, 2H),
4.45 (d, J = 5.8 Hz, 2H), 4.61 (m, 1H), 4.75 (m, 1H), 4.77 (m, 1H), 4.81 (m, 1H),
5.08 (m, 1H), 5.24 (s, 2H), 5.29 (m, 1H), 5.45 (m, 1H), 6.11 (m, 1H), 7.18–7.72
(m, 23H), 7.79–7.82 (m, 3H); 13C NMR (DMSO-d6, 100 MHz) d 19.1, 21.3, 21.5,
39.8, 43.5, 47.5, 49.5, 51.5, 52.8, 62.9, 65.1, 67.6, 68.0, 68.5, 68.9, 71.9, 79.5,
125.0, 125.5, 126.0, 126.2, 126.4, 126.5, 126.9, 127.1, 127.3, 127.5, 127.7, 127.9,
128.1, 128.4, 128.7, 128.8, 129.0, 135.1, 138.5, 139.8, 141.5, 143.6, 155.8, 156.5,
168.5, 170.5, 171.0; HR-MS calcd for C57H60N4O15 m/z 1063.3953 [M+Na]+,
found 1063. 3960.
Compound 13a: 1H NMR (DMSO-d6, 400 MHz) d 1.00 (d, J = 6.2 Hz, 6H), 1.21 (d,
J = 5.8 Hz, 3H), 1.32 (s, 9H), 2.01 (s, 12H), 2.59 (m, 1H), 2.71 (d, J = 6.4 Hz, 2H),
3.32 (m, 2H), 4.21 (d, J = 6.2 Hz, 2H), 4.35 (t, J = 4.8 Hz, 1H), 4.51 (m, 1H), 4.59
(m, 1H), 4.64 (m, 1H), 4.69 (d, J = 6.0 Hz, 2H), 4.73 (m, 2H), 5.21–5.28 (m, 2H),
5.31 (m, 1H), 6.12 (d, J = 6.6 Hz, 1H), 6.91–6.99 (br s, 4H), 7.25–7.77 (m, 18H);
13C NMR (DMSO-d6, 100 MHz) d 17.0, 18.1, 20.9, 27.5, 30.0, 41.2, 43.4, 47.1,
51.3, 53.8, 57.7, 64.5, 67.1, 68.5, 69.8, 71.3, 72.5, 78.4, 125.1, 126.7, 127.1,
128.2, 128.4, 128.8, 129.3, 129.7, 135.1, 137.8, 141.3, 143.5, 155.6, 156.1, 168.5,
170.1, 171.3; HR-MS calcd for C59H71N5O16 m/z 1128.4794 [M+Na]+, found
1128.4798.
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