Permethylation for Mass Spectrometry: Rearrangements of Ester Linkages and Use of Potassium *t*-Butoxide

J. EAGLES, W. M. LAIRD, R. SELF and R. L. M. SYNGE

Agricultural Research Council's Food Research Institute, Colney Lane, Norwich NOR 70F, England

(Received 31 October 1973)

Abstract—Thirteen selected compounds were permethylated with potassium *t*-butoxide in dimethyl sulphoxide and methyl iodide, a simpler procedure than those using sodium hydride but equally effective. From mass spectrometric study of the products, it emerged that carboxylic esters of methanol and of *o*-diphenols were at least partially rearranged, whereas those of benzyl alcohol and of a monophenol, as well as fully acylated carbohydrate-like substances, were largely not. Some anomalies of *C*-methylation and *N*-methylation were encountered.

Introduction

VOLATILITY is the limiting property of all samples submitted for mass spectrometry, except perhaps with the latest field desorption techniques. Volatile derivatives can be prepared which render many involatile substances of biological interest amenable to mass spectrometry and combined gas chromatographymass spectrometry. Derivatization methods, especially with isotopic labelling reagents, can also yield information about the number and nature of 'functional' groups present. The blocking of these functional groups increases chemical stability and prevents artefactual intermolecular reactions at the rather high temperatures which have to be used. Direct permethylation can be used in such classes as the carbohydrates or flavonoid glycosides,^{1,2} but a preliminary acylation is necessary with compounds having basic functions, to prevent formation of nonvolatile quaternary ammonium salts. Acetylation has been used as a preliminary to methylation in the highly successful peptide sequencing studies initiated by Lederer and colleagues; in nearly all this work N-acetylation has been performed under conditions which avoid O-acetylation of hydroxyl groups, etc. However, in particular cases, preliminary O-acetylation may turn out to be useful.

For mass spectrometric study of polyphenolic compounds, initial O-acetylation is often the preferred approach³ and with quinones, useful stabilization may be achieved by reductive acetylation.⁴⁻⁶

As an approach to the study of quinone-amine coupling reactions (for a review on biological significance see Lit.⁷) we planned to stabilize reaction products by acetylation and then in suitable cases to permethylate these acetyl derivatives, with a view to enhancing volatility for g.c. and m.s. work, to clarifying the m.s. fragmentation pattern at amide bonds etc. and to manifesting the presence of various functional groups.

Rearrangement by migration of carboxylic O-acyl groups, on permethylation of carbohydrate derivatives,

has long been known, so it was not surprising to find that methyl esters of pyrrolidonecarboxylic acid and of methylated ascorbalamic acid were rearranged during perdeuteriomethylation to CD_3 esters.⁸ As many of the natural products in which we are interested (e.g. chlorogenic acid) themselves contain ester linkages, such rearrangements could cause loss of structural information. We therefore decided to look at the behaviour of ester linkages of varied types, with a view to assessing the range of applicability of this approach.

In most of the more recent studies involving permethylation of peptides, sodium hydride (dissolved in dimethyl sulphoxide, N,N-dimethylformamide or N,Ndimethylacetamide) has been used. Dr W. M. Horspool and Professor Lord Tedder suggested to us that potassium t-butoxide might prove a useful reagent. It has not so far been much used for N- or O-alkylations.⁹ It is more readily and more safely^{10,11} brought into solution and, as shown below, effects methylation at most of the expected sites.

Experimental

The substances studied are listed in Table 1 with structural formulae. Compounds 7 and 11 were commercial preparations. Of those prepared by published methods (references in Table 1), 1 was a gift from Dr E. Haslam and 10 from Mr E. I. Mbadiwe, who also prepared 13 by acetylation of caffeoylputrescine in acetic anhydride-pyridine with subsequent water treatment.*

L-3-Chloroalanine benzyl ester hydrochloride (15)

L-Serine benzyl ester benzenesulphonate, a gift from Professor G. Fölsch, was converted to the hydrochloride (14).¹² This (2.08 g) in freshly distilled acetyl chloride (20 ml) was treated at +4 °C with phosphorus pentachloride (2.16 g) added in three portions with vigorous shaking, which was continued for 30 min at room temperature. The resulting solid (15) was filtered * E. I. Mbadiwe, unpublished work. off, washed with a little acetyl chloride and then with light petroleum (yield, 1.61 g). M.p. (uncorr.) 134 to 5 °C (decomp.), $[\alpha]_D^{2.5.8^{\circ}C} - 41.3^{\circ}$ (*C*, 3.3 in water). (Found (Pascher, Bonn): C, 47.9; H, 5.32; Cl, 27.6; N, 5.44; O, 13.1. C₁₀ H₁₂ Cl NO₂, HCl requires C, 48.0; H, 5.24; Cl, 28.3; N, 5.60; O, 12.8 %). Szekerke¹³ prepared the racemic compound, using chloroform as the reaction medium. In this work dissolution in chloroform was poor; acetyl chloride¹⁴ proved a better medium.

N-Benzyloxycarbonyl-3-chloro-L-alanine benzyl ester (6)

15 (1.26 g) was carbobenzoxylated in water-chloroform¹⁵ to give crude product (1.22 g). Recrystallized from ethanol, 6 had m.p. (uncorr.) 90 °C, $[\alpha]_D^{27 °C}$ + 13.5° (C, 3.3 in chloroform). (Found (Pascher, Bonn): C, 62.4; H, 5.24; Cl, 10.1; N, 3.89; O, 18.2. C₁₈H₁₈ClNO₄ requires C, 62.2; H, 5.22; Cl, 10.2; N, 4.03; O, 18.4%).

N^1 -Acetyl-DL-5-(p-acetoxyphenyl)hydantoin (9)

8 (127 mg) was dissolved in A.R. pyridine (2 ml) and acetic anhydride (2 ml), and kept overnight at room temperature. Excess water was added and the mixture repeatedly evaporated with water *in vacuo* below 40 °C until pyridine could no longer be smelt. The yield was 188 mg of crystals which, after recrystallization from aqueous ethanol, had m.p. (uncorr.) 210 to 2 °C. (Found (Pascher, Bonn): C, 56.21; H, 4.44; N, 10.11; O, 29.28. $C_{1.3}H_{1.2}N_2O_5$ requires C, 56.6; H, 4.38; N, 10.16; O, 29.0%). ¹H n.m.r. (100 MHz in deuteriodimethyl sulphoxide) showed: τ (relative to TMS): 7.80 (S, 3H); 7.60 (S, 3H); 4.55 (S, 1H); 2.91 and 2.66 (ABq, $J_{AB} = 8.5$ Hz, 4H).

Our evidence for the (expected) acetylation at N - 1 rather than N - 3 is that the product of permethylation (see Tables 1 and 2), on alkaline hydrolysis, gave on ion-exchange chromatography a peak in the position of 2-(*p*-hydroxyphenyl)glycine, ¹⁶ indicating that methy-

lation had occurred at N-3 rather than at N-1 or C-5 (see also Discussion).

Permethylation

Up to 5 mg of the material to be methylated was dissolved in 3 drops of dry dimethyl sulphoxide. To this was added 1 ml of a 5.6 % (w/v) solution of potassium *t*-butoxide (Phase Separations Ltd, Queensferry, Flintshire) in the same solvent (prepared by heating to 70 °C) and then methyl iodide (0.1 ml). The mixture was kept for 1 h at room temperature. 1 M Acetic acid (1 ml) was then added and the mixture extracted with chloroform (10 ml). The chloroform phase was washed 4 times with equal volumes of water and then evaporated to dryness *in vacuo*. The residues were transferred for m.s. in methanol or methylene dichloride. No further attempt was made to fractionate the reaction products, in the hope that the m.s. would reveal minor as well as major reactions.

Mass spectrometry

Low resolution mass spectra were obtained on a MS-902 mass spectrometer (A. E. I. Ltd, Manchester), using the direct insertion probe, a source temperature of 200 °C and an ionization energy of 70 eV.

Results

The reactions studied are set out in Table 1, with summarized interpretations and with references to relevant literature. The complete mass spectra of compounds 1 to 15, where novel, have been deposited at the Mass Spectral Data Centre, Aldermaston, Berkshire, England. Summarized mass spectra of some of the initial compounds and permethylation products are in Table 2. Several of the latter indicate the presence of more than one compound. The detailed spectra of

TABLE 1. Mass spectrometric study of permethylation reactions

						I	Permethylation products		
No.	Compound	Formula	Lit. refs. Preparation M.s.		Δ Ac groups	Δ Me groups	Interpretation	Lit. ref Preparation	
1 1.	3,4,5-Tetra-O-acetyl-10-quinic acid	CHOAc-CH ₂ CHOAc CHOAc-CH ₂ COOH	25	cf. 26	0	+1	Conversion to Me ester	_	
	^l -Acetyl-1.3,4,6-tetra-O-acetyl-2-amino- -desoxy-β-D-glucopyranose	CH2OAc CH-O CHOAc CHOAc CHOAc-CHNHAc	27	28, cf. 45	0	0	No reaction	27	28
	Aethyl N-acetyl-3.4.6-tri-O-methyl-2- mino-2-desoxy-β-D-glucoside	сн ₂ осн, сно сносн, сносн, сносн,-снлнас	29	30,31	0	+1	<i>N</i> -Me derivative formed	32,33,41	33,41

					Permethylation products								
No.	Compound		Formula	Lit. Preparation		Δ Ac groups	Δ Me groups	Interpretation	Lit. r Preparatio				
4 N	i ⁶ -Acetyl-2',3',5'-tri-O-acetylcyt	idine	NHAc N ^C CH H CH ₂ OAc CH CH CH CHOAc CHOAc CHOAc	34		0	+ 1	N ⁶ -Me derivative formed ⁶	cf. 17				
	Pyrrolidonecarboxylic acid ethyl ester*		H2C CH2 I I OC CHCOOCH3 NH	8	8	_	+]ª	N-CD3 derivative formed -COOCH3COOCD3		8			
	•Benzyloxycarbonyl-3-chloro-L enzyl ester	-alanine	CH2CI				+ 1	N-Me derivative formed : HCI eliminated to give 2-aminoacrylic acid residue ⁸					
ÐI	L-5-Phenylhydantoin		HN~CO CH 1 OC NH		18,19,20	8877	+ 3	1,3,5-Trimethyl derivative formed*	35	-			
U	1-5-(p-Hydroxyphenyl)hydanto	in HO	-CO CH I OC NH	16	cf. 16		+ 4	S-(p-Methoxyphenyl)-1.3. 5-trimethylhydantoin formed ^b					
	/*-Acetyl-DL-5-(p-acetoxypheny ydantoin]) AcO	AcN~CO CH i OC~NH			0	+ 1	N ³ -Me derivative formed ⁹					
0	, 0'-Dia cetylcaffeic acid	A AcO	сОСНСНСООН	36		0. ~ 1 2	+ 1, + 2, + 3	Methyl esters formed with partial deacetylative methylation of both phenolic groups; partial trans $\rightarrow cis$ isomerization		cf. 2			
С	'hlorogenic acid	но	снон-сн ₁ он снон с - снсксоосн—сн ₂ соо		_		+6(+7)	Methyl ester of O- pentamethyl derivative formed (also slight C-methylation)	37.38				
2 P	Penta-acetylchlorogenic acid	AcO	CHOAc-CH ₂ CHOAc CHOAc CHCHOOCH-CH ₂ CC	Ас 39 ООН		0 to - 5	+ i to + 7	Methyl ester formed with slight accompanying C-methylation; deacetyla tive methylation ^b					
3Т	etra-acetylcaffeoylputrescine	AcO AcO	Ac I ← CHCHCON(CH₂)₄NHA¢	3.21°	21	- 3	+ 4	<i>N-{0.0'-</i> Dimethylcaffeoy <i>N'-</i> acetyl- <i>N.N'-</i> dimethyl- putrescine formed ⁸		_			
		AcO AcO	OR → CHCHCONH(CH2)4N(Ac)2										

TABLE 1. (continued)

Perdeuteriomethylation.
 ^b See Discussion.
 ^c E. I. Mbadiwe, unpublished work.

I m/e 138 156 198 111 110 153 180 139 240 171 360 IP m/e 153 111 152 171 170 212 213 195 57 110 374 Rel.int. 100 77 67 40 39 34 30 29 17 15 4 m/e 139 259 97 152 69 174 115 126 168 207 425 Rel.int. 100 69 65 32 28 23 20 19 15 14 30 6 m/e 91 107 92 65 108 79 39 77 51 89 347 Rel.int. 100 16 8 8 5 4 4 4 3 2 00 7 m/e 100 107					(P				,			
IP m/e 153 111 152 171 170 212 213 195 57 110 374 m/e 139 97 193 259 112 154 69 82 127 157 411 0.0 P m/e 139 97 193 259 122 69 174 115 126 168 207 425 Rel. int. 100 69 65 32 28 23 20 19 15 14 30 6P (mportant ions) 326 282 234 190 158 91 7 m/e 176 100 107 92 65 39 61 18 77 51 18 61 100 176 100 176 100 177 18 17 11 132 218 119 132 218 8 m/e 100 67 <	1	,											360
Rel. int. 100 77 67 40 39 34 30 29 17 15 4 m/e 139 97 193 259 112 154 69 85 127 157 411 8.el. int. 100 84 54 44 44 43 37 26 15 13 0.3 4P m/e 139 259 97 152 69 174 115 126 168 207 425 Rel. int. 100 69 65 32 28 23 20 19 15 14 30 69 (Important ions) 326 282 234 190 158 91 119 132 218 66 204 77 91 51 148 177 50 176 180 177 250 116 119 132 218 210 120 121 120 120 120 120 120 120 121 100 132 121		Rel. int.	100										
	1P	,											374
Rel. int. 100 84 54 44 44 43 37 26 15 13 0.3 dP m/e 139 259 97 152 69 174 115 126 168 207 425 Rel. int. 100 69 65 32 28 23 20 19 15 14 30 6P (mportant ions 326 282 234 190 158 91 91 119 132 218 66 100 77 $m'e$ 176 104 105 133 77 78 51 148 177 50 176 100 172 218 56 204 77 91 51 119 132 218 72 24 20 20 9 8 8 7 270 8 8 7 271 24 20 20 9 8 8 7 272 28 218 100 7 7 6 55 21 15 13		Rel. int.	100	77		40	39	34		29	17	15	
4P m/e 139 259 97 152 69 174 115 126 168 207 425 6 m/e 91 107 92 65 108 79 39 77 51 89 347 6P (mportantions) 326 282 234 190 158 91) 77 51 89 76 100 167 176 104 105 133 77 78 51 148 177 50 176 7 m/e 176 104 105 133 77 78 51 148 177 50 176 100 182 218 224 20 20 9 8 8 7 27.0 18 119 132 218 218 218 218 216 161 163 92 93 94 192 25 120 161 110 7 6 55 <td>4</td> <td></td>	4												
Rel. int. 100 69 65 32 28 23 20 19 15 14 30 6 m/e 91 107 92 65 108 79 39 77 51 89 347 6P (Important ions) 326 282 234 190 158 91) 7 m/e 176 104 105 133 77 78 51 148 177 50 176 7m/e 203 118 218 56 204 77 91 51 149 132 218 8 m/e 203 118 218 56 204 77 91 51 149 33 270 8 m/e 120 63 91 164 163 92 93 94 192 8 m/e 122 133 14 100 7 7 6 55.		Rel. int.	100	84	54	44	44	43	37	26	15	13	0.3
6 m/e 91 107 92 65 108 79 39 77 51 89 347 6P (Important ions) 326 282 234 190 158 91) 7 m/e 176 104 105 133 77 78 51 148 177 50 176 70 m/e 176 104 105 133 77 78 51 148 177 50 176 70 m/e 100 67 27 24 20 20 9 8 8 6 100 8 m/e 120 121 192 65 39 164 163 92 93 94 192 8 m/e 120 121 192 65 234 28 13 11 10 77 76 6 55 89 m/e 192 233 148 248 56 234 28 13 11 10 79 28	4 P	m/e	139	259		152	69	174			168	207	425
Rel. int. 100 16 8 8 5 4 4 4 3 2 0.01 6P (Important ions) 326 282 234 190 158 91) 7 m/e 176 104 005 133 77 78 51 148 77 50 176 70 m/e 100 97 79 37 18 17 15 8 8 6 100 70 m/e 100 67 27 24 20 20 9 8 8 7 27.0 8 m/e 120 121 192 65 39 164 163 92 93 94 192 8 m/e 120 121 192 233 148 26 231 13 10 7 6 235 276 8 m/e 100 84 57 39		Rel. int.	100	69	65	32	28	23	20	19	15	14	3.0
Rel. int. 100 16 8 8 5 4 4 4 3 2 0.01 6P (Important ions) 326 282 234 190 158 91) 7 m/e 176 104 005 133 77 78 51 148 177 50 176 70 m/e 100 97 79 37 18 17 151 88 8 6 100 70 m/e 100 67 27 24 20 20 9 8 8 7 27.0 8 m/e 120 121 192 65 39 164 163 92 93 94 192 8 m/e 120 121 192 234 16 111 100 7 248 9 m/e 192 234 163 148 191 121 193	6	m/e	91	107	92	65	108	79	39	77	51	89	347
7 m/e 176 104 105 133 77 78 51 148 177 50 176 7 m/e 203 118 218 56 204 77 91 51 119 132 218 8 m/e 120 121 192 65 39 164 103 77 7 6 55.0 8 m/e 120 121 192 65 39 164 103 77 7 6 55.0 8 m/e 233 148 248 56 234 28 113 63 149 77 248 8 m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 100 84 57 39 38 26 21 15 15 12 100 121 193 65 235 276 100 100 121 100 11 10 9 <		'	100	16	8		5					2	0.01
Rel. int. 100 97 79 37 18 17 15 8 8 6 100 TP m/e 203 118 218 56 204 77 91 51 119 132 218 8 m/e 120 121 192 65 39 164 163 92 93 94 955. 8P m/e 233 148 248 56 234 123 11 10 7 7 65 55. 8P m/e 233 148 248 56 234 28 133 11 10 9 9 28.0 9 m/e 192 234 120 163 148 191 121 193 65 235 235 276 9 m/e 206 248 205 290 120 148 249 207 163 121 190	6P	(Important	t io n s	326	282	234	190	158	91)				
Rel. int. 100 97 79 37 18 17 15 8 8 6 100 TP m/e 203 118 218 56 204 77 91 51 119 132 218 8 m/e 120 121 192 65 39 164 163 92 93 94 955. 8P m/e 233 148 248 56 234 123 11 10 7 7 65 55. 8P m/e 233 148 248 56 234 28 133 11 10 9 9 28.0 9 m/e 192 234 120 163 148 191 121 193 65 235 235 276 9 m/e 206 248 205 290 120 148 249 207 163 121 190	7	mle	176	104	105	133	77	78	51	148	177	50	176
TP m/e 203 118 218 56 204 77 91 51 119 132 218 Rel. int. 100 67 27 24 20 20 9 8 8 7 27.0 8 m/e 120 121 192 65 39 164 163 92 93 94 192 8P m/e 233 148 248 56 234 28 133 63 149 77 248 8P m/e 192 234 120 163 148 191 121 193 65 235 276 9P m/e 192 234 120 163 148 191 121 193 65 235 276 9P m/e 206 248 205 290 120 148 249 207 163 121 290 9P m/e 60 180 222 136 181 57 55 69 134	'	,											
Rel. int. 100 67 27 24 20 20 9 8 8 7 27.0 8 m/e 120 121 192 65 39 164 163 92 93 94 192 8 m/e 233 148 248 56 234 28 133 63 149 77 248 8 m/e 233 148 248 56 234 28 133 63 149 77 248 9 m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 192 234 205 290 120 148 249 207 163 121 100 8 28.0 10 11 19 8 28.0 10 11 19 8 28.0 120 144 44 44 45	70	mala	20.2	119	218	56	204	77	01	51	110	132	218
8 m/e 120 121 192 65 39 164 163 92 93 94 192 8 m/e 233 148 248 56 234 28 133 63 149 77 248 8 m/e 233 148 248 56 234 28 133 63 149 77 248 9 m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 206 248 205 290 120 148 249 207 163 121 290 8 Rel.int. 100 83 32 222 136 181 57 55 69 134 51 264	71												
Rel. int. 100 63 55 21 15 14 10 7 7 6 55.0 8P m/e 233 148 248 56 234 28 133 63 149 77 248 8P m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 206 248 205 290 120 148 249 207 163 121 290 9 m/e 206 248 222 136 181 57 55 69 134 4 264 10 76 61 12 7 6 54 4 4 4 26 10 M/e 163 180 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
All initial interview All i	8	'											
Rel. int. 100 75 28 18 15 13 11 10 9 9 28.0 9 m/e 192 234 120 163 148 191 121 193 65 235 276 9 m/e 206 248 205 290 120 148 249 207 163 121 290 9P m/e 206 248 205 290 120 148 249 207 163 121 290 9P m/e 60 180 222 136 181 57 55 69 134 51 264 10 m/e 60 180 222 136 181 57 55 69 134 44 44 44 44 44 44 44 45 25 10P Mixture of 3 compounds* 100 82 64 26 24 19													
9 m/e 19223412016314819112119365235276Rel. int.1008457393826211515121009P m/e 206248205290120148249207163121290Rel. int.100833228231611119828010 m/e 6018022213618157556913451264Rel. int.10056127654442.510PMixture of 3 compounds*	8P	,											
Rel, int. 100 84 57 39 38 26 21 15 15 12 100 9P m/e 206 248 205 290 120 148 249 207 163 121 290 280 10 m/e 60 180 222 136 181 57 55 69 134 51 264 10 m/e 60 180 222 136 181 57 55 69 134 44 4 2.5 10P Mixture of 3 compounds* 7 6 5 4		Rel. int.	100	/5	28	18			11	10	9	9	28.0
9P m/e 206 248 205 290 120 148 249 207 163 121 290 10 m/e 60 180 222 136 181 57 55 69 134 51 264 100 M/e 60 180 222 136 181 57 55 69 134 4 4 4 4 264 100 Mixture of 3 compounds ^a 100 56 12 7 6 5 4 4 4 4 264 100 Mixture of 3 compounds ^a 162 134 43 44 89 29 135 111 354 11 m/e 163 180 162 134 43 44 89 29 135 111 354 111 m/e 163 180 162 134 243 242 19 18 17 16 14 140 140 112 m/e 191 171 208 139 <td>9</td> <td>· ·</td> <td></td>	9	· ·											
Rel. int. 100 83 32 28 23 16 11 11 9 8 28.0 10 m/e 60 180 222 136 181 57 55 69 134 51 264 10 M/e 60 180 222 136 181 57 55 69 134 4 4 4 264 10P Mixture of 3 compounds ^a 11 m/e 163 180 162 134 43 44 89 29 135 111 354 11 m/e 163 180 162 134 43 44 89 29 135 111 140 140 111 m/e 191 171 208 139 438 75 222 192 114 164 438 Rel. int. 100<		Rel. int.	100	84	57	39	38	26	21	15	15	12	10.0
10 m/e 60 180 222 136 181 57 55 69 134 51 264 10P Mixture of 3 compounds ^a	9P	m/e	206	248			120	148	249	207	163	121	
Rel. int. 100 56 12 7 6 5 4 4 4 4 2.5 10P Mixture of 3 compounds ^a		Rel. int.	100	83	32	28	23	16	11	11	9	8	28.0
Rel. int. 100 56 12 7 6 5 4 4 4 4 2.5 10P Mixture of 3 compounds ^a	10	m/e	60	180	222	136	181	57	55	69	134	51	264
I1 m/e 16318016213443448929135111354Rel. int.10082642624191817161414.011P m/e 19117120813943875222192114164438Rel. int.10069494234291313101034.012 m/e 431621631804804542042134205564Rel. int.1009153342617171716141.312PMixture of 5 compounds*		Rel. int.	100	56	12	7		5			4	4	2.5
Rel. int.10082642624191817161414.011P m/e 19117120813943875222192114164438Rel. int.10069494234291313101034.012 m/e 431621631804804542042134205564Rel. int.1009153342617171716141.312PMixture of 5 compounds ^a	10P	Mixture o	f 3 compou	nds ^a									
Rel. int.10082642624191817161414.011P m/e 19117120813943875222192114164438Rel. int.10069494234291313101034.012 m/e 431621631804804542042134205564Rel. int.1009153342617171716141.312PMixture of 5 compounds ^a	11	m/e	163	180	162	134	43	44	89	29	135	111	354
Rel. int. 100 69 49 42 34 29 13 13 10 10 34.0 12 m/e 43 162 163 180 480 45 420 42 134 205 564 Rel. int. 100 91 53 34 26 17 17 17 16 14 1.3 12P Mixture of 5 compounds ^a		,	100	82	64	26						14	
Rel. int. 100 69 49 42 34 29 13 13 10 10 34.0 12 m/e 43 162 163 180 480 45 420 42 134 205 564 Rel. int. 100 91 53 34 26 17 17 17 16 14 1.3 12P Mixture of 5 compounds ^a	11P	mle	191	171	208	139	438	75	222	192	114	164	438
12 m/e 43 162 163 180 480 45 420 42 134 205 564 Rel. int. 100 91 53 34 26 17 17 17 16 14 1.3 12P Mixture of 5 compounds ^a . . 13 m/e 292 163 131 70 113 112 134 114 162 233 418 Rel. int. 100 81 69 59 52 50 36 24 24 16 0.6 13P m/e 191 84 157 57 137 192 163 55 348 71 348													
Rel. int. 100 91 53 34 26 17 17 16 14 1.3 12P Mixture of 5 compounds ^a	13												
12P Mixture of 5 compounds ^a	12	'											
13 m/e 292 163 131 70 113 112 134 114 162 233 418 Rel. int. 100 81 69 59 52 50 36 24 24 16 0.6 13P m/e 191 84 157 57 137 192 163 55 348 71 348					55	7	20	17	17	1)	10	14	1.5
Rel. int. 100 81 69 59 52 50 36 24 24 16 0.6 13P m/e 191 84 157 57 137 192 163 55 348 71 348	12P	Mixture of	-	nds"									
13P m/e 191 84 157 57 137 192 163 55 348 71 348	13	,											
		Rel. int.	100	81	69	59	52	50	36	24	24	16	0.6
Rel. int. 100 48 46 26 24 22 20 15 14 13 14.0	13P	m/e	191	84	157	57	137	192	163	55	348	71	348
		Rel. int.	100	48	46	26	24	22	20	15	14	13	14.0

 TABLE 2. Mass spectra (Ten most intense ions in decreasing order of intensity)

 (P after compound number denotes permethylation product)

^a See Discussion.

the permethylation products have been stored by us and can be made available as required.

Discussion

The compounds studied were mostly not selected specifically for testing the questions under discussion but had presented themselves in the course of other researches. Our conclusions are to this extent tentative. Further study by g.c. has proved helpful where permethylation has led to multiple products.

Features of the mass spectra (Table 2)

lons from the reaction products having 28 mass units less than the molecular ion or the higher fragments

from the starting material proved to be valuable indicators of deacetylative methylation $[M - 42 + 14 \equiv M - 28]$.

1. Although the mass spectrum after permethylation (1P) only displays a very weak molecular ion (0.1%), it is clear from the +14 mass unit shifts of major ions that methylation has occurred at only one position, presumably by esterification of the free carboxyl group.

4. Three sequential losses of 59 or 60 mass units from the molecular ion and the inter-ring fission process (m/e 259) characterize this class of compounds. Accurate mass measurements were used to confirm the processes. The molecular ion has Rel. int. 0.3%. In the permethylated product (4P), the molecular ion at m/e 425 and an [M - 15] ion at m/e 410 verify the presence of one additional Me group. Three sequential losses of 59 or 60 from the molecular ion and the ion at m/e 259 confirm that no methylation occurred on the acetylated sugar moiety. Methylation at N-6 was expected and can be assumed to have occurred (but see Lit.¹⁷).

6. The molecular ion region contains ions at m/e 347, 348, 349 and 350 (Rel. int. 0.01, 0.006, 0.004 and 0.002 %, respectively). The indications are, that apart from the expected Cl isotope pattern, there is an [M + 1]process at 30% of M. Cl isotope patterns are associated with several fragment ions in the spectrum. The molecular ion expected for N-methylation of 6 would occur at m/e 361. However, the highest ion detected in the spectrum of 6P was at m/e 326. This could be a [M - Cl] fragment. A more likely explanation is that HCl was abstracted during methylation to give the corresponding 2-aminoacrylic acid derivative and that an ionmolecule process (as with 6) gives rise to an [M + 1]ion at m/e 326. This view is supported by the absence of Cl isotope patterns among the fragment ions. Regardless of doubt about the fate of the Cl atom, there is no doubt that neither of the benzyl ester linkages was rearranged (cf. Lit. 47).

7. The fragmentation pattern of this compound has been studied in depth; mass measurements and complete metastable pathways have been elucidated (unpublished work by J. E. and R. S. (cf. Lit.¹⁶; see also Lit.^{18,19,20}). The main decomposition pathway is initiated by loss of -HCNO from the molecular ion ($m/e \ 176 \rightarrow 133$), followed by loss of $-CO (\rightarrow m/e \ 105)$ and the loss of a proton to give m/e 104 (ϕ -C \equiv NH). On permethylation (7P), the addition of three methyl groups is evidenced by a molecular ion at m/e 218 (26.5%). The [M-15] ion at m/e 203 (100%) can be deduced²⁰ to be caused by the facile loss of methyl from C-5 (see also Lit.¹⁹, Fig. 13). The next loss from this ion is the elimination of -CONCH₃CO, leaving the ion $[\phi - C \equiv NCH_3]$ at m/e 118 (67%). Together, these processes adequately establish the positions of the methyl substituents.

8P. The [M - 15] ion at m/e 233 (100%) again indicates the lability of the methyl group at C-5 of this 1,3,5-trimethylhydantoin.

9P. A molecular ion at m/e 290 indicates that only one methyl group has been added, whereas, from the behaviour of 7 and 8, two could have been expected. The spectrum does not contain a [M - 15] ion, so we infer that the N^3 -monomethyl derivative was formed and that no C-methylation occurred (see below, and above under Experimental).

10. The molecular ion at m/e 264 (2.5%) initiates two losses of ketene to m/e 222 and m/e 180. The base peak of the spectrum is m/e 60, which amounts to 35% of the total ion current. After permethylation (10P, not tabulated), it is obvious that partial deacetylative methylation has occurred and that three new compounds have resulted (mol. wts 278, 250 and 222, respectively). This was confirmed by g.c.-m.s. (1.5 m \times 5 mm, 8% OV-1 glass column, temp. programme from 200 °C to 250 °C at 1 °C/min). Three major peaks (M = 222, 250 and 278) emerged successively. Each of these was preceded by a minor peak giving an essentially similar mass spectrum; these we attribute to partial rearrangement to the *cis* compounds during the permethylation.

11. This compound tends to dehydrate in the mass spectrometer, but by careful control of conditions a suitable spectrum was obtained. This was characterized by a molecular ion (Rel. int. 14%) and an [M - 18] process varying between Rel. int. 1 to 10% according to conditions. The caffeic acid fragment at m/e 180 (81%) loses —OH to form the base peak. The spectrum from the permethylation product (11P) is readily interpreted as the expected hexamethyl derivative. (An ion at [M + 14] having 1% of the intensity of M can be attributed to C-methylation). Partial rearrangement of the ester linkage, with formation of O,O'-dimethylcaffeic acid methyl ester, also occurred.

12. The molecular ion was present, and a series of losses of ketene were indicated. After permethylation (12P, not tabulated) the methyl ester resulted, with slight accompanying C-methylation. However, at least one, and perhaps all five of the acetyl groups, underwent deacetylative methylation. G.c. (as above, temp. programme 220 to 300 °C at 3 °C/min) showed at least five zones emerging above 280 °C.

13. Mass spectrometry (cf. Lit.²¹) has not satisfactorily settled which of the two structures given in Table 1 is correct. However, after permethylation (13P), a molecular ion at m/e 348 indicated that three of the four acetyl groups had been replaced by methyl. It is clear, from the occurrence of a fragment at m/e 191 as base peak, that both phenolic acetyls have been replaced by methyl groups. The complementary ion (m/e 157) loses 73 mass units (NHCH₃COCH₃) to give m/e 84 [CH₂=CHCH₂CH=NHCH₃] (cf. Lit.²²).

The chemical reactions

As to ester rearrangement, carboxylic esters of methanol (5 and ascorbalamic acid derivatives⁸) underwent complete rearrangement. Ester linkages to carbohydrates and related compounds seemed to remain largely intact (1 to 4, 11, 12). Previous studies on the stability of O-acyl groups in carbohydrates to methylating conditions are conflicting. Lindberg and colleagues found stability under the Kuhn conditions⁴⁰ but stated,⁴¹ without detailed examples, that they were unstable under the Hakomori conditions (cf. Lit.⁴²). Benzyl ester linkages (6) remained intact. The elimination of HCl from this chloro compound should be noted. In the O-acetylated monophenol studied (9), the ester linkage remained intact. This on the whole suggests that, on permethylation of peptide derivatives, deacetylative methylation of O-acetyl groups on residues of serine, threonine, hydroxylysine, hydroxyproline and

tyrosine should not occur. With all the O-acetylated polyphenols studied (10, 12, 13), at least partial deacetylative methylation took place. All were caffeic acid derivatives.

In general, N-acyl groups remained in position (2 to 4, 6, 9, 13). However, the 'extra' acetyl group in the N-diacyl compound 13 was replaced by N-methyl.

N-methylation took place at all –CONH– groups as expected, except in **2**. As normal *N*-methylation took place in **3** (cf. Lit.⁴¹) some kind of intramolecular bonding of the –CONH– group of **2** to a contiguous *O*-acetyl group seems a more reasonable explanation of its inertness than does steric hindrance, the explanation favoured by Gorin.⁴³ who reports several similar failures of *N*-methylation (cf. Lit.⁴⁴).

Substantial C-methylation was encountered only in 7 and 8. These can be regarded as derivatives of 2-phenylacetic acid, which added three methyl groups under our permethylation conditions, presumably to give 2-methyl-2-phenylpropionic acid methyl ester (cf. Lit.²³). The C-methylation must have taken place at C-5 of the hydantoin ring (see above). Acetylation at N-1 (9) prevented this C-methylation.

So far we have noted no differences in the outcome of permethylations in dimethyl sulphoxide conducted with potassium *t*-butoxide rather than with sodium hydride. This is not surprising, as Brauman *et al.*²⁴ consider that, on dissolution of the former in dimethyl sulphoxide, a substantial proportion of $CH_3SOCH_2^-$ anion occurs in equilibrium with the *t*-butoxyl anion. Dissolution of NaH is generally held to yield one molecular proportion of the carbanion.

ACKNOWLEDGMENTS

We thank Dr Roger Davies, Dr W. M. Horspool, Mr M. W. Rees, Professor Lord Tedder and Dr A. R. H. Trim for valued discussions; Dr E. Haslam, Professor G. Fölsch and Mr E. I. Mbadiwe for gifts of specimens; Mrs. Janice J. Sexton for the preparation of 6 and 15; Mr A. M. C. Davies for amino acid analysis; Dr D. T. Coxon, Mr P. N. Haylett and Mr K. R. Price for ¹H n.m.r.; Miss Mary M. Gilmour, Mr B. J. Gordon, Mr K. R. Parsley and Mrs Janice J. Sexton for skilled technical assistance.

REFERENCES

- 1. Schmid, R. D. Tetrahedron 1972, 28, 3259.
- 2. Schmid, R. D.; Varenne, P.; Paris, R. Tetrahedron 1972, 28, 5037.
- 3. Hollerbach, A.; Spiteller, G. Monatsh. Chem. 1970, 101, 141.
- 4. Brockmann, H.; Budde, G. Chem. Ber. 1953, 86, 432.
- 5. Wyler, H.; Chiovini, J. Helv. Chim. Acta 1968, 51, 1476.
- 6. Cranwell, P. A.; Haworth, R. D. Tetrahedron 1971, 27, 1831.
- 7. Pierpoint, W. S. Report of Rothamsted Experimental Station, Part 2 1970, 199.

- Couchman, R.; Eagles, J.; Hegarty, M. P.; Laird, W. M.; Self, R.; Synge, R. L. M. Phytochemistry 1973, 12, 707.
- 9. Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis, Vols. 1 to 3. Wiley: New York. 1967, 1969, 1972.
- 10. French, F. A. Chem. Eng. News 1966, 44, No. 15, 48.
- 11. Olson, G. Chem. Eng. News 1966, 44, No. 24, 7.
- 12. Fölsch, G. Acta Chem. Scand. 1959, 13, 1407.
- 13. Szekerke, M. Acta Chim. Acad. Sci. Hung. 1964, 41, 337.
- 14. Fischer, E.; Raske, K. Ber. Deut. Chem. Ges. 1907, 40, 3717.
- Schott, H. F.; Larkin, J. B.; Rockland, L. B.; Dunn, M. S. J. Org. Chem. 1947, 12, 490.
- Eagles, J.; Laird, W. M.; Matai, S.; Self, R.; Synge, R. L. M. Biochem. J. 1971, 121, 425.
- 17. Blank, H.-U.; Pfleiderer, W. Liebigs Ann. Chem. 1970, 742, 16.
- 18. Locock, R. A.; Coutts, R. T. Org. Mass Spectrom. 1970, 3, 735.
- Corral, R. A.; Orazi, O. O.; Duffield, A. M.; Djerassi, C. Org. Mass Spectrom. 1971, 5, 551.
- 20. Rücker, G.; Natarajan, P. N.; Fell, A. F. Arch. Pharm. 1971, 304, 883.
- 21. Hollerbach, A. Diplomarbeit, Universität Göttingen. 1969.
- 22. Veith, H. J.; Guggisberg, A.; Hesse, M. Helv. Chim. Acta 1971, 54, 653.
- Haller, A.; Bauer, E. Compt. Rend. 1912, 155, 1581; Ann. Chim. 1918, [Sér. 9], 9, 5.
- Brauman, J. I.; Bryson, J. A.; Kahl, D. C.; Nelson, N. J. J. Amer. Chem. Soc. 1970, 92, 6679.
- 25. Grewe, R.; Haendler, H. Liebigs Ann. Chem. 1962, 658, 113.
- 26. Haslam, E.; Turner, M. J.; Sargent, D.; Thompson, R. S. J. Chem. Soc. (c) 1971, 1489.
- 27. Horton, D. J. Org. Chem. 1964, 29, 1776.
- 28. Heyns, K.; Scharmann, H. Liebigs Ann. Chem. 1963, 677, 183.
- 29. Cutler, W. O.; Haworth, W. N.; Peat, S. J. Chem. Soc. 1937. 1979
- Kochetkov, N. K.; Chizhov, O. S.; Zolotarev, B. M. Carbohydrate Res. 1966, 2, 89.
- Heyns, K.; Grützmacher, H. F.; Scharmann, H.; Müller, D. Fortschr. Chem. Forsch. 1966, 5, 448.
- 32. Barker, S. A.; Stacey, M.; Tipper, D. J. Nature 1959, 184, 1718.
- 33. Heyns, K.; Müller, D. Tetrahedron 1965, 21, 3151.
- Martinez, A. P.; Lee, W. W.; Goodman, L. J. Med. Chem. 1966, 9, 268.
- 35. Chemische Fabrik vorm. Sandoz. Swiss Pat. 179, 690 1. 1935.
- 36. Tiemann, F.; Nagai, N. Ber. Deut. Chem. Ges. 1878, 11, 646.
- 37. Fischer, H. O. L.; Dangschat, G. Ber. Deut. Chem. Ges. 1932, 65B, 1037.
- 38. Corse, J.; Sondheimer, E.; Lundin, R. Tetrahedron 1962, 18, 1207.
- 39. Gorter, K. Liebigs Ann. Chem. 1908, 359, 217.
- 40. Bouveng, H. O.; Garegg, P. J.; Lindberg, B. Chem. Ind. (London) 1958, 1727.
- 41. Björndahl, H.; Hellerqvist, C. G.; Lindberg, B.; Svensson, S. Angew. Chem. Intern. Ed. Engl. 1970, 9, 610.
- Nordén, N. E.; Lundblad, A.; Svensson, S.; Öckerman, P.-A.; Autio, S. J. Biol. Chem. 1973, 248, 6210.
- 43. Gorin, P. A. J. Carbohydrate Res. 1973, 27, 309.
- 44. Stoffel, W.; Hanfland, P. Hoppe-Seyl. Z. Physiol. Chem. 1973, 354, 21.
- 45. Dougherty, R. C.; Horton, D.; Philips, K. D.; Wander, J. D. Org. Mass Spectrom. 1973, 7, 805.
- 46. Hughes, D. L. J. Chem. Soc. Dalton Trans. 1973, 2209.
- 47. McDermott, J. R.; Benoiton, N. L. Can. J. Chem. 1973, 51, 1915.