

Available online at www.sciencedirect.com

Inorganica Chimica Acta 357 (2004) 3064-3070

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Phosphorus–carbon bond formation via reactions of triphenylphosphine with acetylene and pentamethylcyclopentadienyl coordinated to iridium(III) [☆]

Chong Shik Chin *, Yoonho Kim, Hyungeui Lee *

Chemistry Department, Sogang University, Seoul 121-742, Republic of Korea

Received 31 December 2003; accepted 6 January 2004 Available online 6 February 2004

Abstract

Phosphorus–carbon bond is formed via: (i) the apparent HC=CH insertion into Ir–P bond to produce Ir–CH=CH–PPh₃ group and (ii) the activation of the ring-methyl group of the coordinated Cp* (C₅Me₅⁻) to produce Ir(η^5 -C₅Me₄CH₂–PPh₃) group from reactions of iridium(III)–Cp* complexes, [Cp*IrL₃]^{*n*+} (*n* = 1, 2); Cp* = C₅Me₅⁻; L₃ = Cl(PPh₃)₂ (3), (CH₃CN)₃ (5). The following new P–C bond containing iridium(III) complexes have been prepared: [Cp*Ir(–CH=CH–PPh₃)Cl(PPh₃)]⁺ (4) from 3 with HC=CH; [Ir(η^5 -C₅Me₄CH₂–PPh₃)(H)(PPh₃)₂]²⁺ (6) from 5 with PPh₃; [Cp*Ir(–CH=CH–PPh₃)₂(PPh₃)]²⁺ (7) from 5 with HC=CH and PPh₃; [Ir(η^5 -C₅Me₄CH₂–PPh₃)(–CH=CH–PPh₃)Cl(PPh₃)]²⁺ (8) from [Ir(η^5 -C₅Me₄CH₂–PPh₃)(Cl)(PPh₃)₂]²⁺ (6-Cl) with HC=CH; [Ir(η^5 -C₅Me₄CH₂–PPh₃)(–CH=CH–PPh₃)₂(H)(PPh₃)₂]³⁺ (10) from [Ir(η^5 -C₅Me₄CH₂–PPh₃)(NCCH₃)₂(PPh₃)]³⁺ (9) with PPh₃; [Ir(η^5 -C₅Me₄CH₂–PPh₃)(–CH=CH–PPh₃)₂(PPh₃)]³⁺ (11) from 9 with HC=CH and PPh₃. © 2004 Elsevier B.V. All rights reserved.

Keywords: P–C bond formation; Phosphorous ylides; Alkyne insertion into Ir–P bond; Activation of the ring-methyl group of Cp^* ($Cp^* = C_5Me_5^-$); Iridium(III)

1. Introduction

Transition metal mediated phosphorus–carbon bond formation reactions could be more useful ones in synthetic organic chemistry than those in the absence of designed organometallic complexes since enhanced stereo- and regio-selectivity could be obtained from reactions mediated by those metal complexes. Reactions of PPh₃ and hydrocarbyl groups coordinated to metal have been known to form P–C bond to give saturated and unsaturated phosphorus ylides C–PPh₃ [1,2].

Activation of the ring-methyl group of Cp^* ($Cp^* = C_5Me_5^-$) coordinated to metal has been investigated to introduce various functional groups to Cp* so that one can use these functionalized Cp* ligands to prepare sterically and electronically more diverse metal complexes [3]. A variety of groups have been successfully introduced to replace the hydrogen of the ringmethyl of Cp* coordinated to metal [3,4]. No report, to the best of our knowledge, has been made on P–C bond formation between the ring-methyl carbon of the coordinated Cp* and phosphine to give phosphorus ylides (C₅Me₄CH₂–PR₃) via direct reaction of tertiary phosphine with coordinated Cp* while Ru(η^5 -C₅Me₄-CH₂–PPh₃) was prepared from reaction of Ru(η^5 -C₅Me₄CH₂Cl) with PPh₃/PF₆⁻ [5].

During our investigation on carbon-carbon bond formation via reactions of alkynes with iridium, we found that phosphorus-carbon bond is readily obtained by the apparent insertion of alkynes into the $Ir-PR_3$ bond to produce phosphorus ylide C-PR₃, which actually occurs by the attack of PR₃ on the coordinated alkynes [2]. We recently reported carbon-hetero atom

 $^{^{\}star}$ Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2004.01.001.

^{*} Corresponding authors. Tel.: +82-2-705-8448 (C.S. Chin), +82-2-714-5915 (H. Lee); fax: +82-2-701-0967.

E-mail addresses: cschin@sogang.ac.kr (C.S. Chin), hleegood@ sogang.ac.kr (H. Lee).

bond formation via reactions of an η^5 -Cp* (C₅Me₅⁻) complex of iridium(III) (Eq. (1)) [2c] while somewhat extensive studies for C–P bond formation have been done with iridium complexes containing (PPh₃)₂(CO) unit [2a,2b,2d,2e]. We now wish to report new P–C bond formed via reactions of iridium complexes of η^5 -Cp*, i.e., reactions of PPh₃ with HC=CH and the CH₃ groups of Cp* coordinated to iridium(III).

$$[LnIr-NCCH_3]^{+} \xrightarrow{HC \equiv CH,B}_{-CH_3CN} [LnIr-CH = CH-B]^+$$
(1)

where $Ln = (\eta^3 - CH_2CHCHPh)(\eta^5 - Cp^*)$; $B = NEt_3$ (a), PPh₃ (b), AsPPh₃ (c).

2. Results and discussion

Reactions of Cp*Ir^{III}L₃ (L₃ = Cl(PPh₃)₂, (CH₃CN)₃, etc.) complexes with PPh₃ in the absence and presence of HC=CH produce new compounds with newly formed P-C (Ph₃*P*-*C*) bonds. The formation of **6** (Eq. (3)) is somewhat surprising while that of **4** (Eq. (2)) is not so unusual since we recently reported the related complexes, **2** (see Eq. (1)) [2] but the attack of a tertiary phosphine on the ring-methyl carbon of coordinated Cp* to form *C*-*P*Ph₃ bond (Eq. (3)) has not been previously reported.

The apparent insertion of HC=CH into Ir–P bond (Eq. (2)) is understood, as previously suggested [2,6], by the following steps: (i) initial dissociation of one PPh₃ from **3** to provide a vacant site, (ii) coordination of HC=CH to the vacant site and (iii) attack of PPh₃ on the carbon of the coordinated HC=CH to form the Ir–CH=CH–PPh₃ moiety. The reaction (Eq. (2)) is significantly retarded by the excess of PPh₃.

Metal complexes of Cp^{*} undergo a variety of reactions in the presence of strong bases for the substitution of the hydrogen of the ring-methyl group to produce η^5 -C₅Me₄CH₂-A (A = PR₂, NR₂, R, OR, CHO, X and, etc.) [3–5]. Metal complexes of η^4 - and η^6 -tetramethylfulvene (C₅Me₄=CH₂) have been observed and suggested as the intermediates produced by deprotonation of the ring-methyl group of Cp^{*} in the presence of strong bases [3–7].

The activation of the ring-methyl group of Cp^{*} in **3** (Eq. (3)) does not occur from the reaction of **3** with excess PPh₃ in the presence or absence of HC \equiv CH. Replacing the three ligands, Cl(PPh₃)₂ of **3** with (CH₃CN)₃ makes the ring-methyl group of Cp^{*} in **5** reactive with PPh₃. The lability of CH₃CN ligand of **5**

seems to make the transfer of the ring-methyl hydrogen to the metal to provide a vacant site for the hydrogen to form the Ir–H bond.

The hydrogen transfer from the ring-methyl group of Cp^* to Ir (Eq. (3)) may occur in the intra-molecular fashion as shown in Scheme 1 as it is not likely to occur for the proton once dissociated from the methyl group to transfer to iridium(III) in its higher oxidation state while the deprotonation of the Cp^* to give the tetramethylfulvene Ir(C_5Me_4 =CH₂) intermediate could not be completely excluded. The presumably weak interaction between the metal and one of the methyl hydrogen would become stronger by the nucleophilic attack of PPh₃ on the methyl carbon and the C–H bond would be eventually cleaved to give *Ir*–*H* and *C*–*P*Ph₃ bonds in **6** (Scheme 1).

The hydride ligand of **6** is readily replaced with chloro ligand to give **6-Cl** $[(C_5Me_4(CH_2-PPh_3))Ir(Cl)(PPh_3)_2]^{2+}$ (see Fig. 1 for the crystal structure of **6-Cl**) in chlorinated solvents such as CHCl₃ and PhCH₂Cl.

Under the atmosphere of HC \equiv CH, complex 5 surprisingly undergoes the apparent HC \equiv CH insertion into two Ir–PPh₃ bonds to give complex 7 (Eq. (4)). The formation of 7 (Eq. (4)) is also attributed to the lability of the CH₃CN ligand of 5 being readily substituted by HC \equiv CH and the nucleophilicity of PR₃ attacking on the coordinated HC \equiv CH. Varying amounts of PPh₃ in the reaction mixture of 5 and PPh₃ under 1 atm of HC \equiv CH does not give any other product than 7.

 $[Ir] = [IrL_2]^{2+} (L = CH_3CN (5), PPh_3 (6))$

Fig. 1. ORTEP drawing of $[(\eta^5-C_4Me_4CH_2PPh_3)IrCl (PPh_3)_2](OTf)_2$ (6-Cl) with 50% thermal ellipsoids probability. Counter-anion (OTf) and hydrogen atoms are omitted for clarity. Selected bond distances (Å): Ir₁-C₁ = 2.226(10); Ir₁-C₂ = 2.278(10); Ir₁-C₃ = 2.289(11); Ir₁-C₄ = 2.258(11); Ir₁-C₅ = 2.245(10); C₁-C₂ = 1.471(14); C₂-C₃ = 1.409(15); C₃-C₄ = 1.429(16); C₄-C₅ = 1.443(15); C₁-C₅ = 1.423(14); C₁-C₆ = 1.479(15); C₂-C₇ = 1.494(15); C₃-C₈ = 1.509(15); C₄-C₉ = 1.494(16); C₅-C₁₀ = 1.511(14); P₁-C₆ = 1.839(10). Selected bond angles (deg): C₁C₆P₁ = 116.3(7); C₆-C₁-Ir₁ = 127.9(7); C₇-C₂-Ir₁ = 128.2(7); C₈-C₃-Ir₁ = 133.6(8); C₉-C₄-Ir₁ = 135.0(8); C₁₀-C₅-Ir₁ = 132.0(7).

complex **6-Cl** ([($C_5Me_4(CH_2-PPh_3)$)] $Ir(Cl)(PPh_3)_2$]²⁺) reacts with HC=CH to produce **8** which has both saturated ($-CH_2-PPh_3$) and unsaturated ($=CH-PPh_3$) phosphorus ylide groups (Eq. (5)). The formation of **8** (Eq. (5)) is significantly retarded by the presence of excess PPh₃ in the reaction mixture, which suggests the dissociation of PPh₃ from **6-Cl** occurring prior to the coordination of HC=CH which is then attacked by PPh₃.

We have seen above that introducing labile ligand such as CH_3CN in place of non-labile ligand such as $Cl^$ and PPh₃ enhances the reactivity of these iridium complexes investigated in this study especially toward phosphines and HC=CH to form new P-C bonds. In order to see further new P-C bond formation, complex **9** containing two CH₃CN ligands has been prepared from reaction of **6-Cl** according to Eq. (6).

Another ring-methyl group of the coordinated η^5 - $C_5Me_4(CH_2-PPh_3)$ in 9 is activated in the reaction of 9 with PPh₃ (in the absence of HC \equiv CH) to give the hydrido-1,3-di-ring-methyl group substituted Cp* complex 10 (Eq. (7)). Two different products have been reported from the double C–H activation of the ring-methyl group of Cp* coordinated to metal [8–10]. While the double C–H bond activation occurs at the 1 and 3 ring-methyl groups of Cp^{*} in the reaction of $[(\eta^5-C_5Me_5)RhBr(\mu-Br)]_2$ with $(C_6F_5)_2PCH_2CH_2-P(C_6F_5)_2$ to give $[\{\eta^5-C_5Me_4CH_2 C_{6}F_{4}P(C_{6}F_{5})CH_{2}CH_{2}P(C_{6}F_{5})_{2}$ RhBr]⁺ [8], the double ring-metalation at the two neighboring methyl groups of Cp^{*} has been reported for the reaction of Cp^{*}TaCl₄ with sodium amalgam in the presence of PMe₃ to give the 1,2-di-methyl group substituted Cp*complex, { η^{5} - $C_5Me_3-1,2-(CH_2)_2$ Ta(H)₂(PMe₃)₂ [9]. Both 1,2- and 1,3-ring-methyl group activation has been also observed for the Cp^{*} in $[Cp^*RhCl(Ph_2PCH=CH_2)_2]^+$ from the reaction with potassium *tert*-butoxide to give $[\{\eta^5, \dots, \eta^5\}]$ $C_5Me_3-1,2-[CH_2CH_2CH_2P(C_6H_5)_2]_2$ RhCl]⁺ and [{ η^5 - $C_5Me_3-1,2-[CH_2CH_2CH_2P(C_6H_5)_2]_2$ RhCl]⁺ [10].

Again, the hydride (Ir-H) of **10** may come from the ring-methyl group of C₅Me₄(CH₂-PPh₃) of **9** as suggested above for the formation of **6** (see Scheme 1).

Complex **9** undergoes the apparent HC \equiv CH insertion reaction into two Ir–PPh₃ bonds under the atmosphere of HC \equiv CH in the presence of PPh₃ to give **11** (Eq. (8)) that has three C–P bonds (one Ir–CH=C–PPh₃ and two Ir(C₅Me₄–CH₂–PPh₃)).

We have not been successful to prepare complexes containing more than three C- PPh_3 bonds probably due to the bulkiness of PPh₃.

New complexes, **4**, **6–11** have been unambiguously characterized by ¹H-, ¹³C-, ³¹P NMR, ¹H, ¹³C-2D HECTOR, IR spectral and elemental analysis data analysis (see Section 3 for detailed assignments and Supplementary material), and also by X-ray diffraction

data analysis for the crystal structure of **6-Cl**. Spectral data analyses are mostly straightforward by comparing with those of related compounds from our recent studies as well as others [1,2].

These newly prepared complexes 4, 6–11 in study are soluble in polar solvents such as $CHCl_2$, $CHCl_3$ and CH_3COCH_3 , stable in the solid state in air and in solution under N_2 .

3. Experimental

3.1. General information

A standard vacuum system and Schlenk type glassware were used in handling metal complexes under N_2 although most of metal complexes seem to be stable.

The NMR spectra were recorded on a Varian 300 or 500 MHz spectrometer for ¹H and 75 or 126 MHz for ¹³C, and 81 MHz for ³¹P. Infrared spectra were obtained on a Nicolet 205. Elemental analysis was carried with a Carlo Erba EA1108 at the Organic Chemistry Center, Sogang University.

3.2. Synthesis

 $Cp*IrCl(PPh_3)_2$ (3) [3] and $[Cp*Ir(NCMe)_3](OTf)_2$ (5) [11] were prepared by the literature methods.

3.2.1. Synthesis of $[Cp^*Ir(-CH=CH-P_aPh_3)Cl(P_b-Ph_3)]$ -OTf (4)

A solution of 3 (0.10 g, 0.11 mmol) in CH₃COCH₃ (20 ml) was stirred under HC=CH (1 atm) for 10 hours at 25 °C before diethyl ether (30 ml) was added to precipitate beige microcrystals, which were collected, washed with diethyl ether $(3 \times 10 \text{ ml})$ and dried in vacuum. The yield was 0.10 g and 98% based on 4. ¹H NMR (CDCl₃, 500 MHz): δ 1.3 (s, 15H, C₅(CH₃)₅), 6.9 (ddd, $1H, J(H,P_a) = 34.0 Hz, J(H,H) = 17.0 Hz, J(H,P_b) = 1.5$ Hz, Ir-CH=CH-PPh₃), 9.9 (ddd, 1H, $J(H,P_a) = 29.0$ Hz, J(H,H) = 17.0 Hz, $J(H,P_b) = 8.0$ Hz, Ir-CH=CH-PPh₃). ¹³C NMR (CDCl₃, 126 MHz): δ 8.3 (s, $C_5(CH_3)_5$, 95.7 (s, $C_5(CH_3)_5$), 178.0 (dd, Ir- $CH=CHPPh_3$, $J(C,P_a) = 14.3$ Hz, $J(C,P_b) = 8.1$ Hz), 107.7 (d, Ir-CH=CHPPh₃, $J(C,P_a) = 71.0$ Hz). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz)): δ 9.9 178.0; $6.9 \rightarrow 107.7$. ³¹P NMR (CDCl₃, 81 MHz): δ 15.0 (d, $J(P_a, P_b) = 7.4$ Hz), 3.3 (d, $J(P_a, P_b) = 7.4$ Hz). IR (KBr, cm⁻¹): 1258, 1140 and 1026 (br. s, OTf). Anal. Calc. for Ir₁P₂C₄₉H₄₇F₃O₃S₁Cl₁: C, 62.74; H, 5.05; S, 3.42. Found: C, 62.65; H, 4.97; S, 3.34%.

3.2.2. Synthesis of $[Ir(\eta^5-C_5Me_4CH_2-P_aPh_3)(H)-(P_bPh_3)_2](OTf)_2$ (6)

A reaction mixture of 5 (0.37 g, 0.50 mmol) and PPh₃ (0.52 g, 2.00 mmol) in CH₃CN (20 ml) was stirred under

N₂ for 10 h at 25 °C and distilled under vacuum to obtain yellow solid which was recrystallized in chloroform/diethyl ether to obtain yellow microcrystals of 6. The yield was 0.68 g and 97% based on 6. ¹H NMR $(CDCl_3, 500 \text{ MHz}): \delta -15.4 \text{ (td, 1H, } J \text{ (H,P_b)} = 28.0 \text{ Hz},$ $J(H,P_a) = 6.3$ Hz, Ir-H), 0.73 and 1.50 (both s, 12H, $C_5(CH_3)_4$, 3.70 (d, 2H, $J(H,P_a) = 11.0$ Hz, CH_2P_a). ¹³C NMR (CDCl₃, 126 MHz): δ 9.27 and 9.54 (s, C₅(CH₃)₅), 82.5, 101.6 and 104.7 (s, $C_5(CH_3)_5$), 23.0 (d, $J(C,P_a) = 47.0$ Hz, CH_2P_a). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz)): δ 0.73 \rightarrow 9.27; $1.50 \rightarrow 9.54; 3.70 \rightarrow 23.0.$ ³¹P{¹H} NMR (CDCl₃, 81 MHz): δ 17.4 (t, P_a , $J(P_a, P_b) = 9.3$ Hz), 6.86 (d, P_b , $J(P_a, P_b) = 9.3$ Hz). IR (KBr, cm⁻¹): 1230, 1100 and 1039 (br s, OTf), 2172 (m, Ir-H). Anal. Calc. for Ir₁P₃C₆₆H₆₀S₂F₆O₆: C, 56.12; H, 4.28; S, 4.54. Found: C, 56.13; H, 4.43; S, 4.54%.

3.2.3. Synthesis of $[Ir(\eta^5-C_5Me_4CH_2-PPh_3)Cl-(PPh_3)_2](OTf)_2$ (6-Cl)

A solution of **6** in CHCl₃ was stirred at 25 °C for 30 min under N₂ and distilled to obtain yellow microcrystals of **6-Cl**. ¹H NMR (CD₂Cl₂, 500 MHz): δ 0.62 and 1.11 (both s, 12H, C₅(CH₃)₄), 2.80 (d, 2H, *J*(H,P) = 11.0 Hz, CH₂P_a). ¹³C NMR (CD₂Cl₂, 126 MHz): δ 11.6 (s, C₅(CH₃)₅), 82.5, 101.6 and 104.7 (s, C₅(CH₃)₅), 22.5 (d, *J*(C,P_a) = 49.5 Hz, CH₂P_a). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz)): δ 0.62, 1.11 \rightarrow 11.6; 2.80 \rightarrow 22.5. ³¹P{¹H} NMR (CD₂Cl₂, 81 MHz): δ 18.3 (t, *P_a*, *J*(P_a,P_b) = 11.6 Hz), -11.7 (d, P_b, *J*(P_a,P_b) = 11.6 Hz). IR (KBr, cm⁻¹): 1230, 1100 and 1039 (br s, OTf). *Anal.* Calc. for Ir₁P₃C₆₆H₅₉S₂F₆O₆Cl₁: C, 54.79; H, 4.11; S, 4.43. Found: C, 54.53; H, 4.03; S, 4.63%.

3.2.4. Synthesis of [Cp*Ir(-CH=CH-PPh₃)₂(PPh₃)]-(OTf)₂ (7)

A 0.52 g (2.00 mmol) of PPh₃was added to a solution of 5 (0.37 g, 0.50 mmol) in CH₃COCH₃ (20 ml) under HC≡CH (1 atm) and the resulting solution was stirred for 10 h at 50 °C before diethyl ether (30 ml) was added to precipitate beige microcrystals which were collected, washed with diethyl ether $(3 \times 10 \text{ ml})$ and dried in vacuum. The yield was 0.71 g and 97% based on 7. 1 H NMR (CDCl₃, 500 MHz): δ 1.4 (s, 15H, C₅(CH₃)₅), 6.2 (dd, 2H, $J(H,P_a) = 29.5$ Hz, J(H,H) = 17.7 Hz, Ir-CH=CHPPh₃), 9.9 (ddd, 2H, $J(H,P_a) = 29.4$ Hz, $J(H,H) = 17.7 \text{ Hz}, J(H,P_b) = 4.2 \text{ Hz}, \text{ Ir}-CH = CHPPh_3).$ ¹³C NMR (CDCl₃, 126 MHz): δ 8.8 (s, C₅(CH₃)₅), 98.3 (s, C₅(CH₃)₅), 176.6 (dd, Ir-CH=CHPPh₃), 107.7 (d, Ir- $CH = CHPPh_3$, J(C,P) = 72.4 Hz). ¹H, ¹³C-2D HET-COR (¹H (500 MHz) \rightarrow ¹³C (126 MHz)): δ 9.9 \rightarrow 176.6; $6.2 \rightarrow 107.7. {}^{31}P{}^{1}H{} NMR (CDCl_3, 81 MHz): \delta 23.0 (d,$ $J(P_a, P_b) = 2.0$ Hz, Ir-CH=CH P_aPh_3), 8.38 (t, $J(P_b,P_a) = 2.0$ Hz, Ir- P_bPh_3). IR (KBr, cm⁻¹): 1259, 1147 and 1026 (br. s, OTf). Anal. Calc. for $Ir_1P_3C_{70}H_{64}F_6S_2O_6$: C, 57.41; H, 4.40; S, 4.38. Found: C, 57.53; H, 4.49; S, 4.41%.

3.3. Synthesis of $[Ir(\eta^5-C_5Me_4CH_2-PPh_3)(-CH=CH-PPh_3)Cl(PPh_3)](OTf)_2$ (8)

A solution of **6-Cl** (0.72 g, 0.50 mmol) in CH₃COCH₃ (20 ml) was stirred under HC \equiv CH (1 atm) for 10 h at 25 °C before diethyl ether (30 ml) was added to precipitate beige microcrystals, which were collected, washed with diethyl ether (3 × 10 ml) and dried in vacuum. The yield was 0.72 g and 98% based on **8**.

¹H NMR (CDCl₃, 500 MHz): δ 0.48 (d, 3H, J(H,P) = 2.5 Hz, $C_5(CH_3)_4$), 0.77 (d, 3H, J(H,P) = 2.0Hz, $C_5(CH_3)_4$), 1.57 (d, 3H, J(H,P) = 3.5 Hz, $C_5(CH_3)_4$), 1.67 (s, 3H, J(H,P) = 2.5 Hz, $C_5(CH_3)_4$), 3.2 (dd, 1H, J(H,H') = 15.5 Hz, $J(H,P_a) = 12.0$ Hz, $CHH'P_a$), 3.6 (dd, 1H, J(H,H') = 15.5 Hz, $J(H',P_a) = 12.0$ Hz, $CHH'P_a$) 6.9 (ddd, 1H, $J(H,P_c) = 32.0$ Hz, J(H,H) =17.0 Hz, $J(H,P_{\rm h}) = 1.0$ Hz, Ir-CH=CHP_aPh₃), 10.1 (ddd, 1H, J(H,P) = 28.0 Hz, J(H,H) = 17.0 Hz, $J(H,P_b) = 6.5$ Hz, Ir-CH=CHPPh₃).¹³C NMR (CDCl₃, 126 MHz): δ 7.81, 8.42, 8.51 and 8.80 (s, C₅(CH₃)₅), 75.2, 98.0, 102.1 and 122 (s, C₅(CH₃)₅), 22.0 (d, $J(C,P_a) = 46.0 \text{ Hz}, CH_2P_a), 109.5 \text{ (d, Ir-CH=CHP_cPh_3)}$ $J(C,P_c) = 68.0$ Hz), 174.1 (dd, $J(C,P_c) = 11.0$ Hz, $J(C,P_b) = 9.0$ Hz, Ir-CH=CHP_cPh₃). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (125.7 MHz)): δ $0.48 \rightarrow 8.51; 0.77 \rightarrow 8.80; 1.57 \rightarrow 7.81; 1.67 8.42; 3.2,$ $3.6 \rightarrow 22.0; 6.9 \rightarrow 109.5; 10.1 \rightarrow 174.1.$ ³¹P{¹H} NMR (CDCl₃, 81 MHz): δ 16.2 (d, $J(P_a, P_b) = 4.3$ Hz), 14.5 (d, $J(P_c, P_b) = 6.7$ Hz), 2.1 (dd, $J(P_c, P_b) = 6.7$ Hz, $J(\mathbf{P}_a, \mathbf{P}_b) = 4.3$ Hz). Anal. Calc. for $Ir_1P_3C_{68}H_{61}F_6$ S₂O₆Cl₁: C, 55.45; H, 4.17; S, 4.35. Found: C, 55.40; H, 4.01; S, 4.26%.

3.3.1. Synthesis of $[Ir(\eta^{5}-C_{5}Me_{4}CH_{2}-PPh_{3})(PPh_{3})-(NCCH_{3})_{2}](OTf)_{3}$ (9)

A reaction mixture of **6-Cl** (0.72 g, 0.50 mmol) and CH₃I (0.041 ml, 0.66 mmol) in CH₃COCH₃ (20 ml) was stirred for 20 h under N₂ at 25 °C before the solvent was distilled under vacuum to dryness to obtain red solid. The solid was dissolved in CH₃CN (20 ml) of AgOTf (0.26 g, 1.0 mmol) and the reaction mixture was stirred for 15 min at 25 °C before white AgCl was

removed by filtration. The yellow filtrate was distilled under vacuum to dryness. The yield was 0.66 g and 95% based on **9**.

¹H NMR (CD₃COCD₃, 300 MHz): δ 1.2 (d, 6H, $J(H,P_a) = 2.2$ Hz, $C_5(CH_3)_4$, 1.5 (d, 6H, $J(H,P_a) = 2.0$ Hz, C₅(CH₃)₄), 2.7 (s, 6H, CH₃CN), 4.7 (d, 2H, $^{31}P{^{1}H}$ $J(H,P_a) = 14.2$ CH_2P_a). NMR Hz, $(CD_3COCD_3, 81 \text{ MHz}): \delta 18.9 \text{ (d, } J(P_a, P_b) = 0.18 \text{ Hz}),$ 7.9 (d, $J(P_a, P_b) = 0.18$ Hz). IR (KBr, cm⁻¹): 1230, 1100 and 1039 (br s, OTf). Anal. Calc. for $Ir_1P_2C_{53}H_{50}N_2S_3F_9O_9$: C, 46.12; H, 3.65; S, 6.97. Found: C, 46.52; H, 3.74; S, 6.89%.

3.3.2. Synthesis of $[C_5(CH_3)_3(CH_2PPh_3)_2Ir(H) - (PPh_3)_2](OTf)_3$ (10)

A reaction mixture of **9** (0.69 g, 0.50 mmol) and PPh₃ (0.52 g, 2.0 mmol) in CH₃COCH₃ (20 ml) was stirred for 1 day under N₂ at 25 °C. The filtrate was distilled under vacuum to obtain pale yellow powders, which were recrystallized in CH₃Cl/diethyl ether to obtain pale yellow microcrystals. The yellow filtrate was distilled under vacuum to dryness. The yield was 0.86 g and 94% based on **10**.

¹H NMR (CDCl₃, 500 MHz): δ –15.8 (tt, 1H, $J(H,P_b) = 28.0$ Hz, $J(H,P_a) = 6.30$ Hz, Ir-H), 0.56 (s, 3H, 2-CH₃ of C₅(CH₃)₃), 1.01 (s, 6H, 4- and 5-CH₃ of $C_5(CH_3)_3),$ 3.60 (t, 2H, $J(H,P_a) = 14.6$ Hz, J(H,H') = 14.6 Hz, $CHH'P_a$), 3.90 (t, 2H, $J(H',P_a) =$ 14.6 Hz, J(H,H') = 14.6 Hz, $CHH'P_a$). ¹³C NMR (CDCl₃, 126 MHz): δ 9.60 (s, 4- and 5-CH₃ of C₅(CH₃)₃), 10.3 (s, 2-CH₃ of C₅(CH₃)₃), 88.5 and 104.5 (s, $C_5(CH_3)_5$), 23.9 (d, $J(C,P_a) = 48.4$ Hz, CH_2P_a). ¹H, ¹³C-2D HETCOR (¹H (500 MHz) \rightarrow ¹³C (126 MHz)): δ 0.56 10.3; $1.01 \rightarrow 9.60$; 3.6 and $3.9 \rightarrow 23.9$. ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 81 MHz): δ 17.7 (t, $J(P_a, P_b) = 5.2$ Hz), 2.8 (t, $J(P_a, P_b) = 5.2$ Hz). IR (KBr, cm⁻¹): 1230, 1100 and 1039 (br s, OTf), 2172 (m, Ir-H). Anal. Calc. for Ir₁P₄C₈₅H₇₄F₉ S₃O₉: C, 56.01; H, 4.09; S, 5.28. Found: C, 56.11; H, 4.12; S, 5.20%.

3.4. Synthesis of $[C_5(CH_3)_4CH_2PPh_3Ir(CH=CHP-Ph_3)_2(PPh_3)](OTf)_3$ (11)

A solution of 9 (0.69 g, 0.50 mmol) and PPh₃ (0.52 g, 2.0 mmol) in CH₃COCH₃ was stirred for 10 h under HC \equiv CH (1 atm) at 25 °C. The filtrate was distilled under vacuum to obtain pale yellow powders which were recrystallized in CH₃Cl/diethyl ether to obtain yellow microcrystals. The yield was 0.87 g and 93% based on **11**.

3.4.1. X-ray structure determination of $[Ir(\eta^{5}-C_{5}Me_{4}CH_{2}-PPh_{3})Cl(PPh_{3})_{2}](OTf)_{2}$ (6-Cl)

Crystals of 6-Cl were grown by slow evaporation from CH₂Cl₂/n-hexane solution. The crystal evaluation and data collection were performed on a Bruker CCD diffactometer with radiation Mo K α ($\lambda = 0.71073$). Preliminary orientation matrix and cell constants were determined from three series of ω -scan at different starting angles. Each series consisted of 10 frames collected at intervals of $0.3^{\circ} \omega$ -scans with the exposure time 10 s per frame. The structure of this compound was solved by direct methods from the E-map (SHELXS-TL). Non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. Non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. Details of crystallographic data collection are listed in Table 1. Bond distances and angles, positional and thermal parameters, and anisotropic thermal parameters have been included in CIF format of Supplementary material.

Table 1	
Details of crystallographic data	collection for 6-Cl

, , , ,	
Chemical formula	$C_{66}H_{59}ClF_6IrO_6P_3S_2$
Formula weight	1354.06
Temperature (K)	293(2)
Crystal dimensions (mm)	0.46 imes 0.44 imes 0.20
Crystal system	triclinic
Space group	$P\overline{1}$
a (Å)	11.483(2)
b (Å)	14.963(3)
<i>c</i> (Å)	23.657(5)
α (°)	85.964(3)
β (°)	86.241(3)
γ (°)	84.281(3)
$V(Å^3)$	4027.3(14)
$Z (Mg/m^3)$	3
ρ (calc) (g/cm ⁻¹)	1.802
$\mu (mm^{-1})$	3.132
F(000)	2181
Radiation	Μο Κα
Wavelength	0.71073
2θ maximum (°)	51.1
hkl range	$-13 \leqslant h \leqslant 13; -18 \leqslant k \leqslant 18;$
	$-28 \leqslant l \leqslant 26$
Number of reflections	30 593
Number of unique data	14887
Number of observed	14887
$(F_{\rm o} > 2\sigma F_{\rm o})$ data	
Number of parameters	871
Scan type	$\omega/2\theta$ scan
R_1	0.0974
wR_2	0.2072
GOF	1.377

 $R_1 = \left[\sum |F_o| - |F_c| / |F_o|\right], wR_2 = \left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{0.5}.$ Weighting scheme: $w = 1/[\sigma^2 F_o^2 + (0.0573P)^2 + 44.3205P]$ where

 $P = (F_{\rm o}^+ 2F_{\rm c}^2)/3.$

4. Conclusion

Phosporus–carbon bond formation is achieved by the nucleophilic attack of PPh₃ on the carbon of the coordinated HC=CH to iridium(III)-Cp* to produce Ir–CH=CH–PPh₃ groups and on the ring-methyl carbon of Cp* coordinated to iridium(III) to produce Ir(η^5 -C₅Me₄CH₂–PPh₃) and Ir(η^5 -C₅Me₃(1,3-CH₂–PPh₃)₂) groups. Replacement of non-labile ligands such as PPh₃ and Cl⁻ with labile ligand CH₃CN provides vacant sites for: (i) coordination of HC=CH to the metal attracting the nucleophilic attack of PPh₃ on the coordinated HC=CH to form Ir–CH=CH–PPh₃ bond and (ii) for the hydrogen transferred from the ring-methyl group of the coordinated Cp* to produce the new Ir(C₅Me₄CH₂–*P*Ph₃) bond.

5. Supplementary material

Crystallopraphic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 227514. Copies of this information can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallograhpic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk) and ¹H NMR (for 4, 6, **6-Cl**, 7, 8, 10 and 11), ¹³C NMR (for 4, 6, 6-Cl, 7 and 8), ¹H, ¹³C-2D HETCOR (for 4, 6, 6-Cl, 7 and 8), and ³¹P NMR (for 4, 6, 6-Cl, 7, 8, 10, and 11) data have been provided as PDF file.

Acknowledgements

Authors like to thank the Korea Research Foundation (Grant No. KRF-2003-015-C00332) for their financial support of this study.

References

(a) H. Werner, R. Wiedemann, M. Laubender, B. Windmuller, P. Steinert, O. Gevert, J. Wolf, J. Am. Chem. Soc. 124 (2002) 6966, and reference therein;

(b) S. Pavlik, K. Mereiter, R. Schmid, K. Kirchner, Organometallics 22 (2003) 1771;

- (c) E. Becker, K. Mereiter, M. Puchberger, R. Schmid, K. Kirchner, A. Doppiu, A. Salzer, Organometallics 22 (2003) 3164.
- [2] (a) C.S. Chin, M. Kim, G. Won, H. Jung, H. Lee, J. Chem. Soc., Dalton Trans. (2003) 2325;

(b) C.S. Chin, M. Kim, H. Lee, Organometallics 21 (2002) 1679;
(c) C.S. Chin, D. Chong, M. Kim, H. Lee, Bull. Korean Chem. Soc. 22 (2001) 739;

(d) C.S. Chin, M. Lee, M. Oh, G. Won, M. Kim, Y. Park, Organometallics 19 (2000) 1572;

(e) C.S. Chin, Y. Park, J. Kim, B. Lee, J. Chem. Soc., Chem. Commun. (1995) 1495;

(f) C.S. Chin, G. Won, D. Chong, M. Kim, H. Lee, Acc. Chem. Res. 35 (2002) 218.

- [3] (a) K. Fujita, M. Nakamura, R. Yamaguchi, Organometallics 20 (2001) 100;
 - (b) L. Fan, M.L. Turner, M.B. Hursthouse, K.M.A. Malik, O.V. Gusev, P.M. Maitlis, J. Am. Chem. Soc. 116 (1994) 385;

(c) B.M. Kraft, R.J. Lachicotte, W.D. Jones, Organometallics 21 (2002) 727;

(d) P.N. Riley, J.R. Parker, P.E. Fanwick, I.P. Rothwell, Organometallics 18 (1999) 3579.

[4] (a) D.R.T. Knowles, H. Adams, P. Maitlis, Organometallics 17 (1998) 1741;

(b) O.V. Gusev, S. Sergeev, I.M. Saez, P.M. Maitlis, Organometallics 13 (1994) 2059.

- [5] L. Fan, M.L. Turner, H. Adams, N.A. Bailey, P.M. Maitlis, Organometallics 14 (1995) 676.
- [6] (a) D.S. Glueck, R.G. Bergman, Organometallics 9 (1990) 2862;
- (b) J.W. Pattiasina, C.E. Hissink, J.L. de Boer, A. Meetsma, J.H. Teuben, A.L. Spek, J. Am. Chem. Soc. 107 (1985) 7758.
- [7] (a) D.M. Hoffman, J.C. Huffman, D. Lappas, D.A. Wierda, Organometallics 12 (1993) 4312;
 (b) K. Yang, S.G. Bott, M.G. Richmond, Organometallics 13 (1994) 3767;
 (c) P.O. Nubel, T.L. Brown, Organometallics 3 (1984) 29;
 (d) A.A. Cherkas, S. Doherty, M. Cleroux, G. Hogarth, L.H.

Randall, S.M. Breckenridge, N.J. Taylor, A.J. Carty, Organometallics 11 (1992) 1701;
(e) D.L. Reger, K.A. Belmore, E. Mintz, P.J. McElligott,

- Organometallics 3 (1984) 134. [8] M.J. Atherton, J. Fawcett, J.H. Holloway, E.G. Hope, D.R. Russell, G.C. Saunders, J. Organomet. Chem. 582 (1999) 163.
- [9] S.T. Carter, W. Clegg, V.C. Gibson, T.P. Kee, R.D. Sanner, Organometallics 8 (1989) 253.
- [10] L.P. Barthel-Rosa, V.J. Catalano, K. Maitra, J.H. Nelson, Organometallics 15 (1996) 3924.
- [11] C. White, A. Yates, P.M. Maitlis, Inorg. Synth. 29 (1992) 228.