DOI: 10.1002/ejoc.201100040

Sequential Combination of Ruthenium-, Base-, and Gold-Catalysis – A New Approach to the Synthesis of Medicinally Important Heterocycles

Dhevalapally B. Ramachary^{*[a]} and Vidadala V. Narayana^[a]

Keywords: Base-induced ring opening / Heterocycles / Homogeneous catalysis / Hydroamination / Ring-closing metathesis

A general approach to the high-yielding synthesis of medicinally important heterocycles was achieved through the sequential combination of ring-closing metathesis, base-induced ring opening (BIRO), hydroamination, and a Diels-Alder reaction of functionalized allyl-(2-allylphenyl)amines in the presence of a catalytic amount of Grubbs' secondgeneration catalyst, base (tBuOK), and [AuCl(PPh₃)]/AgOTf. Herein, we also demonstrate the important electronic factors in the BIRO of N-substituted-benzo[b]azepines for the regioselective synthesis of functionalized (Z)-N-substituted-2(buta-1,3-dienyl)phenylamines in very good yields with high purity; these are very good, useful compounds in medicinal chemistry. We also discovered the selective cascade synthesis of privileged hexahydrophenanthridines from (Z)-N-substituted-2-(buta-1,3-dienyl)phenylamines by gold catalysis in moderate to good yields with >99% diastereomeric excess. The possible reaction mechanism for the unusual hydroamination followed by [4+2] cycloaddition of functionalized (Z)-N-substituted-2-(buta-1,3-dienyl)phenylamines through gold catalysis is discussed in this work.

Introduction

Benzannulated nitrogen heterocycles are well-known biologically active compounds that display a wide range of pharmacological activities.^[1] In particular, N-substituted-2,3-dihydro-1*H*-benzo[*b*]azepines, N-substituted-2-(buta-1,3-dienyl)phenylamines, N-substituted-1,2,3,4-tetrahydroquinolines, and functionalized hexahydrophenanthridines display promising biological activities.^[1] Thus, the diversityoriented synthesis of these heterocycles represents an important task because of the widespread occurrence of such structural scaffolds and their use as building blocks in pharmaceuticals. For example, OPC-31260 (A), OPC-41061 (B), an inhibitor of N-type calcium channels (C), Strobilurin I (D), a molecule with antiparasitic activity (E), and lycorine (F) are some of the compounds that are very useful in medicinal chemistry (Figure 1).^[1]

We have designed a novel methodology for the synthesis of highly functionalized N-substituted-benzo[b]azepines, Nsubstituted-2-(buta-1,3-dienyl)phenylamines, N-substituted-2-methyl-2H-quinolines, and N-substituted-phenanthridines starting from simple dienes (Scheme 1). A rutheniumcatalyzed ring-closing metathesis (RCM), base-induced ring opening (BIRO), and gold-catalyzed hydroamination of olefins followed by [4+2] cycloaddition reactions are the crucial steps in the designed reaction sequence. Interestingly, to the best of our knowledge, there have not been any re-

E-mail: ramsc@uohvd.ernet.in

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201100040.

Figure 1. Examples of important heterocycles in medicinal chemistry.

Scheme 1. A sequential RCM, BIRO, and gold-catalyzed hydroamination of olefins followed by [4+2] cycloaddition in one pot. Pg = protecting group, Fg = functional group.

ports of the synthesis of three different heterocycles from one common precursor. Herein, we report, for the first time, a sequential one-pot approach to the synthesis of highly functionalized benzo[*b*]azepines (2), (*Z*)-2-(buta-1,3-dienyl)phenylamines (3), 2-methyl-2*H*-quinolines (4), and phenanthridines (5) starting from simple dienes (1) by sequential RCM/BIRO and gold-catalyzed hydroamination followed by [4+2] cycloaddition reactions.^[2]

Results and Discussion

The investigation into the newly designed sequential onepot reactions was initiated by synthesizing a library of substituted heterodienes/heteroenynes 1 as precursors in very good yields through a combination of N-allylation, N-propargylation, C-allylation, and N-protection on anilines as key steps (see Schemes S1-S4 in the Supporting Information). First, the scope of the sequential RCM/BIRO onepot reactions was investigated with a variety of N-substituted heterodienes 1aa-1ef by comparing the electronic factors, as shown in Table 1. Reaction of ethyl allyl-(2-allyl-4chlorophenyl)carbamate (1aa) with Grubbs' first-generation catalyst G (3 mol-%) in CH₂Cl₂ at 25 °C for 15 h gave the benzo[b]azepine **6aa** in >95% conversion, which on further treatment with tBuOK (3 equiv.) in DMSO at 0-25 °C for 0.5 h gave the interesting ethyl (2-buta-1,3-dienyl-4-chlorophenyl)carbamate (cis-3aa) with moderate yield (75%) and >99% Z selectivity under one-pot conditions (Table 1, entry 1). In a similar manner, the sequential RCM/BIRO one-pot reaction of laa using Hoveyda-Grubbs' first-generation catalyst I (3 mol-%) in CH₂Cl₂ at 25 °C for 3 h followed by treatment with tBuOK (3 equiv.) in DMSO at 0-25 °C for 0.5 h gave the carbamate *cis*-3aa in 85% yield with >99% Z selectivity (Table 1, entry 2). Interestingly, the sequential RCM/BIRO one-pot reaction of laa using Grubbs' second-generation catalyst H (3 mol-%) in CH₂Cl₂ at 25 °C for only 5 h followed by treatment with tBuOK (3 equiv.) in DMSO at 0-25 °C for 0.5 h gave the carbamate cis-3aa in very good yield (92%) with >99% Z selectivity (Table 1, entry 3).^[3]

After obtaining this preliminary information, we further investigated the sequential RCM/BIRO one-pot reactions on heterodienes containing different N-protecting groups to study the electronic factors. Interestingly, sequential RCM/ BIRO one-pot reactions on heterodienes containing N-Ts 1ab, N-COPh 1ac, N-COCH₃ 1ad, and N-COCF₃ 1ae gave the expected products (Z)-**3ab**-**3ae** in very good yields with high Z selectivity, as shown in Table 1, entries 4-7. But the RCM reaction of the heterodiene **1af** (containing *N*-H/Ar-Cl) with catalyst H/pTSA gave the 7-chloro-2,5-dihydro-1*H*-benzo[*b*]azepine (**6af**) in 75% yield, which on further treatment with tBuOK (3 equiv.) in DMSO at 0-25 °C for 3 h gave only isomerized 7-chloro-2,3-dihydro-1H-benzo-[b]azepine **2af** in 55% yield instead of (Z)-**3af**, as shown in Table 1, entry 8. In a similar manner, the RCM reaction of the heterodiene lef (containing N-H/Ar-Me) with catalyst I/TFA gave the 7-methyl-2,5-dihydro-1*H*-benzo[*b*]azepine Table 1. Reaction optimization for the sequential RCM/BIRO or RCM/I reaction of **1aa-1ef** in one pot.

Grubbs 1st generation Grubbs 2nd generation Hoveyda–Grubbs 1st generation

Entry	Х	Pg	Time [h]	Product	Yield [%][a]
1 ^[b]	Cl	CO ₂ Et (a)	15 + 0.5	3aa	75
2 ^[c]	Cl	$CO_2Et(\mathbf{a})$	3 + 0.5	3aa	85
3	Cl	CO_2Et (a)	5 + 0.5	3aa	92
4	Cl	$Ts^{[d]}(\mathbf{b})$	3 + 0.5	3ab	88
5	Cl	COPh (c)	4 + 0.5	3ac	80
6	Cl	$COCH_3$ (d)	4 + 0.5	3ad	71
7	Cl	$COCF_3$ (e)	3 + 1.0	3ae	40
8[e,f]	Cl	H (f)	24 + 3.0	2af	55
9 ^[f,g]	Me	H (f)	27 + 1.0	2ef	75

[a] Yield refers to the product purified by column chromatography. [b] RCM reaction performed with Grubbs first-generation catalyst **G** (3 mol-%). [c] The RCM reactions were performed with Hoveyda–Grubbs first-generation catalyst **I** (3 mol-%). [d] Ts = tosyl. [e] *p*-Toluenesulfonic acid (*p*TSA) (1 equiv.) was used as a co-catalyst for the RCM reaction. [f] The BIRO reaction was performed on the isolated RCM product. [g] The RCM reactions were performed with Hoveyda–Grubbs first-generation catalyst **I** (5 mol-%) and trifluoroacetic acid (TFA; 2 equiv.) were used as co-catalysts.

(6ef) in 50% yield, which on further treatment with tBuOK (3 equiv.) in DMSO at 0–25 °C for 1 h gave only isomerized 7-methyl-2,3-dihydro-1*H*-benzo[*b*]azepine (**2ef**) in 75%yield instead of (Z)-3ef, as shown in Table 1, entry 9. From these results, sequential RCM/BIRO one-pot reactions proved to be extremely facile with heterodienes 1aa-1ef, containing electron-withdrawing groups on nitrogen, as shown in Table 1. We envisioned the optimized conditions to be the reaction of 1aa with catalyst H (3 mol-%) in CH₂Cl₂ at 25 °C for 5 h to give the benzo[b]azepine 6aa in >99% conversion, which on in situ treatment with *t*BuOK (3 equiv.) in DMSO at 0-25 °C for 0.5 h gave the one-pot product *cis*-3aa in 92% yield and >99% Z selectivity (Table 1, entry 3). The structure and regiochemistry of (Z)-2-(buta-1,3-dienyl)phenylamines 3 were confirmed by NMR spectroscopic analysis and also finally confirmed by X-ray structure analysis of cis-3ac, as shown in Figure S1 in the Supporting Information.^[4]

With the optimized reaction conditions in hand, the scope of the ruthenium and base-induced RCM/BIRO and RCM/isomerization one-pot reactions was investigated with a variety of heterodienes and heteroenynes 1, as shown in Table 2. The sequential RCM reaction of the substituted heterodienes 1ba-1ib (containing *N*-CO₂Et, *N*-COCF₃, or

FULL PAPER

N-Ts) with Grubbs' second-generation catalyst **H** (3 mol-%)in CH₂Cl₂ at 25 °C for 3-8 h gave the functionalized benzo[b]azepines **6ba–6ib** in >99% conversion, which on in situ treatment with tBuOK (3 equiv.) in DMSO at 0-25 °C for 0.5-1.0 h gave the functionalized (Z)-2-(buta-1,3-dienyl)phenylamines 3ba-3ib in very good yields with high Z selectivity, as shown in Table 2, entries 1-11 (read the entry numbers from left to right sequentially). Interestingly, enyne metathesis of the substituted heteroenynes 1jb and 1kb [N-Ts] with Grubbs' first-generation catalyst G (8 mol-%) in CH₂Cl₂ at 25 °C for 24 h gave the benzo[*b*]azepines **6jb–6kb** in >99% conversion, which on in situ treatment with base gave the products *cis*-3jb-3kb in moderate yields (Table 2, entries 12 and 13). To support the role of electronic factors in BIRO reactions, we performed these sequential reactions on benzo[b]azepines 6bf, 6bg, and 6fh (containing N-H, N-Ph, and N-PMP; PMP = para-methoxyphenyl), as shown in Table 2, entries 14-16. Interestingly, in situ treatment of benzo[b]azepines 6bf, 6bg, and 6fh with tBuOK (3 equiv.) in DMSO at 0-25 °C for 1.0 h gave only the double-bondisomerized RCM/isomerization products 2bf, 2bg, and 2fh in 75, 82, and 65% yields, respectively (Table 2, entries 14-16).

Table 2. Chemically diverse libraries of functionalized amines 2/3.^[a]

[a] Yield refers to the product purified by column chromatography. [b] RCM reactions were performed with Grubbs first-generation catalyst G (8 mol-%). [c] pTSA (1 equiv.) was used as a co-catalyst in the RCM reaction. [d] The BIRO reaction was performed on the isolated RCM product.

We have also utilized base-induced double-bond isomerization with N-alkylation reactions in one pot to deliver the functionalized 2,3-dihydro-1*H*-benzo[*b*]azepines **2** in good yields (Scheme 2). Reaction of 2,5-dihydro-1*H*-benzo[*b*]azepine (**6bf**) with *t*BuOK (3 equiv.) at 0–25 °C for 1 h, followed by in situ treatment with allyl bromide (**a**) or propargyl bromide (**b**) at 25 °C for 3–18 h gave the one-pot products *N*-allyl-2,3-dihydro-1*H*-benzo[*b*]azepine (**2bfa**) and 1prop-2-ynyl-2,3-dihydro-1*H*-benzo[*b*]azepine (**2bfb**) in 65 and 40% yield, respectively; these were good starting materials for the synthesis of drug analogues of **A**–**C** (Figure 1).

Scheme 2. Reaction conditions: (a) *t*BuOK (3 equiv.), DMSO (0.05 M), 25 °C, 1 h; H₂C=CHCH₂Br (**a**, 2 equiv.), 25 °C, 3 h, 65%; (b) *t*BuOK (3 equiv.), DMSO (0.05 M), 25 °C, 1 h; HC=CCH₂Br (**b**, 2 equiv.), 25 °C, 18 h, 40%.

After understanding the sequential one-pot combination of RCM, BIRO, isomerization, and alkylation reactions, we were also interested in investigating the intra- and intermolecular hydroamination of (Z)-aminodienes 3, as shown in Tables 3 and 4. The hydroamination of olefins is a prominent and atom-economic reaction for the synthesis of Nheterocycles.^[5] In particular, intra- and intermolecular hydroamination displays an efficient route for accessing multifunctional N-heterocycles for natural-product synthesis and pharmaceuticals.^[5] Since the seminal discovery of metallocene-catalyzed hydroamination by Marks and co-workers,^[6] hydroamination emerged as an important reaction to study many aspects of N-heterocycles. Starting from simple aminoalkenes, the scope of metal-promoted hydroamination reactions was quickly extended to various unsaturated molecules, including aminoalkynes, aminoallenes, conjugated (E)-aminodienes and aminodialkenes, aminodialkynes, and aminoalkenalkynes.^[5] However, the metal-catalyzed intraor intermolecular hydroamination of conjugated (Z)-aminodienes 3 was not known and the resulting products 4 and 5 could have a wide range of uses in pharmaceutical chemistry (see Scheme 1).^[5]

After thorough investigation of intra- and intermolecular hydroamination of conjugated (*Z*)-aminodienes **3aa–3ad** with gold chlorides and/or silver salts, we found that [AuCl(PPh₃)]/AgOTf (5 mol-%) in toluene at reflux were suitable conditions for the designed hydroaminations, as shown in Table 3 and Table S1 in the Supporting Information.^[7] Interestingly, the reaction of *N*-Ts-(*Z*)-aminodiene **3ab** with [AuCl(PPh₃)]/AgOTf (5 mol-%) in the toluene at 100 °C for 24 h selectively gave **4ab** in 50% yield without **5ab** (Table 3, entry 1). In a similar manner, treatment of N-Ts-(Z)-aminodienes 3eb-3gb with [AuCl(PPh₃)]/AgOTf (5 mol-%) in toluene at 100 °C for 6–7 h only gave intramolecular hydroamination products 4eb-4gb in moderate yields (Table 3, entries 2-4). However, the reaction of N-CO₂Et-(Z)-aminodiene 3aa with [AuCl(PPh₃)]/AgOTf (5 mol-%) in toluene at 100 °C for 24 h gave the unexpected cascade intermolecular hydroamination/[4+2] cycloaddition product 5aa in 55% yield with >99% diastereomeric excess (de) and also 4aa in 20% yield (Table 3, entry 5).^[8] In a similar manner, the reaction of N-COCH₃-(Z)-aminodiene 3ad with [AuCl(PPh3)]/AgOTf (5 mol-%) in toluene at 100 °C for 24 h only gave cascade product 5ad in 40% yield with >99% de (Table 3, entry 6). Herein, products 4 were generated through gold-catalyzed intramolecular hydroamination of 3, and cascade product 5aa was formed through gold-catalyzed intermolecular hydroamination of 3aa followed by unusual gold-catalyzed intramolecular [4+2] cycloaddition reactions. The product selectivity of these reactions was mainly controlled by electronic factors, as shown by the nature of the N-protecting groups.^[8]

Table 3. Synthesis of functionalized 2-methyl-1,2-dihydroquinolines4.

x	Pg Auj	PPh ₃]Cl [5 mol-5 AgOTf [5 mol-% oluene [0.05 M] 100 °C	$\begin{array}{c} & Pg \\ Pg \\ X \\ X \\ 4 \end{array}$	CH ₃ +	Pg HN Pg H, CH ₃ H ^V CH ₃ H ^V H
Entry	Х	Pg	Time [h]	Product	Yield [%] ^[a]
1	Cl	Ts	24	4ab	50
2	CH ₃	Ts	6	4eb	30
3	OCH ₃	Ts	6	4fb	25
4	CO ₂ Et	Ts	7	4gb	25
5	Cl	CO ₂ Et	24	4aa, 5aa	20, 55
6	Cl	COCH3	24	5ad	40

[a] Yield refers to the column-purified product.

To explore the unusual gold-catalyzed intra- and intermolecular hydroamination followed by selective [4+2] cycloaddition reactions, we chose a variety of (Z)-ethyl-2-buta-1,3-dienyl-carbamates, 3aa-3ga, and N-(2-buta-1,3-dienyl-4-chlorophenyl)acetamide (3ad) as substrates (Table 4). Compounds 3aa-3ga were transformed into functionalized, N-substituted 2-methyl-2*H*-quinolines **4aa**–**4ga** in moderate yields and highly functionalized N-substituted phenanthridines 5aa–5ga in good yields with >99% de through a combination of gold/silver catalysis, as shown in Table 4, entries 1-6. Cascade products 5aa-5ga were formed in good yields and with high diastereoselectivity through gold catalysis without showing much effect from substitution (X) on the benzene rings of 3aa-3ga. The structure and stereochemistry of N-substituted phenanthridines 5 were confirmed by NMR spectroscopic analysis and also finally confirmed by X-ray structure analysis of 5aa (Figure S2 in the Supporting Information).^[4]

Table 4. Synthesis of N-substituted phenanthridines 5.^[a]

x		Ph ₃]Cl [5 mol-% gOTf [5 mol-%] uene [0.05 M] 100 °C E = CO ₂ Et		F HN F H H H H H H H H H H H H H H H H H H H
Entry	Х	Time [h]	Product 4 (Yield [%] ^[a])	Product 5 (Yield [%] ^[a])
1	Cl	24	4aa (20)	5aa (55)
2	Н	10	4ba (25)	5ba (40)
3	Br	24	4da (24)	5da (47)
4	CH_3	24	4ea (26)	5ea (43)
5	OCH_3	6	4fa (30)	5fa (25)
6	CO ₂ Et	8	4ga (20)	5ga (60)
7 ^[b]	Cl	24	_	5ad (40)

[a] Yield refers to the column purified product. [b] $E = COCH_3$.

Even though further studies are required to firmly elucidate the mechanism of these sequential cascade reactions through [AuCl(PPh₃)]/AgOTf catalysis, a possible reaction mechanism for intra- and intermolecular hydroamination followed by selective [4+2] cycloaddition is illustrated in Scheme 3. Treatment of (Z)-diene 3 with in situ generated active gold catalyst [Au(PPh₃)]OTf forms the reactive complex 7, which can undergo both intra- or intermolecular hydroamination based on the electronic nature of the amine group. In the first route, intramolecular hydroamination of 7 followed by reductive elimination of unstable intermediate 8 generates the expected product 4 with free catalyst [Au] for further cycles, as shown in Scheme 3. In the second route, intermolecular hydroamination of 7 with 3 followed by reductive elimination of unstable intermediate 10 generates the key intermediate 11 with free catalyst [Au], as shown in Scheme 3. Activation of the (Z)-diene from key intermediate 11 with [Au(PPh₃)]OTf gives the intramolecu-

Scheme 3. Proposed reaction mechanism.

FULL PAPER

lar [4+2] cycloaddition product 5 with high selectivity (>99% de) through stepwise or concerted pathways, as shown in compound 12.

Conclusions

We have shown the strength of a sequential, multicatalytic, one-pot approach in the diversity-oriented synthesis of highly functionalized N-substituted benzo[b]azepines **2/6**, N-substituted 2-(buta-1,3-dienyl)phenylamines **3**, Nsubstituted 2-methyl-2*H*-quinolines **4**, and N-substituted phenanthridines **5** from simple substrates by RCM/BIRO, RCM/isomerization, isomerization/alkylation, intramolecular hydroamination, and cascade intermolecular hydroamination/[4+2] cycloaddition reactions.

Experimental Section

General Methods: The ¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. The chemical shifts are reported in ppm relative to TMS ($\delta = 0$ ppm) for ¹H NMR spectroscopy and relative to the central CDCl₃ resonance ($\delta = 77.0$ ppm) for ¹³C NMR spectroscopy. In the ¹³C NMR spectra, the nature of the carbon atoms (C, CH, CH₂ or CH₃) was determined by recording the DEPT-135 experiment, and is given in parentheses. The coupling constants, J, are given in Hz. Column chromatography was performed by using Acme silica gel (particle size 0.063-0.200 mm). High-resolution mass spectra were recorded on micromass ESI-TOF mass spectrometer. GC-MS was performed on a GC-MS-QP2010 mass spectrometer. IR spectra were recorded on an FT/IR-5300 instrument. Elemental analyses were recorded on a Thermo Finnigan Flash EA 1112 analyzer. Mass spectra were recorded on either a VG7070H mass spectrometer using the EI technique or on an LCMS-2010 A mass spectrometer. The X-ray diffraction measurements were carried out at 298 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite monochromated, $Mo_{K\alpha}$ ($\lambda = 0.71073$ Å) radiation with CAD4 software or the X-ray intensity data were measured at 298 K on a SMART APEX CCD area detector system equipped with a graphite monochromator and a Mo_{K α} fine-focus sealed tube ($\lambda = 0.71073$ Å). For TLC, silica gel plates 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of *p*-anisaldehyde (23 mL), concentrated H_2SO_4 (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating.

Experimental Procedures for the Synthesis of Highly Functionalized N-Substituted 2-(Buta-1,3-dienyl)phenylamines: The synthesis of functionalized N-substituted 2-(buta-1,3-dienyl)phenylamines (3) from the corresponding anilines involves the following four or fivestep sequence:

Procedure A – N-Alkylations

Method A – **N-Diallylations:** The starting anilines (1 mmol) were diallylated by treatment with allyl bromide (3 mmol) and sodium hydride (4 mmol) in dry DMF (2 mL, 0.5 M) at 0–25 °C for 2–8 h. The crude reaction mixture was worked up with an aqueous solution of NH₄Cl and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure N-diallylated products were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Method B – **N-Monoallylations:** The starting anilines (1 mmol) were monoallylated by treatment with allyl bromide (1.1 mmol) and K_2CO_3 (1.2 mmol) in dry DMF (2 mL, 0.5 M) at 0–25 °C for 24 h. The crude reaction mixture was worked up with an aqueous solution of NH₄Cl and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure N-monoallylated products were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Method C – **N-Propargylation:** The enynes **1j** and **1k** were prepared by treating the corresponding C-allylated anilines (1.0 mmol) with propargyl bromide (130.8 mg, 1.1 mmol) and K_2CO_3 (165.8 mg, 1.2 mmol) in DMF (2 mL, 0.5 M) at room temperature for 24 h. The crude reaction mixture was worked up with an aqueous solution of NH₄Cl and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure products **1j** and **1k** were obtained by column chromatography (silica gel, mixture of hexane/ ethyl acetate).

Procedure B – **C-Allylation Through Claisen Rearrangement:** The corresponding N-allylated products (1 mmol), BF_3 ·Et₂O (1 mmol), and freshly distilled xylene (1 mL, 1.0 M) were added to a sealed glass tube and the mixture was heated at 135–140 °C under N₂ for 2 to 8 h. Upon cooling the reaction mixture to room temperature, the mixture was diluted with dichloromethane (10 mL), and washed with an aqueous solution of NH₄Cl (2 mL) and brine (2 mL). The separated organic layer was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Pure products 1 were obtained by column chromatography (basic alumina, mixture of hexane/ethyl acetate).

Allyl-(2-allyl-4-bromophenyl)amine (1d): Prepared following the procedure B and purified by column chromatography using EtOAc/ hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} = 3412$ (N–*H*), 1575, 1502, 1260, 918, 665 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.21$ (dd, J = 8.4, 2.0 Hz, 1 H), 7.14 (d, J = 2.4 Hz, 1 H), 6.47 (d, J = 8.4 Hz, 1 H), 5.96–5.84 (m, 2 H, olefinic-*H*), 5.23 (dd, J = 16.8, 1.6 Hz, 1 H, olefinic-*H*), 5.17–5.07 (m, 3 H, olefinic-*H*), 3.82 (s, 1 H, N-*H*), 3.74 (d, J = 5.2 Hz, 2 H, NCH₂), 3.24 (d, J = 6.4 Hz, 2 H, ArCH₂) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 145.0$ (C), 135.0 (CH), 134.8 (CH), 132.2 (CH), 130.1 (CH), 125.6 (C), 116.9 (CH₂), 116.2 (CH₂), 112.2 (CH), 108.9 (C), 46.2 (CH₂), 36.0 (CH₂) ppm. MS: m/z = 251.90 [M + H⁺].

(2-Allyl-4-chlorophenyl)prop-2-ynylamine (1k): Prepared by following procedures A and B and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} =$ 3295 (C=C-*H*), 1606, 1503, 1436, 1260, 1000, 666 cm⁻¹. ¹H NMR (CDCl₃): $\delta =$ 7.19 (d, J = 8.0 Hz, 1 H), 7.09 (s, 1 H, Ar-*H*), 6.69 (d, J = 7.6 Hz, 1 H), 5.99–5.90 (m, 1 H, olefinic-*H*), 5.21 (d, J =10.0 Hz, 1 H, olefinic-*H*), 5.14 (d, J = 17.2 Hz, 1 H, olefinic-*H*), 3.96 (s, 3 H, NCH₂C=C-H, N-*H*), 3.29 (d, J = 4.8 Hz, 2 H), 2.26 (s, 1 H, NCH₂C=C-*H*) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta =$ 143.6 (C), 134.9 (CH), 129.7 (CH), 127.3 (CH), 126.2 (C), 123.1 (C), 117.1 (CH₂), 112.4 (CH), 80.6 (C, NCH₂C=C-H), 71.5 (CH, NCH₂C=C-H), 35.9 (CH₂, NCH₂C=C-H), 33.6 (CH₂) ppm. MS: m/z = 206.05 [M + H⁺].

Procedure C – N-Protection

Method A – Synthesis of 1aa–1ga, 1ab, 1eb–1kb, and 1ac: The corresponding amines 1a–k (1 mmol) were protected by treatment with pyridine (6 mmol) and Pg-Cl [Pg = CO_2Et (a), Ts (b), or COPh (c); 2 mmol] in dry CH_2Cl_2 (10 mL, 0.1 M) at 0–25 °C for 24 h. The reaction mixture was quenched with water and extracted with

 CH_2Cl_2 (3×20 mL). The combined organic layers were washed with dilute HCl (2 mL) and brine, dried with (Na₂SO₄), filtered, and concentrated. Pure products were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Ethyl Allyl-(2-allyl-4-chlorophenyl)carbamate (1aa): Prepared by following the procedure C, method A, and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} = 1708$ (N–C=O), 1644, 1485, 1408, 1297, 1027, 771, 648 cm^{-1.} ¹H NMR (CDCl₃): $\delta = 7.24$ (d, J = 2.0 Hz, 1 H), 7.17 (dd, J = 8.4, 2.0 Hz, 1 H), 7.01 (d, J = 8.4 Hz, 1 H), 5.94–5.84 (m, 2 H, olefinic-*H*), 5.14–5.05 (m, 4 H, olefinic-*H*), 4.37–4.29 (m, 1 H, NC*H*₂), 4.20–4.05 (m, 2 H, OC*H*₂CH₃), 3.86 (dd, J = 13.2, 5.6 Hz, 1 H, NC*H*₂), 3.25 (d, J = 5.6 Hz, 2 H, ArC*H*₂), 1.31–1.12 (m, 3 H, OCH₂CH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 155.3$ (C, N-C=O), 139.8 (C), 138.4 (C), 135.4 (CH), 133.2 (CH), 132.9 (C), 130.0 (CH), 129.9 (CH), 127.0 (CH), 118.4 (CH₂), 117.1 (CH₂), 61.6 (CH₂, OCH₂CH₃), 53.2 (CH₂), 35.1 (CH₂), 14.5 (CH₃, OCH₂CH₃) ppm. MS: *m*/*z* = 280.00 [M + H⁺].

Method B – Synthesis of 1ad: Acetic anhydride (1 mL) was added to the diallyl derivative **1a** (51.75 mg, 0.25 mmol) and the reaction mixture was stirred at 25 °C for 15 h. The reaction mixture was quenched with water and extracted with CH₂Cl₂. The separated organic layer was dried (Na₂SO₄), filtered, and concentrated under reduced pressure. Pure product **1ad** was obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

N-Allyl-*N*-(2-allyl-4-chlorophenyl)acetamide (1ad): Prepared by following procedure C, method B, and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} = 1659$ (N–C=O), 1483, 1385, 1097, 654 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.32$ (s, 1 H, Ar-*H*), 7.23 (dd, J = 8.4, 2.4 Hz, 1 H), 7.01 (d, J = 8.4 Hz, 1 H), 5.89–5.82 (m, 2 H, olefinic-*H*), 5.18–5.10 (m, 3 H, olefinic-*H*), 5.04 (d, J = 16.8 Hz, 1 H, olefinic-*H*), 4.68 (dd, J = 14.4, 5.6 Hz, 1 H, NCH₂), 3.69 (dd, J = 14.0, 7.2 Hz, 1 H, NCH₂), 3.29 (d, J = 6.4 Hz, 2 H, ArCH₂), 1.76 (s, 3 H, COCH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 170.2$ (C, N-C=O), 139.6 (C), 139.5 (C), 134.8 (CH), 134.2 (C), 132.5 (CH), 130.8 (CH), 130.7 (CH), 127.6 (CH), 118.7 (CH₂), 117.8 (CH₂), 51.6 (CH₂), 34.9 (CH₂), 22.4 (CH₃) ppm. MS: *m/z* = 248.10 [M – H⁺].

Method C – Synthesis of 1ae: Trifluoroacetic anhydride (420 mg, 2 mmol) was added to a solution of 1a (207 mg, 1 mmol), Et₃N (101.2 mg, 1 mmol), and 4-dimethylaminopyridine (DMAP; 122.2 mg, 1 mmol) in dry CH_2Cl_2 (5 mL), and the reaction mixture was stirred at 25 °C for 24 h. The reaction mixture was quenched with water and extracted with CH_2Cl_2 (3×20 mL). The combined organic layers were washed with dilute HCl (2 mL) and brine, dried with (Na₂SO₄), filtered, and concentrated. Pure product 1ae was obtained by column chromatography (silica gel, mixture of hexane/ ethyl acetate).

N-Allyl-*N*-(2-allyl-4-chlorophenyl)-2,2,2-trifluoroacetamide (1ae): Prepared by following procedure C, method C, and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} = 1702$ (N–C=O), 1487, 1415, 1211, 925, 680 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.33$ (s, 1 H, Ar-*H*), 7.22 (dd, J =8.4, 2.0 Hz, 1 H), 7.03 (d, J = 8.4 Hz, 1 H), 5.90–5.79 (m, 2 H, olefinic-*H*), 5.24–5.10 (m, 4 H, olefinic-*H*), 4.76 (dd, J = 14.4, 6.0 Hz, 1 H, NC*H*₂), 3.66 (dd, J = 16.8, 8.0 Hz, 1 H, NC*H*₂), 3.29 (t, J = 6.0 Hz, 2 H, ArC*H*₂) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 156.8$ (q, J = 36.0 Hz, C, NCOCF₃), 139.9 (C), 135.5 (C), 135.4 (C), 134.6 (CH), 131.2 (CH), 130.5 (CH), 130.1 (CH), 127.1 (CH), 120.8 (CH₂), 118.2 (CH₂), 116.1 (q, J = 287.0 Hz, C, NCOCF₃), 54.1 (CH₂), 34.5 (CH₂) ppm. MS: *m*/*z* = 304.00 [M + H⁺].

European Journal of Organic Chemistry

Procedure D - RCM/BIRO Reactions in One Pot

Method A: A 10 mL oven-dried round-bottomed flask equipped with a stirring bar was charged with diene **1aa–1ib** (0.5 mmol) and Grubbs' second-generation catalyst H (12.73 mg, 0.015 mmol, 3 mol-%) in dry CH₂Cl₂ (10 mL, 0.05 M) and the reaction mixture was stirred under N₂ at room temperature for 2–5 h. CH₂Cl₂ was distilled off at ambient pressure and the crude reaction mixture was dissolved in dry DMSO (10 mL, 0.05 M) before potassium *tert*butoxide (168.3 mg, 1.5 mmol, 3 equiv.) was added at 0 °C. The reaction mixture was stirred at 25 °C for 1 h. The crude reaction mixture was worked up with water and the aqueous layer was extracted with diethyl ether (2×20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure products **3aa–3ib** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Ethyl (2-Buta-1,3-dienyl-4-chlorophenyl)carbamate (3aa): Prepared by following procedure D, method A, and purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (neat): $\tilde{v}_{max} = 3277$ (N–*H*), 1689 (N–C=O), 1529, 1249, 1065, 659 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.96$ (d, J = 7.2 Hz, 1 H), 7.24 (dd, J = 8.8, 2.4 Hz, 1 H), 7.14 (d, J = 2.0 Hz, 1 H), 6.54 (br. s, 1 H, N-*H*), 6.48–6.38 (m, 2 H, olefinic-*H*), 6.26 (d, J = 9.2 Hz, 1 H, olefinic-*H*), 5.46–5.38 (m, 1 H, olefinic-*H*), 5.27 (d, J = 8.4 Hz, 1 H, olefinic-*H*), 4.20 (q, J = 7.2 Hz, 2 H, OCH₂CH₃), 1.29 (t, J =7.2 Hz, 3 H, OCH₂CH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta =$ 153.4 (C, N-C=O), 135.0 (CH), 134.2 (2× C), 132.2 (CH), 129.4 (CH), 128.2 (CH), 128.0 (C), 124.1 (CH), 121.7 (CH₂), 120.9 (CH), 61.4 (CH₂, OCH₂CH₃), 14.5 (CH₃, OCH₂CH₃) ppm. MS: *m*/*z* = 252.00 [M + H⁺]. C₁₃H₁₄CINO₂ (251.07): calcd. C 62.03, H 5.61, N 5.56; found C 62.12, H 5.55, N 5.61.

Method B: A 10 mL oven-dried round-bottomed flask equipped with a stirring bar was charged with enyne **1jb–1kb** (0.5 mmol) and Grubbs' first-generation catalyst **G** (32.9 mg, 0.04 mmol, 8 mol-%) in dry CH₂Cl₂ (25 mL, 0.02 M) and the reaction mixture was stirred under N₂ at room temperature for 24 h. CH₂Cl₂ was distilled off at ambient pressure and the crude reaction mixture was dissolved in dry DMSO (10 mL, 0.05 M) before potassium *tert*-butoxide (168.3 mg, 1.5 mmol, 3 equiv.) was added at 0 °C. The reaction mixture was stirred at 25 °C for 1 h. The crude reaction mixture was worked up with water and the aqueous layer was extracted with diethyl ether (2 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure products **3jb–3kb** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

4-Methyl-N-[2-(3-methylene-penta-1,4-dienyl)phenyl]benzenesulfonamide (3jb): Prepared by following procedure D, method B, and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} = 3263$ (N–H), 1490, 1332, 1161, 1091, 820, 736 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.61 (d, J = 7.6 Hz, 2 H), 7.46 (d, J = 8.4 Hz, 1 H), 7.22–7.18 (m, 3 H, Ph-H), 7.08 (d, J = 7.2 Hz, 1 H), 7.03 (d, J = 7.2 Hz, 1 H), 6.59 (s, 1 H, N-H), 6.31-6.24 (m, 2 H, olefinic-H), 6.13 (d, J = 12.0 Hz, 1 H, olefinic-H), 5.29 (d, J = 17.6 Hz, 1 H, olefinic-H), 5.12 (d, J = 10.8 Hz, 1 H, olefinic-H), 5.01 (s, 1 H, olefinic-H), 4.72 (s, 1 H, olefinic-H), 2.38 (s, 3 H, Ar-CH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): δ = 143.8 (C), 141.7 (C), 137.5 (CH), 136.6 (C), 133.4 (C), 131.6 (CH), 130.1 (C), 129.6 (CH), 129.5 (2 × CH), 128.2 (CH), 127.2 (2 × CH), 126.9 (CH), 125.2 (CH), 122.7 (CH), 119.9 (CH₂), 115.6 (CH₂), 21.5 $(CH_3, Ar-CH_3)$ ppm. MS: $m/z = 326.20 [M + H^+]$. $C_{19}H_{19}NO_2S$ (325.11): calcd. C 70.12, H 5.88, N 4.30; found C 70.21, H 5.81, N 4.23.

Procedure E – Synthesis of 6af and 6bf: A 25 mL oven-dried roundbottomed flask equipped with a stirring bar was charged with diene **1af–1bf** (0.25 mmol), *p*TSA (0.25 mmol, 47.5 mg) and Grubbs' second-generation catalyst **H** (21.22 mg, 0.025 mmol, 10 mol-%) in dry CH₂Cl₂ (10 mL, 0.02 M) and the reaction mixture was stirred under N₂ at room temperature for 24 h. The crude reaction mixture was worked up with an aqueous solution of NaHCO₃ and the aqueous layer was extracted with CH₂Cl₂ (2×20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure products **6af–6bf** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

7-Chloro-2,5-dihydro-1*H***-benzo**[*b*]**azepine (6af):** Prepared by following procedure E and purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (neat): $\tilde{v}_{max} = 3440$ (N–*H*), 3060, 1502, 1411, 1261, 1143, 804 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.04$ (s, 2 H, Ar-*H*), 6.73 (d, J = 8.4 Hz, 1 H), 5.83–5.80 (m, 1 H, olefinic-*H*), 5.54 (d, J = 10.8 Hz, 1 H, olefinic-*H*), 3.76 (br. s, 2 H, NC*H*₂), 3.44 (br. s, 2 H, ArC*H*₂) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 147.4$ (C), 136.3 (C), 129.0 (CH), 127.2 (CH), 126.9 (CH), 126.6 (C), 125.4 (CH), 121.8 (CH), 48.1 (CH₂), 32.8 (CH₂) ppm. MS: m/z = 180.10 [M + H⁺].

Procedure F - Base-Induced Double-Bond-Isomerization Reactions

Method A – Synthesis of 2af–2fh: A 10 mL oven-dried round-bottomed flask equipped with a stirrer bar was charged with **6af–6fh** (0.2 mmol) and dry DMSO (4 mL, 0.05 M) before potassium *tert*butoxide (67.3 mg, 0.6 mmol, 3.0 equiv.) was added at 0 °C. The reaction mixture was stirred at 25 °C for 1 h. The crude reaction mixture was worked up with water and the aqueous layer was extracted with diethyl ether (2 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure products **2af–2fh** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

7-Chloro-2,3-dihydro-1*H***-benzo**[*b*]azepine (2af): Prepared by following procedure F, method A, and purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (neat): $\tilde{v}_{max} = 3391 (N-H), 2916, 1593, 1566, 1491, 1251, 1089, 767 cm^{-1}.$ ¹H NMR (CDCl₃): $\delta = 7.08$ (d, J = 2.4 Hz, 1 H), 6.94 (dd, J = 8.4, 2.4 Hz, 1 H), 6.54 (d, J = 8.4 Hz, 1 H), 6.25 (d, J = 12.0 Hz, 1 H, olefinic-*H*), 5.96–5.49 (m, 1 H, olefinic-*H*), 4.32 (s, 1 H, N-*H*), 3.30 (t, J = 4.8 Hz, 2 H), 2.57–2.53 (m, 2 H) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 147.3$ (C), 132.3 (CH), 131.2 (CH), 128.8 (CH), 126.9 (CH), 125.4 (C), 123.6 (C), 118.4 (CH), 44.6 (CH₂), 34.7 (CH₂) ppm. MS: m/z = 179.95 [M + H⁺].

Method B – **Synthesis of 2bfa:** A 10 mL oven-dried round-bottomed flask equipped with a stirrer bar was charged with **6bf** (0.2 mmol) and dry DMSO (4 mL, 0.05 M) before potassium *tert*-butoxide (67.3 mg, 0.6 mmol, 3.0 equiv.) was added at 0 °C. After 1 h, allyl bromide (**a**; 48.4 mg, 0.4 mmol, 2 equiv.) was added to the reaction mixture. The reaction mixture was stirred at 25 °C for another 3 h. The crude reaction mixture was worked up with water and the aqueous layer was extracted with diethyl ether (2×20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. Pure product **2bfa** was obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

Method C – Synthesis of 2bfb: A 10 mL oven-dried round-bottomed flask equipped with a stirrer bar was charged with 6bf (0.2 mmol) and dry DMSO (4 mL, 0.05 M) before potassium *tert*butoxide (67.3 mg, 0.6 mmol, 3.0 equiv.) was added at 0 °C. After 1 h, propargyl bromide (b; 47.5 mg, 0.4 mmol, 2 equiv.) was added to the reaction mixture. The reaction mixture was stirred at 25 °C for another 18 h. The crude reaction mixture was worked up with water and the aqueous layer was extracted with diethyl ether $(2 \times 20 \text{ mL})$. The combined organic layers were dried (Na_2SO_4) , filtered, and concentrated. Pure product **2bfa** was obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

1-Prop-2-ynyl-2,3-dihydro-1*H***-benzo**[*b*]**azepine (2bfb):** Prepared by following procedure F, method C, and purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (neat): $\tilde{v}_{max} = 3293$ (C=C–*H*), 2921, 1594, 1495, 1448, 1215, 752, 670 cm^{-1.} ¹H NMR (CDCl₃): $\delta = 7.17$ (d, J = 7.2 Hz, 1 H), 7.15 (t, J = 8.0 Hz, 1 H), 7.01 (d, J = 8.0 Hz, 1 H), 6.86 (t, J = 7.2 Hz, 1 H), 6.40 (d, J = 12.0 Hz, 1 H, olefinic-*H*), 5.96 (td, J = 12.0, 4.4 Hz, 1 H, olefinic-*H*), 4.01 (d, J = 2.0 Hz, 2 H, NCH₂C=C-H), 3.29 (t, J = 5.2 Hz, 2 H), 2.57–2.56 (m, 2 H), 2.27 (t, J = 2.0 Hz, 1 H, NCH₂C=C-*H*) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 149.4$ (C), 133.4 (CH), 130.2 (CH), 130.0 (CH), 127.4 (CH), 126.9 (C), 120.0 (CH), 115.3 (CH), 80.2 (C, NCH₂C=C-H), 71.9 (CH, NCH₂C=C-H), 50.6 (CH₂, NCH₂C=C-H), 42.4 (CH₂), 33.6 (CH₂) ppm. MS: m/z = 184.00 [M + H⁺].

Procedure G – Gold-Catalyzed Cascade Hydroamination and Diels-Alder Reactions

Method A – Synthesis of 4ab and 4eb–4gb: Compounds 3ab and 3eb-3gb (0.1 mmol) were added to mixture of [AuCl(PPh₃)] (2.42 mg, 0.005 mmol, 5 mol-%) and AgOTf (1.28 mg, 0.005 mmol, 5 mol-%) in dry toluene (2 mL, 0.05 M), taken in a sealed glass tube and the mixture is heated at 100 °C under N₂ for 6 to 24 h. The crude reaction mixture was purified by column chromatography (silica gel, mixture of hexane/ethyl acetate). Pure products 4ab and 4eb–4gb were obtained in moderate yields.

6-Chloro-2-methyl-1-(toluene-4-sulfonyl)-1,2-dihydroquinoline (4ab): Prepared by following procedure G, method A, and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{\nu}_{max}$ = 1473, 1345, 1091, 1037, 737, 661 cm $^{-1}$. 1H NMR (CDCl₃): δ = 7.68 (d, J = 8.8 Hz, 1 H), 7.28 (d, J = 8.4 Hz, 2 H), 7.24 (dd, J = 8.4, 2.4 Hz, 1 H), 7.09 (d, J = 8.0 Hz, 2 H), 6.94 (d, J = 2.4 Hz, 1 H), 5.92 (d, J = 9.6 Hz, 1 H, olefinic-H), 5.70 (dd, J = 9.6, 5.6 Hz, 1 H, olefinic-*H*), 4.94 (quintet, J = 6.4 Hz, 1 H, NCH), 2.35 (s, 3 H, Ar-CH₃), 1.16 (d, J = 6.8 Hz, 3 H, CHCH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): δ = 143.5 (C), 136.0 (C), 131.8 (C), 131.1 (C & CH), 129.7 (C), 129.2 (2 × CH), 129.1 (CH), 127.8 (CH), 127.1 (2× CH), 125.9 (CH), 122.7 (CH), 51.0 (CH), 21.5 (CH₃, Ar-CH₃), 19.8 (CH₃) ppm. MS: *m*/*z* = 334.01 [M + H⁺]. C₁₇H₁₆ClNO₂S (333.05): calcd. C 61.16, H 4.83, N 4.20; found C 61.22, H 4.78, N 4.32. HRMS: m/z = 356.0485 [M + Na], calcd. for C₁₇H₁₆NO₂SNa 356.0488.

Method B – Synthesis of 4aa–4ga, 5aa–5ga, and 5ad: Compounds 3aa-3ga and 3ad (0.1 mmol) were added to mixture of [AuCl(PPh₃)] (2.42 mg, 0.005 mmol, 5 mol-%) and AgOTf (1.28 mg, 0.005 mmol, 5 mol-%) in dry toluene (2 mL, 0.05 M), placed in a sealed glass tube, and the mixture was heated at 100 °C under N₂ for 6–24 h. Purification of crude reaction mixtures by column chromatography (silica gel, mixture of hexane/ethyl acetate) gave products **4aa–4ga**, **5aa–5ga**, and **5ad** in moderate to good yields.

Ethyl 6-Chloro-2-methyl-2*H***-quinoline-1-carboxylate (4aa):** Prepared by following procedure G, method B, and purified by column chromatography using EtOAc/hexane and isolated as a liquid. IR (neat): $\tilde{v}_{max} = 1719 \text{ (N-C=O)}, 1671, 1498, 1216, 1043, 732 \text{ cm}^{-1}.$ ¹H NMR (CDCl₃): $\delta = 7.57-7.55 \text{ (m, 1 H)}, 7.18 \text{ (dd, } J = 8.8, 2.8 \text{ Hz}, 1 \text{ H)}, 7.07 \text{ (d, } J = 2.4 \text{ Hz}, 1 \text{ H)}, 6.38 \text{ (d, } J = 9.6 \text{ Hz}, 1 \text{ H}, \text{olefinic-}H), 6.08 \text{ (dd, } J = 9.6, 6.0 \text{ Hz}, 1 \text{ H}, \text{olefinic-}H), 5.13 \text{ (quintet, } J = 6.4 \text{ Hz}, 1 \text{ H}, \text{NCH}), 4.33-4.24 \text{ (m, 2 H, OCH₂CH₃), 1.34 (t, <math>J = 7.2 \text{ Hz}, 3 \text{ Hz}, 1 \text{ H}, \text{OCH}$

H, OCH₂CH₃), 1.12 (d, J = 6.8 Hz, 3 H, CHCH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): $\delta = 154.0$ (C, N-C=O), 132.8 (C), 132.0 (CH), 129.0 (C), 128.4 (C), 127.2 (CH), 125.8 (CH), 125.7 (CH), 123.3 (CH), 62.2 (CH₂, OCH₂CH₃), 48.9 (CH), 18.5 (CH₃), 14.5 (CH₃, OCH₂CH₃) ppm. MS: m/z = 252.25 [M + H⁺]. C₁₃H₁₄ClNO₂ (251.07): calcd. C 62.03, H 5.61, N 5.56; found C 62.13, H 5.58, N 5.65. H R M S: m/z = 274.0611 [M + Na], calcd. for C₁₃H₁₄ClNO₂Na 274.0611.

Ethyl 2-Chloro-6-(5-chloro-2-ethoxycarbonylaminophenyl)-7-methyl-6a,7,8,10a-tetrahydro-6H-phenanthridine-5-carboxylate (5aa): Prepared by following procedure G, method B, and purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (neat): $\tilde{v}_{max} = 1726$ (N–C=O), 1682 (N–C=O), 1481, 1401, 1221, 1053, 739 cm⁻¹. ¹H NMR (CDCl₃): δ = 9.26 (s, 1 H, N-H), 7.69 (br. d, J = 5.2 Hz, 1 H), 7.33 (d, J = 2.0 Hz, 1 H), 7.26 (dd, J =8.8, 2.4 Hz, 1 H), 7.21 (dd, J = 8.8, 2.4 Hz, 1 H), 7.10 (d, J =8.4 Hz, 1 H), 6.46 (d, J = 2.4 Hz, 1 H), 6.14 (br. d, J = 10.4 Hz, 1 H, olefinic-*H*), 6.03–5.99 (m, 1 H, olefinic-*H*), 5.32 (d, *J* = 10.4 Hz, 1 H, NCH), 4.30 (q, J = 7.2 Hz, 2 H, OCH₂CH₃), 4.26–4.13 (m, 2 H, OC H_2 CH₃), 3.15 (d, J = 10.0 Hz, 1 H), 2.15–2.09 (m, 1 H), 2.05-1.95 (m, 1 H), 1.77-1.65 (m, 2 H), 1.38 (t, J = 7.2 Hz, 3 H, OCH_2CH_3), 1.23 (t, J = 7.2 Hz, 3 H, OCH_2CH_3), 0.61 (d, J =6.4 Hz, 3 H, CHCH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): δ = 155.8 (C, N-C=O), 154.6 (C, N-C=O), 139.4 (2 × C), 136.3 (CH), 134.7 (C), 134.6 (C), 131.6 (C), 130.0 (CH), 129.4 (C), 128.2 (CH), 127.4 (CH), 127.1 (CH), 126.5 (CH), 123.4 ($2 \times$ CH), 62.8 (CH₂, OCH₂CH₃), 61.2 (CH₂, OCH₂CH₃), 56.7 (CH), 54.4 (CH), 39.1 (CH), 34.9 (CH₂), 34.5 (CH), 18.8 (CH₃), 14.7 (CH₃, OCH₂CH₃), 14.3 (CH₃, OCH₂CH₃) ppm. MS: $m/z = 503.30 [M + H^+]$. C₂₆H₂₈Cl₂N₂O₄ (502.14): calcd. C 62.03, H 5.61, N 5.56; found C 62.18, H 5.67, N 5.46. HRMS: m/z = 525.1323 [M + Na], calcd. for C₂₆H₂₈Cl₂N₂O₄Na 525.1324.

N-[2-(5-Acetyl-2-chloro-7-methyl-5,6,6a,7,8,10a-hexahydrophenanthridin-6-yl)-4-chlorophenyl]acetamide (5ad): Prepared by following procedure G, method B, and purified by column chromatography using EtOAc/hexane and isolated as a solid. IR (neat): $\tilde{\nu}_{max}$ = 2917, 1692 (N-C=O), 1637, 1603, 1482, 1298, 1038, 737 cm⁻¹. ¹H NMR (CDCl₃): δ = 10.38 (s, 1 H, N-*H*), 7.82 (d, *J* = 8.8 Hz, 1 H), 7.39 (d, J = 1.6 Hz, 1 H), 7.31 (dd, J = 8.8, 2.4 Hz, 1 H), 7.20 (dd, J = 8.8, 2.4 Hz, 1 H), 6.92 (d, J = 8.0 Hz, 1 H), 6.34 (d, J =2.0 Hz, 1 H), 6.13 (d, J = 8.8 Hz, 1 H, olefinic-H), 6.03–5.99 (m, 1 H, olefinic-H), 5.57 (d, J = 8.4 Hz, 1 H, NCH), 3.09 (d, J = 10.8 Hz, 1 H), 2.32 (s, 3 H, COCH₃), 2.16–2.08 (m, 1 H), 2.08 (s, 3 H, COCH₃), 1.97–1.94 (m, 1 H), 1.76–1.65 (m, 2 H), 0.59 (d, J = 6.4 Hz, 3 H, CHCH₃) ppm. ¹³C NMR (CDCl₃, DEPT-135): δ = 171.0 (C, N-C=O), 168.9 (C, N-C=O), 140.8 (C), 135.5 (C), 135.0 (C), 134.6 (C), 133.4 (C), 130.5 (CH), 129.6 (C), 128.3 (CH), 127.3 (CH), 127.1 (CH), 127.0 (CH), 126.4 (CH), 124.2 (CH), 122.9 (CH), 55.7 (CH), 53.8 (CH), 39.2 (CH), 34.8 (CH₂), 34.6 (CH), 24.3 (CH₃, COCH₃), 22.4 (CH₃, COCH₃), 19.0 (CH₃) ppm. MS: $m/z = 443.35 [M + H^+]$. C₂₄H₂₄Cl₂N₂O₂ (442.12): calcd. C 65.02, H 5.46, N 6.32; found C 65.12, H 5.51, N 6.23. HRMS: m/z =465.1112 [M + Na], calcd. for $C_{24}H_{24}Cl_2N_2O_2Na$ 465.1113.

Supporting Information (see footnote on the first page of this article): Experimental procedures, synthesis of starting materials, X-ray crystal structures, and analytical data for all new compounds.

Acknowledgments

We thank the Department of Science and Technology (DST) (New Delhi) for financial support. V. V. N. thanks the Council of Scien-

tific and Industrial Research (CSIR) (New Delhi) for a research fellowship.

- a) H. Ogawa, H. Yamashita, K. Kondo, Y. Yamamura, H. Miyamoto, K. Kan, K. Kitano, M. Tanaka, K. Nakaya, S. Namamura, T. Mori, M. Tominaga, Y. Yabuuchi, *J. Med. Chem.* **1996**, *39*, 3547–3555; b) X. Wang, V. Gattone II, P. C. Harris, V. E. Torres, *J. Am. Soc. Nephrol.* **2005**, *16*, 846–851; c) P. Spiteller, *Chem. Eur. J.* **2008**, *14*, 9100–9110; d) Y. C. Hwang, J. J. Chu, P. L. Yang, W. Chen, M. V. Yates, *Antiviral Res.* **2008**, *77*, 232–236; e) R. J. Pagliero, S. Lusvarghi, A. B. Pierini, R. Brun, M. R. Mazzieri, *Bioorg. Med. Chem.* **2010**, *18*, 142–150.
- [2] For the sequential one-pot reactions, see: a) D. B. Ramachary, M. Kishor, J. Org. Chem. 2007, 72, 5056–5068; b) D. B. Ramachary, K. Ramakumar, V. V. Narayana, J. Org. Chem. 2007, 72, 1458–1463; c) D. B. Ramachary, M. Kishor, Y. V. Reddy, Eur. J. Org. Chem. 2008, 975–998; d) D. B. Ramachary, M. Kishor, Org. Biomol. Chem. 2008, 6, 4176–4187; e) D. B. Ramachary, Y. V. Reddy, J. Org. Chem. 2010, 75, 74–85; f) D. B. Ramachary, S. Jain, Org. Biomol. Chem. 2011, 9, 1277–1300.
- [3] For review articles on RCM reactions, see: a) S. K. Chattopadhyay, S. Karmakar, T. Biswas, K. C. Majumdar, H. Rahman, B. Roy, *Tetrahedron* 2007, 63, 3919–3952; b) A. Michaut, J. Rodriguez, *Angew. Chem. Int. Ed.* 2006, 45, 5740–5750; c) A. Gradillas, J. Perez-Castells, *Angew. Chem. Int. Ed.* 2006, 45, 6086–6101; d) A. Deiters, S. F. Martin, *Chem. Rev.* 2004, 104, 2199–2238; e) M. D. McReynolds, J. M. Dougherty, P. R. Hanson, *Chem. Rev.* 2004, 104, 2239–2258; f) A. Furstner, *Angew. Chem. Int. Ed.* 2000, 39, 3012–3043; g) T. M. Trnka, R. H. Grubbs, *Acc. Chem. Res.* 2001, 34, 18–29.
- [4] CCDC-798519 (for 3ac) and -798520 (for 5aa) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. See the Supporting Information for crystal structures.
- [5] For recent reviews on applications of catalytic hydroamination, see: a) T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, *Chem. Rev.* 2008, 108, 3795–3892; b) K. C. Hultzsch, *Adv. Synth. Catal.* 2005, 347, 367–391; c) K. C. Hultzsch, D. V. Gribkov, F. Hampel, *J. Organomet. Chem.* 2005, 690, 4441–4452; d) S. Hong, T. J. Marks, *Acc. Chem. Res.* 2004, 37, 673–686; e) F. Pohlki, S. Doye, *Chem. Soc. Rev.* 2003, 32, 104–114; f) I. Bytschkov, S. Doye, *Eur. J. Org. Chem.* 2003, 6, 935–946; g) T. E. Muller, M. Beller, *Chem. Rev.* 1998, 98, 675–703.
- [6] a) M. R. Gagné, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 275–294; b) M. R. Gagné, S. P. Nolan, T. Marks, J. Organometallics 1990, 9, 1716–1718; c) M. R. Gagné, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 4108–4109.
- [7] For recent reviews on gold catalysis, see: a) A. S. K. Hashmi, *Chem. Rev.* 2007, 107, 3180–3211; b) D. J. Gorin, F. D. Toste, *Nature* 2007, 446, 395–403; c) Z. Li, C. Brouwer, C. He, *Chem. Rev.* 2008, 108, 3239–3265; d) D. Gorin, B. Sherry, F. D. Toste, *Chem. Rev.* 2008, 108, 3351–3378; for selected examples of gold-catalyzed hydroamination reactions, see: e) J. Zhang, C.-G. Yang, C. He, J. Am. Chem. Soc. 2006, 128, 1798–1799; f) R. L. LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. *Chem. Soc.* 2007, 129, 2452–2453; g) X. Han, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2006, 45, 1747–1749; h) C. F. Bender, R. A. Widenhoefer, Chem. Commun. 2008, 2741–2743; i) E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349–3352.
- [8] For selected examples of gold-catalyzed [4+2] cycloaddition reactions, see: a) T.-M. Teng, A. Das, D. B. Huple, R.-S. Liu, J. Am. Chem. Soc. 2010, 132, 12565–12567; b) J. Barluenga, J. Calleja, A. Mendoza, F. Rodriguez, F. J. Fananas, Chem. Eur. J. 2010, 16, 7110–7112; c) P. Mauleon, R. M. Zeldin, A. Z. Gonzalez, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348–6349; d) I. Alonso, B. Trillo, F. López, S. Montserrat, G. Ujaque, L. Castedo, A. Lledós, J. L. Mascareñas, J. Am. Chem. Soc. 2009,

131, 13020–13030; e) D. Benitez, E. Tkatchouk, A. Z. Gonzalez, W. A. Goddard III, F. D. Toste, *Org. Lett.* **2009**, *11*, 4798– 4801; f) J. Barluenga, M. A. Fernandez-Rodriguez, P. Garcia-Garcia, E. Aguilar, *J. Am. Chem. Soc.* **2008**, *130*, 2764–2765; g) A. Furstner, C. C. Stimson, Angew. Chem. Int. Ed. 2007, 46, 8845–8849.

Received: January 12, 2011 Published Online: May 24, 2011