

CARBOHYDRATE RESEARCH

Carbohydrate Research 299 (1997) 295-299

Note

Synthesis of some new deoxy sugar lactone derivatives

Nada Vukojević^{a,*}, Biljana Perić^b, Tatjana Dramićanin^a, Mirjana Popsavin^b, Dušan Miljković^b

 ^a Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
^b Institute of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3,

21000 Novi Sad, Serbia

Received 9 August 1995; accepted in revised form 18 December 1996

Abstract

The preparation of 3-deoxy- and 2,3-dideoxy-aldonolactone derivatives from the corresponding esters of α , β -unsaturated aldono-1,5-lactones in good to excellent yields by hydrogenation is described. It is shown that, depending on the reaction conditions and the type of catalyst used, the 3-deoxy-aldonolactone or a mixture of 3-deoxy- and 2,3-dideoxy-aldonolactones is obtained. © 1997 Elsevier Science Ltd.

Keywords: Deoxy sugar; Lactone; Tosylation; Hydrogenation

Deoxy sugar lactones represent convenient key intermediates in the synthesis of deoxy sugars which are important because of their biological activities [1].

The synthesis of a number of 3-deoxy- and 2,3-dideoxy-aldonolactones has already been described [2-6]. We now report a rational method for the preparation of 4-O-acetyl-3-deoxy-2,6-di-O-tosyl-D*arabino*-hexono-1,5-lactone [7] (5), or a mixture of 5 and the 2,3-dideoxy-D-*erythro*-hexono-1,5-lactone derivative **6** [7] from D-glucono-1,5-lactone (1) (Scheme 1). These compounds can be used for the preparation of 3-deoxy sugars, which do not occur naturally [8].

The conversion of D-glucono-1,5-lactone (1) into the corresponding α , β -unsaturated lactones by benzoylation [2] or by acetylation [9] in pyridine has

already been investigated. To our knowledge the application of the tosylation reaction of 1 for the same purpose has not been fully described [10]. Selective mono-O-tosylation of D-ribono-1,4-lactone gave a mixture of 5-O-tosyl-, 2-O-tosyl-, and 2,5-di-O-tosyl-D-ribono-1,4-lactone [11]. The ditosylation of D-aldono-1,4-lactones afforded 2,5-ditosylates (pentonolactones) or 2,6-ditosylates (hexonolactones) [10] as main products. In a previous communication [7] we reported on the tosylation of 1, in which a mixture of the saturated 2,6-di-O-tosyl and unsaturated 2,6-di-O-tosyl lactones was obtained. However, we found that tosylation of 1 [12] followed by acetylation in a 'one-pot' procedure led to the formation of a mixture of α , β -unsaturated and saturated lactones (2 and 3, respectively), in which the product 2 was dominant. Thus, treatment of 1 with 3 mol equiv of

^{*} Corresponding author.

^{0008-6215/97/\$17.00 © 1997} Elsevier Science Ltd. All rights reserved. *PII* \$0008-6215(97)00014-1

p-toluenesulfonyl chloride in dry pyridine at -10 °C for 24 h, and then at room temperature for 1 h, followed by acetylation afforded a mixture of 4-Oacetyl-3-deoxy-2,6-di-O-p-toluenesulfonyl-D-erythrohex-2-enono-1,5-lactone (2) and 2,3,4-tri-O-acetyl-6-O-p-toluenesulfonyl-D-glucono-1,5-lactone (3) in the ratio 1.7:1. However, when the reaction time of tosylation at -10 °C was prolonged to 168 h (and then at room temperature for 1 h) followed by acetylation, a mixture of compound 2 and 3-deoxy-2,4,6tri-O-p-toluenesulfonyl-D-erythro-hex-2-enono-1,5lactone (4) was obtained in the ratio of 3:1. Separation of the mixture of 2 and 3 as well as that of 2 and 4 was achieved by crystallization from methanol, yielding chromatographically pure 2 in yields of 40 and 70%, respectively. A further amount of 2 (8%) was obtained by chromatography on silica gel of the mother liquor from the first experiment. The minor products 3 and 4 were isolated by column chromatography on silica gel in the yields 28 and 19%, respectively.

The main product 2 was used for the synthesis of 3-deoxy- and 2,3-dideoxy-aldonolactone derivatives by catalytic hydrogenation [2]. Depending on the reaction conditions and the type of catalyst used, compound 5 or a mixture of 5 and 6 was obtained. Thus, stereoselective catalytic hydrogenation of 2 in the presence of 5% Pd--C in EtOAc at 0 °C for 4 h gave crystalline 4-O-acetyl-3-deoxy-2,6-di-O-p-toluenesulfonyl-D-arabino-hexono-1,5-lactone (5) in

a yield of 93%. The stereoselectivity may be explained by considering that the enono-1,5-lactone exists in the ${}^{2}H_{0}$ conformation (7), in which the bulky exocyclic group has a quasi-axial orientation preventing attack from above the ring. The same consideration has been reported for 2,4,6-tri-O-acetyl-3-deoxy-D-erythro-hex-2-enono-1,5-lactone [9,13], 2,4-di-Oacetyl-3-deoxy-D-glycero-pent-2-enono-1,5-lactone [13], and 2,4,6-tri-O-benzoyl-3-deoxy-D-erythro-hex-2-enono-1,5-lactone [2]. On the other hand, the 'H NMR spectrum of 5 showed $J_{2,3}$ and $J_{2,3'}$ values of 8.25 and 10.70 Hz, which suggested a distorted-boat conformation (8) for this compound. Boat and halfchair conformations are compatible with the planar lactone group and have been proposed for other 1,5-lactones [14,15] (Scheme 2). When hydrogenation was carried out with 10% Pd-C at room temperature for 15 h, a mixture of 5 and the 2,3-dideoxy-Derythro-hexono-1,5-lactone 6 and a mixture of polar products were obtained. The mixture of 5 and 6 was separated by chromatography on silica gel in 13 and 8% yields, respectively. The mixture of polar products could not be separated by chromatography. It was reacetylated using acetic anhydride in pyridine at room temperature for 24 h, whereupon further amounts of 5 and 6 were obtained. The formation of polar products indicated that the hydrogenation of 2 was accompanied by loss of the acetyl group at O-4. Formation of 6 indicated that hydrogenation of 2 was accompanied by hydrogenolysis of the C-2-O bond. It was assumed that *p*-toluenesulfonic acid thus liberated effected hydrolysis of the acetyl group at O-4. However, the tritosylate 4 was unaffected under the same reaction conditions. A possible reason that the hydrogenation did not take place is due to a steric effect of the bulky tosyloxy group at C-4. The products 2-6 were characterized by NMR data (Table 1) and mass spectra, as well as $[\alpha]_D$ values.

The δ -lactone structures of compounds **2–6** are confirmed by the corresponding mass spectra. Thus, compound **6** shows the characteristic signals at m/z 157 and 97, corresponding to δ -lactone structures [6].

Table 1 NMR data for 2	9-									
Compound	^T H(8 in ppm,	J in Hz)								
	H-2	H-2′	H-3	H-3′	H-4	H-5	H-6	H-6′	Ac	ArMe
2			6.60d $J_{3,4}$ 3.94	1	5.60dd $J_{4.3}$ 3.94 $J_{4.5}$ 6.40	4.65m	$\begin{array}{c} 4.24 \mathrm{dd} \\ J_{6,6}^{\prime} & 11.80 \\ J_{6,5} & 6.40 \end{array}$	$\frac{4.15 \text{dd}}{J_{6,5}} \frac{1.13 \text{dd}}{11.80}$	2.10s	2.50s
3	5.15d J _{2.3} 8.6	I	5.7t $J_{3.4}$ 9.0	I	5.25t J _{4.5} 8.7	4.10m	3.95dd $J_{6.6'}$ 12.60 $J_{6.5}$ 3.60	3.90dd $J_{6,6'}$ 12.60 $J_{6',5}$ 2.90	2.10s	2.10s
4	I	I	6.45d J _{3,4} 3.95	I	5.29q J _{4.5} 6.3	4.55 m $J_{5,4}$ 6.3	4.03 dd $J_{6.6}^{-6.6}$ 12.30 $J_{6.5}^{-6.4}$ 4.13	3.80dd $J_{6,6'}$ 12.30 $J_{6',5}$ 4.57	I	2.45s 2.46s 2.50s
Ś	5.25dd $J_{2,3}$ 8.25 $J_{2,3'}$ 10.70	I	2.45m	2.50m	5.10m	4.55m	${A.30}$ dd ${J_{6.6}}^{\prime}$ 12.00 ${J_{6.5}}^{\prime}$ 4.00	$\begin{array}{c} 4.18 \text{dd} \\ J_{6,6'} 12.00 \\ J_{6',5} 3.00 \end{array}$	2.10s	2.55s 2.60s
9	2.10m	2.15m	2.45m	2.55m	5.05m	4.60dd	4.25dd $J_{6.6'}$ 12.00 $J_{6.5}$ 3.20	${4.10}{d_{6,6'}}$ 12.00 ${J_{6,6'}}$ 12.00 ${J_{6',5}}$ 4.30	2.00s	2.44s
Compound	¹³ C (δ in ppm)									
	C-1	C-2	C-3	C-4	C-5	C-6	ArMe	COMe	COMe	
2	156.17	137.02	129.35	76.68	63.64	66.13	21.73 21.63	20.46	169.24	
£	167.34	71.22	70.37	69.15	70.14	67.81	21.52	20.26 20.35 20.51	169.66 169.67 170.23	
4	155.57	137.4	130.05	76.78	68.65	66.56	21.70 21.73 21.80	I	I	
LO.	164.90	74.40	31.70	76.50	69.10	67.40	21.65 21.60	20.70	169.40	
9	175.70	23.60	27.60	76.93	70.80	66.98	21.50	20.50	169.60	

297

1. Experimental

General methods.—Melting points (uncorrected) were determined on a Büchi SMP-20 apparatus. Optical rotations were measured on an automatic polarimeter Polamet A (Karl Zeiss, Jena). NMR spectra were recorded on a Bruker AC 250 E instrument for solns in CDCl₃ and chemical shifts are expressed in ppm, downfield to Me₄Si. TLC was performed on DC Alufolien Kieselgel 60 F (Merck), while column chromatography was carried out using Kieselgel 60 (0.063–0.2 mm; Merck). Mass spectra were obtained with an A.E.I. MS9 mass spectrometer (the first number denotes the m/z value, while ion abundances are given in parentheses).

4-O-Acetyl-3-deoxy-2,6-di-O-p-toluenesulfonyl-Derythro-hex-2-enono-1,5-lactone (2) and 2,3,4-tri-Oacetyl-6-O-p-toluenesulfonyl-D-glucono-1,5-lactone (3).—D-Glucono-1,5-lactone (1) (3 g, 16.85 mmol) was dissolved in anhyd pyridine (60 mL) at room temperature. p-Toluenesulfonyl chloride (9.63 g, 50.55 mmol) was added while stirring during 5 min. The mixture was left at -10 °C for 24 h, then at room temperature for 1 h. Acetic anhydride (20 mL) was added, and the mixture was stirred at room temperature for 1 h. The reaction mixture was then poured onto crushed ice (75 g), acidified with 6 M HCl to pH 2, and extracted with CH_2Cl_2 (3 × 50 mL). The combined extracts were washed with water, dried (Na_2SO_4) , and concd. The syrupy residue was crystallized from MeOH to give chromatographically pure **2** (3.42 g, 40%): mp 135 °C; $[\alpha]_D + 60.5^\circ$ (*c* 0.99, CHCl₃); IR (KBr): ν 1770–1760 (α , β -unsaturated 1,5-lactone and acetate C=O), 1650 cm^{-1} (C=C-C=O). Mass spectrum: m/z 355 (55), 269 (10), 173 (15), 155 (100), 127 (15), 91 (95). Anal. Calcd for C₂₂H₂₂O₁₀S₂: C, 51.76; H, 4.34; S, 12.56. Found: C, 51.59; H, 4.48; S, 12.22.

The mother liquor was concd and purified by chromatography on silica gel (15 g) with 19:1 benzene-EtOAc to give an additional amount of **2** (0.68 g, 8%); total yield, 4.1 g (47.8%). Further elution with 3:1 benzene-EtOAc afforded **3** as a yellow syrup. An analytical sample of **3** was obtained by crystallization from 10:7 EtOAc-*n*-hexane: 2.16 g (28%); mp 89 °C; $[\alpha]_D$ + 161.9° (*c* 0.36, CHCl₃). Mass spectrum: *m*/*z* 459 (M⁺ + 1, 25), 287 (58), 245 (45), 215 (70), 172 (58), 155 (65), 91 (72), 69 (22), 43 (100). Anal. Calcd for C₁₉H₂₂O₁₁S: C, 49.78; H, 4.84; S, 6.99. Found: C, 49.54; H, 4.85; S, 7.12.

4-O-Acetyl-3-deoxy-2,6-di-O-p-toluenesulfonyl-Derythro-hex-2-enono-1,5-lactone (2) and 3-deoxy-

2,4,6-tri-O-p-toluenesulfonyl-D-erythro-hex-2-enono-1,5-lactone (4).—To a soln of D-glucono-1,5-lactone (1) (3 g, 16.85 mmol) in anhyd pyridine (60 mL) was added p-toluenesulfonyl chloride (9.63 g, 50.55 mmol) while stirring during 5 min. The mixture was left at -10 °C for 168 h, then at room temperature for 1 h. Acetic anhydride (20 mL) was added, and the mixture was stirred at room temperature for 1 h. Workup, as described above, gave pure 2 (6.05 g, 70.3%). Compound 4, obtained from the syrupy mother liquor (2.01 g, 19%) by chromatography on silica gel with 9:1 benzene-EtOAc, had mp 121 °C; $[\alpha]_{D}$ - 5.9° (c 0.34, CHCl₃). Mass spectrum of 4: m/z 450 (M⁺ – TsOH), 326 (55), 262 (80), 155 (90), 107 (40), 65 (55), 91 (100). Anal. (for 4) Calcd for C₂₇H₂₆O₁₁S₃: C, 52.08; H, 4.21; S, 15.45. Found: C, 52.39; H, 4.04; S, 15.31.

4-O-Acetyl-3-deoxy-2,6-di-O-p-toluenesulfonyl-Darabino-hexono-1,5-lactone (5).—A soln of 2 (1 g, 1.96 mmol) in EtOAc (60 mL) was hydrogenated over 5% Pd-C (0.125 g) at atmospheric pressure, at 0 °C during 4 h. The filtered soln was evaporated in vacuo and the residue crystallized from 2:1 CH₂Cl₂*n*-hexane to give pure 5 (0.93 g, 93%): mp 172 °C; $[\alpha]_D$ + 33.4° (*c* 0.066, CH₂Cl₂). Mass spectrum: *m/z* 355 (55), 172 (12), 155 (87), 127 (17), 91 (100), 43 (58). Anal. Calcd for C₂₂H₂₄O₁₀S₂: C, 51.55; H, 4.72; S, 12.51. Found: C, 51.79; H, 4.53; S, 12.37.

4-O-Acetyl-3-deoxy-2,6-di-O-p-toluenesulfonyl-Darabino-hexono-1,5-lactone (5) and 4-O-acetyl-2,3dideoxy-6-O-p-toluenesulfonyl-D-erythro-hexono-1,5lactone (6).—A stirred soln of 2 (1 g, 1.96 mmol) in EtOAc (10 mL) was hydrogenated over 10% Pd-C (0.6 g) at atmospheric pressure, at room temperature for 15 h. The mixture was then filtered and evaporated. Column chromatography (9:1 benzene-EtOAc) of the syrupy residue gave pure 5 (0.13 g, 13%) and 6 (0.053 g, 8%), as an oil. To a mixture of polar products (0.7 g) in anhyd pyridine (10 mL) was added Ac₂O (5 mL). The mixture was stirred at room temperature for 24 h, then poured onto ice (30 g), acidified with 6 M HCl to pH 1, and extracted with CHCl₃ $(3 \times 15 \text{ mL})$. The combined extracts were washed with water, dried (Na_2SO_4) , and concd. Column chromatography of the syrupy residue gave pure 5 (0.45 g, 45%) and 6 (0.08 g, 12%). Total yields of 5 and 6 were 0.58 g (58%) and 0.13 g (20%), respectively. Mass spectrum of 6: m/z 342 (M⁺, 10), 298 (10), 220 (15), 171 (37), 157 (19), 155 (100), 97 (37), 43 (11). Anal. (for 6) Calcd for $C_{15}H_{18}O_7S$: C, 52.62; H, 5.30; S, 9.36. Found: C, 52.59; H, 5.31; S, 9.41.

Acknowledgements

This work was supported by the Serbian Ministry of Science and Technology.

References

- O. Uchikawa, N. Okukado, T. Sakata, K. Arase, and K. Terada, *Bull. Chem. Soc. Jpn.*, 61 (1988) 2025– 2030.
- [2] R.M. de Lederkremer, M.I. Litter, and L.F. Sala, *Carbohydr. Res.*, 36 (1974) 185-187.
- [3] I. Lundt and C. Pedersen, Synthesis, (1986) 1052– 1054.
- [4] J. Katsuki and J. Inanaga, *Tetrahedron Lett.*, 32 (1991) 4963–4964.
- [5] J. Inanaga, J. Katsuki, and M. Yamaguchi, *Chem. Lett.*, (1991) 1025–1026.
- [6] M. Chmielewski, Tetrahedron, 36 (1980) 2345-2352.

- [7] N. Vukojević, D. Miljković, B. Perić, and J. Harangi, *Abstracts of Papers*, Eurocarb V, Prague, Czech Republic, August 1989, A.158.
- [8] S. Hanessian, Adv. Carbohydr. Chem., 21 (1966) 143-207.
- [9] C.R. Nelson and J.S. Gratzl, Carbohydr. Res., 60 (1978) 267–273.
- [10] J. Lundt and R. Madsen, Synthesis, (1992) 1129-1132.
- [11] H.R. Pfaendler and F.K. Maier, *Liebigs Ann. Chem.*, (1989) 691-693.
- [12] N. Vukojević, B. Perić, and D. Miljković, *Abstracts of Papers*, Eurocarb VI, Edinburgh, UK, September 1991, B.122.
- [13] D.M. Mackie and A.S. Perlin, Carbohydr. Res., 24 (1972) 67-85.
- [14] K.K. Cheung, K.H. Overton, and G.A. Sim, *Chem. Commun.*, (1965) 634–635.
- [15] R.C. Sheppard and S. Turner, *Chem. Commun.*, (1968) 77–78.