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Abstract: Chiral phosphoric acid as organocatalyst for the diastereo- and enantioselectivity 1,4-conjugate addition of a 
variety of -ketoesters to nitroolefins was firstly developed, providing the corresponding adducts in high yield (up to 
97%) with moderate diastereoselectivities (up to 2.6:1 dr) and enantioselectivities (up to 58% ee). 
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INTRODUCTION 

The asymmetric 1,4-conjugate addition of -ketoesters to 
nitroolefins has proved to be one of the most powerful 
carbon-carbon-forming strategies for the preparation of 
valuable nitrogen-contained compounds in organic synthesis 
[1]. The nitro functionality in the adducts can easily be 
further transformed to amine [2a-e], nitrile oxide [2f], ketone 
or carboxylic acid [2g] and hydrogen [2h]. Due to the 
important synthetic potential, considerable efforts have been 
devoted in recent years to develope chiral metal catalysts [3] 

and chiral organocatalysts [4] for this class of 1,4-conjugate 
addition reaction [5]. However, to the best of our knowledge, 
despite all the significant progress made in this area, there is 
no report about employing a chiral protonic acid as catalyst 
for the asymmetric 1,4-conjugate addition of -ketoesters to 
nitroolefins.  

The chiral phosphoric acids, derived from chiral BINOL 
(BINOL = 2,2'-dihydroxy-1,1'-binaphthyl), have been 
developed as a class of versatile chiral protonic acids 
catalysts and extensively applied to a variety of catalytic  
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asymmetric reactions [6, 7]. In general, the chiral phosphoric 
acid acts as a bifunctional catalyst, that is the acidic proton 
as acid and the P=O moiety of the catalyst as a base [6]. 
Moreover, among the various asymmetric reactions 
catalyzed by chiral phosphoric acids, most of them include 
imine or iminium ion as electrophiles, whereas few of them 
include some other electrophiles [8]. More recently, 
Akiyama and co-workers reported the Friedel-Crafts 
alkylation of indoles with nitroolefins catalyzed by chiral 
phosphoric acid, and firstly disclosed the nitroolefins 

activation catalyzed by chiral phosphoric acids (Scheme 1, 
(1)) [9]. Prompted by this study, we recently found that 
chiral phosphoric acids were efficient catalysts for the 
asymmetric 1,4-conjugate addition of -ketoesters to 
nitroolefins (Scheme 1, (2)). It should be note that this 
reaction is only another example about the nitroolefins 
activation catalyzed by chiral phosphoric acids [10], except 
Akiyama’s report [9]. Herein, we hope to report our 
preliminary results. 

RESULTS AND DISCUSSION 

By using ethyl 3-oxo-3-phenylpropanoate (3a) and trans-
phenyl nitroolefin (2a) as the model compounds, a series of 
chiral phosphoric acid catalysts derived from (R)-BINOL 
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and (R)-H8-BINOL (1a-h, Fig. 1) was screened at room 
temperature in toluene, and the results were summarized in 
Table 1. It was found that this Michael addition reaction 
proceeded smoothly in 20 mol % catalyst loading with 
molecular sieves (MS) 3 Å as additive and provided the 
corresponding adducts in good yields with poor 
diastereoselectivities and enantioselectivities (Table 1, 
entries 8 vs 1-7) [11]. In general, among the catalysts 
examined, catalyst 1h was slightly superior to other catalysts 
(1a-g) in the enantioselectivity and yield (Table 1, entries 8 
vs 1-7). 

With the best chiral catalyst 1h being identified, we next 
carried out the Michael reaction of 2a with 3a for screening 
the optimal reaction conditions. As shown in Table 2, the 
screening of solvent with MS 3 Å as additive revealed that 
the reaction proceeded smoothly in several solvent, and 
toluene was the most favorable solvent (Table 2, entries 1-5). 

The product could be obtained in 94% yield using CH3OH as 
a solvent, but the product was racemic (Table 2, entry 4). 
With toluene as a solvent, further examining to molecular 
sieves, resulted in MS 5 Å provided better results than MS 3 
Å and 4 Å (Table 2, entries 7 vs 1 and 6) [11]. Interestingly, 
decreasing the catalyst loading from 20 mol % to 5 mol % 
with MS 5 Å as additive, the enantioselectivities of both 
isomers were improved to 41% and 45%, and the chemical 
yield was slightly decreased to 87% from 92% (Table 2, 
entries 7 and 8). And then, carrying out the reaction with 5 
mol % catalyst and MS 3 Å as additive, the reaction 
provided 54% and 56% ee for the two isomers in 91% 
chemical yield (Table 2, entry 9). Encouraged by these 
results, examining the reaction by further decreasing the 
catalyst loading to 2.5 mol %, the reaction also completed in 
72 h and provided the desired product in 83% isolated yield, 
however, the enantioselectivities of two diastereoisomers 
were both slightly decreased (Table 2, entry 10). 
Unfortunately, try to decrease the temperature to 0 oC led to 
the reaction very sluggish, moreover, the corresponding 
adduct was obtained with only trace amount even though 
prolonging the reaction time to 7 days (Table 2, entry 11). 

With the optimal reaction conditions in hand, we 
determined the scope and limitations of this 1,4-conjugate 
addition reactions. As shown in Table 3, for the nitroolefins 
having electron-donating phenyl group 2b, electron-
withdrawing phenyl group 2c-g and heteroaromatic 
substituent 2h, the chiral addition products 4b-h were well 
formed in good to excellent chemical yields with moderate 
stereoselectivities (Table 3, entries 2-8). Additionally, we 
also found that the -ketoesters 3b-d bearing electron-
withdrawing substituents in the phenyl group reacted 
smoothly with 2a, giving the desired products 4i-k in range 
from 90% to 96% yield with moderate stereoselectivities 
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Fig. (1). Catalysts Screened for the Michael Reactions. 

Table 1. Catalyst Screening
a
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(20 mol %)

48 h, r.t.
3Å, toluene

 
 

Entry Catalytst dr
b
 ee(%)

c 
Yield(%)

d 

1 1a 1.4:1 7/2 71 

2 1b 1.6:1 14/15 81 

3 1c 1.5:1 8/6 87 

4 1d 1.5:1 16/13 82 

5 1e 1.5:1 5/4 86 

6 1f 1.4:1 2/1 67 

7 1g 1.5:1 5/5 84 

8 1h 1.5:1 24/23 91 

aAll reactions were carried out with 2a (0.3 mmol) and 3a (0.1 mmol) in 0.5 mL toluene with molecular sieves (MS) 3 Å 10 mg.  
bThe ratio of diastereoselectivities were determined by HPLC analysis. 
cEnantioselectivity in -position to nitro group for major (minor) diastereomer, the ee values were determined by HPLC analysis [3m]. 
dYields of isolated product. 
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Table 2. Optimizing the Reaction Conditions for the 1,4-Conjugate Addition of 3a to 2a Catalyzed by Chiral Phosphoric Acid 1h
a 

 

OEt

O O

+

NO2
Ph OEt

O O

NO2

2a 3a 4a

1h (x mol %)
additive

solvent
temperature (T)

 
 

Entry Solvent 1h(x mol %) T(
o
C) Additive dr

b 
ee(%)

c 
Yield(%)

d 

1 toluene 20 rt 3 Å 1.5:1 24/23 91 

2 Et2O 20 rt 3 Å 1.3:1 14/16 78 

3 DCE 20 rt 3 Å 1.3:1 13/11 81 

4 CH3OH 20 rt 3 Å 1.4:1 2/1 94 

5 xylene 20 rt 3 Å 1.4:1 20/19 72 

6 toluene 20 rt 4 Å 1.2:1 6/3 20 

7 toluene 20 rt 5 Å 1.6:1 33/33 92 

8 toluene 5 rt 5 Å 1.5:1 41/45 87 

9 toluene 5 rt 3 Å 1.5:1 54/56 91 

10 toluene 2.5 rt 3 Å 1.6:1 52/51 83 

11 toluene 5 0 3 Å -- -- trace 

aAll reactions were carried out with 2a (0 .3 mmol) and 3a (0.1 mmol) in 0.5 mL solvent with MS 10 mg for 72 h. DCE = 1,2-dichloroethane. 
bThe ratio of diastereoselectivities were determined by HPLC analysis. 
cEnantioselectivity in -position to nitro group for major (minor) diastereomer, the ee values were determined by HPLC analysis [3m]. 
dYields of isolated product. 
 

Table 3. Chiral Phosphoric Acid 1h Catalyzed 1,4-Conjugate Addition Reactions of -Ketoesters to Nitroolefins
a
 

 

Ar2 OEt

OO

Ar1

NO2
(5 mol %)

+

2a-h 3a-d 4a-k

1h

MS 3 Å, rt
Toluene

Ar2 OEt

O O

Ar1

NO2

 
 

Entry Ar1 Ar2 Products 4 dr
b 

ee(%)
c 

Yield(%)
d 

1 Ph (2a) Ph (3a) 4a 1.4:1 54/56 91 

2 p-Me-Ph (2b) Ph (3a) 4b 2.0:1 34/34 91 

3 p-Cl-Ph (2c) Ph (3a) 4c 1.3:1 58/56 95 

4 p-Br-Ph (2d) Ph (3a) 4d 1.2:1 56/56 91 

5 m-Br-Ph (2e) Ph (3a) 4e 1.5:1 53/55 97 

6 m-F3C-Ph (2f) Ph (3a) 4f 1.4:1 51/53 97 

7 m-NO2-Ph (2g) Ph (3a) 4g 1.9:1 49/37 89 

8 2-Furyl (2h) Ph (3a) 4h 1.3:1 31/28 84 

9 Ph (2a) p-F-Ph (3b) 4i 2.6:1 55/45 96 

10 Ph (2a) p-Cl-Ph (3c) 4j 2.0:1 45/27 93 

11 Ph (2a) p-Br-Ph (3d) 4k 1.6:1 55/40 90 

aReactions were carried out with 2 (0.6 mmol), 3 (0.2 mmol), MS 3 Å 10 mg and 5 mol % catalyst 1h in 1.0 mL toluene for 72 h at room temperature. 
bThe ratio of diastereoselectivities were determined by HPLC analysis. 
cEnantioselectivity in -position to nitro group for major (minor) diastereomer, the ee values were determined by HPLC analysis [3m]. 
dYields of isolated product. 
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(Table 3, entries 9-11). Generally, to this developed 
methodology, moderate diastereo- and enantioselectivities in 
very good chemical yields were observed for the addition of 
different -ketoesters to nitroolefins with 5 mol % chiral 
phosphoric acid organocatalyst 1h (Table 3). 

This chiral phosphoric acid catalyzed asymmetric 1,4-
conjugated addition reaction of -ketoesters to nitroolefins 
for the synthesis of compound 4 can be explained by a 
proposed mechanism cycle as outlined in Scheme 2. We 
assume that the chiral phosphoric acid serves as bifunctional 
catalysts in this reaction: i) the phosphoric acid activates the 
nitroolefin 2 with the –OH group of acid 1h, and ii) the 
phosphoryl oxygen atom of P=O acting as base forms a 
hydrogen bond with the hydrogen atom of the enolate of -
ketoesters 3. As a result, the transition state TS-1 is formed. 
This rigid conformation likely contributes to the 
stereoselectivity of this process. Subsequently, attack of the 
-position of nitroolefins by the -ketoesters affords the 

desired Michael addition product and releases the chiral 
catalyst 1h (Scheme 2). 

EXPERIMENTAL SECTION 

General 

Flash column chromatography was performed using 
silica gel. For thin-layer chromatography (TLC), silica gel 
plates (HSGF-254) were used and compounds were 
visualized by irradiation with UV light. All reactions were 
conducted in a closed system with an atmosphere of air and 
were monitored by TLC. 1H and 13C NMR spectra were 
performed on a Brucker-300 MHz spectrometer for products 
dissolved by CDCl3 with tetramethylsilane (TMS) as an 

internal standard. Optical rotations were measured on a 
Perkin-Elmer 241 Polarimeter. Melting points were recorded 
on a Buchi Melting Point B-545 and this instrument was 
without correction. 

General Procedure for Chiral Phosphoric Acid 1h 

Catalyzed Asymmetric 1,4-Conjugated Addition 
Reactions of -Ketoesters to Nitroolefins [12] 

A mixture of activated powder MS 3Å (10mg), 
nitroolefins 2 (0.6 mmol), catalyst 1h (6.1 mg, 0.01 mmol) 
and -ketoesters 3 (0.02 mmol) in 1 mL toluene was added 
to an ordinary vial with a magnetic stirring bar at room 
temperature. The stirring was maintained at room 
temperature for 72 h and the crude reaction mixture was 
directly charged onto silica gel and purified by flash 
chromatography (petroleum ether/ethyl acetate, 10:1 to 5:1) 
to afford products 4. The diastereo- and enantioselectivities 
were determined by HPLC using a Chiracel AD-H column. 

CONCLUSION 

In summary, we have developed a chiral phosphoric 
acids catalyzed asymmetric 1,4-conjugated addition reaction 
of -ketoesters to nitroolefins for the synthesis of 
nitroalkanes compounds with molecular sieves 3 Å as 
additive. The corresponding valuable adducts have been 
isolated in high yields with moderate stereoselectivities [12]. 
This approach is the first example of Michael type reaction 
of -ketoester to nitroolefins catalyzed by a chiral protonic 
acid organocatalyst. The further investigation into the 
application of chiral phosphoric acids in catalytic 
asymmetric reaction is currently underway in our laboratory. 
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[11] The powdered molecular sieves used in this work must be activated 
by placing the powder under vacuum and heating with the flame of 
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[12] Spectral data for Michael addition products (Table 3, 4a-k) [3m]: 
 Ethyl 2-benzoyl-4-nitro-3-phenylbutanoate (4a): White solid, 

yield 91%, ratio of diastereomers 1.4:1, Mp 78.9-80.6 oC, [ ]D
25

 -
1.13 (c 0.44, CHCl3). IR (KBr): 3064, 2982, 2924, 1725, 1686, 
1598, 1554, 1449, 1284, 1263, 1090, 1020, 981, 877, 700, 563 cm-

1. 1H NMR (300 MHz, CDCl3): major isomer,  8.05 (dd, J = 8.4, 
1.2 Hz, 2H), 7.62-7.60 (m, 1H), 7.41-7.30 (m, 2H), 7.30-7.22 (m, 
5H), 4.96-4.91 (m, 1H), 4.80-4.76 (m, 2H), 4.50-4.44 (m, 1H), 3.86 
(q, J = 7.2 Hz, 2H), 0.89 (t, J = 7.2 Hz, 3H); minor isomer,  7.95 
(dd, J = 8.4, 1.2 Hz, 2H), 7.52-7.47 (m, 1H), 7.41-7.30 (m, 2H), 
7.22-7.19 (m, 5H), 4.96-4.91 (m, 3H), 4.50-4.44 (m, 1H), 4.18 (q, J 
= 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, 
CDCl3):  192.7, 192.6, 167.7, 166.9, 136.8, 136.3, 136.0, 135.8, 
134.2, 133.8, 129.0, 128.9, 128.8, 128.7, 128.5, 128.3, 128.2, 
128.1, 128.0, 77.9, 62.2, 61.9, 57.0, 56.4, 43.1, 43.0, 13.9, 13.6. 
The ee was determined by HPLC with a Chiralcel AD-H column 
(85:15 hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 8.01 min, tr (minor) = 14.51 min; 54% ee; 
Second (minor) diastereomer: tr (major) = 12.26 min, tr (minor) = 
21.56 min, 56% ee. 

 Ethyl 2-benzoyl-4-nitro-3-p-tolylbutanoate (4b): White solid, 
yield 91%, ratio of diastereomers 2.0:1, Mp 126.9-128.3 oC, [ ]D

25
 -

0.76 (c 0.39, CHCl3). IR (KBr): 3056, 2981, 2922, 1734, 1681, 
1596, 1580, 1548, 1516, 1450, 1381, 1262, 1158, 1117, 1014, 970, 
824, 681, 560 cm-1; 1H NMR (300 MHz, CDCl3): major isomer,  
8.06 (d, J = 7.2 Hz, 2H), 7.85-7.42 (m, 4H), 7.16-7.13 (m, 1H), 
7.13-7.10 (m, 2H), 4.93-4.90 (m, 1H), 4.77-4.73 (m, 2H), 4.43-4.40 
(m, 1H), 3.86 (q, J = 7.2 Hz, 2H), 2.30 (s, 3H), 0.89 (t, J = 7.2 Hz, 
3H); minor isomer,  7.87 (d, J = 7.2 Hz, 2H), 7.85-7.42 (m, 1H), 
7.16-7.13 (m, 2H), 7.13-7.10 (m, 2H), 7.07-7.00 (m, 2H), 4.93-4.90 
(m, 3H), 4.43-4.40 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 2.23 (s, 3H), 
1.17 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3):  192.9, 
192.7, 167.7, 167.0, 138.0, 137.8, 136.0, 135.9, 134.4, 133.7, 
133.6, 133.1, 129.6, 129.5, 128.9, 128.8, 128.7, 128.6, 128.1, 
127.8, 78.1, 62.1, 61.9, 57.1, 56.5, 42.8, 42.7, 21.0, 20.9, 13.9, 
13.6. The ee was determined by HPLC with a Chiralcel AD-H 
column (85:15 hexanes: isopropanol, 1 mL/min, 254 nm); First 
(major) diastereomer: tr (major) = 8.21 min, tr (minor) = 13.93 min; 
34% ee; Second (minor) diastereomer: tr (major) = 11.51 min, tr 
(minor) = 17.17 min, 34% ee. 

 Ethyl 2-benzoyl-3-(4-chlorophenyl)-4-nitrobutanoate (4c): 
Colorless liquid, yield 95%, ratio of diastereomers 1.3:1, [ ]D

25 -
1.30 (c 0.38, CHCl3). IR (neat): 3070, 2983, 2923, 1736, 1686, 
1598, 1580, 1556, 1512, 1448, 1379, 1228, 1163, 1104, 1016, 979, 
881, 837, 732, 560 cm-1; 1H NMR (300 MHz, CDCl3): major 
isomer,  8.04 (dd, J = 8.4, 1.2 Hz, 2H), 7.62-7.28 (m, 5H), 7.19 (d, 
J = 8.4 Hz, 2H), 4.91-4.87 (m, 1H), 4.77-4.72 (m, 2H), 4.50-4.44 
(m, 1H), 3.88 (q, J = 7.2 Hz, 2H), 0.89 (t, J = 7.2 Hz, 3H); minor 
isomer,  7.86 (dd, J = 8.4, 1.2 Hz, 2H), 7.62-7.42 (m, 3H), 7.20-
7.16 (m, 2H), 7.10 (d, J = 8.4 Hz, 2H), 4.91-4.87 (m, 3H), 4.50-
4.44 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); 13C 
NMR (75 MHz, CDCl3):  192.5, 167.5, 166.8, 135.9, 135.7, 134.3, 
134.0, 132.5, 132.0, 130.1, 130.0, 129.8, 129.7, 129.0, 128.9, 
128.8, 128.7, 128.5, 78.0, 62.3, 62.0, 57.0, 56.3, 42.4, 13.9, 13.6. 
The ee was determined by HPLC with a Chiralcel AD-H column 
(85:15 hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 9.03 min, tr (minor) = 16.32 min; 58% ee; 
Second (minor) diastereomer: tr (major) = 14.64 min, tr (minor) = 
22.77 min, 56% ee. 

 Ethyl 2-benzoyl-3-(4-bromophenyl)-4-nitrobutanoate (4d): 

Colorless liquid, yield 91%, ratio of diastereomers 1.2:1, [ ]D
25 -

2.98 (c 0.47, CHCl3). IR (neat): 3064, 2981, 1734, 1685, 1596, 
1555, 1489, 1448, 1377, 1260, 1185, 1075, 912, 880, 826, 688, 555 
cm-1; 1H NMR (300 MHz, CDCl3): major isomer,  8.04 (dd, J = 
8.4, 1.2 Hz, 2H), 7.60-7.40 (m, 3H), 7.29-7.26 (m, 2H), 7.04-7.01 
(m, 2H), 4.92-4.87 (m, 1H), 4.77-4.73 (m, 2H), 4.50-4.44 (m, 1H), 
3.89 (q, J = 7.2 Hz, 2H), 0.90 (t, J = 7.2 Hz, 3H); minor isomer,  
7.85 (dd, J = 8.4, 1.2 Hz, 2H), 7.60-7.40 (m, 3H), 7.20-7.17 (m, 
2H), 6.93-6.90 (m, 2H), 4.92-4.87 (m, 3H), 4.50-4.44 (m, 1H), 4.16 
(q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, 
CDCl3):  192.4, 192.3, 167.4, 166.7, 135.9, 135.8, 135.7, 135.4, 
134.3, 134.0, 132.1, 132.0, 130.0, 129.7, 129.0, 128.9, 128.8, 
128.6, 122.4, 122.2, 77.7, 62.4, 62.1, 56.7, 56.1, 42.5, 42.3, 13.8, 
13.6. The ee was determined by HPLC with a Chiralcel AD-H 
column (85:15 hexanes: isopropanol, 1 mL/min, 254 nm); First 
(major) diastereomer: tr (major) = 10.12 min, tr (minor) = 21.11 
min; 56% ee; Second (minor) diastereomer: tr (major) = 14.66 min, 
tr (minor) = 26.61 min, 56% ee. 

 Ethyl 2-benzoyl-3-(3-bromophenyl)-4-nitrobutanoate (4e): 

Colorless liquid, yield 97%, ratio of diastereomers 1.5:1, [ ]D
25 -

1.77 (c 0.45, CHCl3). IR (neat): 3063, 2981, 2923, 1735, 1685, 
1596, 1555, 1476, 1448, 1377, 1282, 1186, 1076, 1022, 979, 880, 
787, 696, 588 cm-1; 1H NMR (300 MHz, CDCl3): major isomer  
8.05 (dd, J = 8.4, 1.2 Hz, 2H), 7.62-7.53 (m, 2H), 7.52-7.41 (m, 
2H), 7.37-7.25 (m, 1H), 7.25-7.20 (m, 2H), 4.95-4.88 (m, 1H), 
4.90-4.88 (m, 2H), 4.50-4.44 (m, 1H), 3.90 (q, J = 7.2 Hz, 2H), 
0.89 (t, J = 7.2 Hz, 3H); minor isomer,  7.86 (dd, J = 8.4, 1.2 Hz, 
2H), 7.52-7.41 (m, 3H), 7.37-7.25 (m, 2H), 7.20-7.10 (m, 2H), 
4.95-4.88 (m, 3H), 4.50-4.44 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 
1.18 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3):  192.4, 
192.3, 167.4, 166.7, 139.1, 138.6, 135.6, 134.4, 134.0, 131.5, 
131.4, 131.3, 131.1, 130.4, 129.0, 128.9, 128.8, 128.6, 122.9, 
122.8, 77.6, 62.4, 62.1, 56.7, 56.2, 42.6, 42.5, 13.9, 13.6. The ee 
was determined by HPLC with a Chiralcel AD-H column (85:15 
hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 8.36 min, tr (minor) = 12.82 min; 53% ee; 
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Second (minor) diastereomer: tr (major) = 10.41 min, tr (minor) = 
14.32 min, 55% ee. 

 Ethyl 2-benzoyl-4-nitro-3-(2-(trifluoromethyl)phenyl)butanoate 

(4f): Colorless liquid, yield 97%, ratio of diastereomers 1.4:1, 
[ ]D

25 -2.22 (c 0.26, CHCl3). IR (neat): 3067, 2984, 2925, 1735, 
1686, 1697, 1580, 1557, 1449, 1378, 1330, 1285, 1167, 1127, 
1023, 980, 910, 805, 547 cm-1; 1H NMR (300 MHz, CDCl3): major 
isomer,  8.05 (dd, J = 8.4, 1.2 Hz, 2H), 7.63-7.42 (m, 7H), 4.98-
4.91 (m, 1H), 4.90-4.78 (m, 2H), 4.50-4.44 (m, 1H), 3.86 (q, J = 
7.2 Hz, 2H), 0.89 (t, J = 7.2 Hz, 3H); minor isomer,  7.83 (dd, J = 
8.4, 1.2 Hz, 2H), 7.63-7.42 (m, 7H), 4.98-4.91 (m, 3H), 4.50-4.44 
(m, 1H), 4.19 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); 13C 
NMR (75 MHz, CDCl3 :  192.5, 192.2, 167.4, 166.7, 137.9, 
137.5, 136.0, 135.5, 134.3, 134.0, 131.9, 131.7, 131.6, 129.4, 
128.9, 128.8, 128.7, 128.4, 125.2, 125.1, 125.0, 124.7, 121.9, 77.5, 
62.3, 62.0, 56.7, 56.0, 42.8, 42.7, 42.5, 13.7, 13.3. The ee was 
determined by HPLC with a Chiralcel AD-H column (85:15 
hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 6.14 min, tr (minor) = 9.30 min; 51% ee; 
Second (minor) diastereomer: tr (major) = 7.95 min, tr (minor) = 
10.79 min, 53% ee. 

 Ethyl 2-benzoyl-4-nitro-3-(2-nitrophenyl)butanoate (4g): 

Colorless liquid, yield 89%, ratio of diastereomers 1.9:1, [ ]D
25 -

1.30 (c 0.23, CHCl3). IR (neat): 3071, 2982, 2929, 1734, 1685, 
1597, 1556, 1532, 1448, 1351, 1261, 1097, 1021, 978, 889, 809, 
688, 582 cm-1; 1H NMR (300 MHz, CDCl3): major isomer,  8.22-
8.20 (m, 2H), 8.06 (dd, J = 8.4, 1.2 Hz, 2H), 7.87-7.84 (m, 2H), 
7.56-7.43(m, 4H), 5.00-4.93 (m, 1H), 4.84-4.80 (m, 2H), 4.60 (m, 
1H), 3.87 (q, J = 7.2 Hz, 2H), 0.91 (t, J = 7.2 Hz, 3H); minor 
isomer,  8.22-8.20 (m, 3H), 7.86 (dd, J = 8.4, 1.2 Hz, 2H), 7.56-
7.43 (m, 4H), 5.00-4.93 (m, 3H), 4.60 (m, 1H), 4.20 (q, J = 7.2 Hz, 
2H), 1.17 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3):  191.1, 
168.0, 167.7, 167.4, 166.8, 164.6, 164.3, 136.6, 136.1, 132.4, 
132.3, 132.2, 132.1, 131.7, 131.6, 131.3, 131.2, 128.8, 128.7, 
128.3, 128.2, 128.0, 127.9, 116.1, 116.0, 115.8, 115.7, 77.9, 77.8, 
62.2, 61.9, 56.9, 56.1, 43.1, 43.0, 13.8, 13.5. The ee was 
determined by HPLC with a Chiralcel AD-H column (85:15 
hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 13.08 min, tr (minor) = 20.98 min; 49% 
ee; Second (minor) diastereomer: tr (major) = 17.22 min, tr (minor) 
= 26.48 min, 37% ee. 

 Ethyl 2-benzoyl-3-(furan-2-yl)-4-nitrobutanoate (4h): Colorless 
liquid, yield 84%, ratio of diastereomers 1.3:1, [ ]D

25 -1.32 (c 0.37, 
CHCl3). IR (neat): 3063, 2984, 2937, 1736, 1686, 1597, 1556, 
1449, 1377, 1262, 1096, 1079, 1016, 981, 885, 742, 532 cm-1, 1H 
NMR (300 MHz, CDCl3): major isomer,  8.00 (d, J = 7.2 Hz, 2H), 
7.60-7.56 (m, 2H), 7.50-7.44 (m, 1H), 7.32 (s, 1H), 6.26-6.23 (m, 
2H), 5.02-4.92 (m, 1H), 4.84-4.81 (m, 2H), 4.50-4.44 (m, 1H), 3.98 
(q, J = 7.2 Hz, 2H), 1.04 (t, J = 7.2 Hz, 3H); minor isomer,  7.92 
(d, J = 7.2 Hz, 2H), 7.50-7.44 (m, 3H), 7.20 (s, 1H), 6.15-6.12 (m, 
2H), 5.02-4.92 (m, 3H), 4.50-4.44 (m, 1H), 4.15 (q, J = 7.2 Hz, 
2H), 1.21 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3):  192.7, 
192.6, 167.3, 167.0, 149.7, 149.6, 142.6, 142.4, 135.6, 135.5, 
134.1, 133.9, 128.8, 128.7, 128.6, 128.5, 110.4, 108.6, 108.5, 75.8, 
62.1, 62.0, 54.8, 53.9, 37.0, 36.9, 13.7, 13.6. The ee was 
determined by HPLC with a Chiralcel AD-H column (85:15 
hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 9.20 min, tr (minor) = 13.30 min; 31% ee; 
Second (minor) diastereomer: tr (major) = 10.30 min, tr (minor) = 
15.40 min, 28% ee. 

 Ethyl 2-(4-fluorobenzoyl)-4-nitro-3-phenylbutanoate (4i): White 
solid, yield 96%, ratio of diastereomers 2.6:1, Mp 74.8-92.8 oC, 
[ ]D

25
 -0.71 (c 0.28, CHCl3). IR (KBr): 3087, 2984, 2927, 1722, 

1685, 1599, 1555, 1506, 1456, 1379, 1299, 1262, 1150, 1020, 983, 
849, 764, 561 cm-1, 1H NMR (300 MHz, CDCl3): major isomer,  
8.09 (dd, J = 8.4, 1.2 Hz, 2H), 7.29-7.25 (m, 3H), 7.22-7.08 (m, 
4H), 4.94-4.88 (m, 1H), 4.78-4.76 (m, 2H), 4.50-4.44 (m, 1H), 3.88 
(q, J = 7.2 Hz, 2H), 0.87 (t, J = 7.2 Hz, 3H); minor isomer,  7.88 
(dd, J = 8.4, 1.2 Hz, 2H), 7.29-7.25 (m, 4H), 7.22-7.08 (m, 3H), 
4.94-4.88 (m, 3H), 4.50-4.44 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 
1.18 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3):  192.7, 
167.6, 166.9, 136.6, 136.1, 135.9, 135.7, 133.8, 128.9, 128.8, 
128.7, 128.5, 128.3, 128.2, 128.1, 127.9, 77.9, 62.2, 61.9, 56.9, 
56.2, 43.1, 43.0, 13.8, 13.5. The ee was determined by HPLC with 
a Chiralcel AD-H column (85:15 hexanes: isopropanol, 1 mL/min, 
254 nm); First (major) diastereomer: tr (major) = 8.53 min, tr 
(minor) = 14.37 min; 55% ee; Second (minor) diastereomer: tr 

(major) = 11.82 min, tr (minor) = 16.85 min, 45% ee. 
 Ethyl 2-(4-chlorobenzoyl)-4-nitro-3-phenylbutanoate (4j): 

White solid, yield 93%, ratio of diastereomers 2.0:1, Mp 115.8-
118.6 oC, [ ]D

25
 -10.1 (c 0.43, CHCl3). IR (KBr): 3066, 2961, 1736, 

1687, 1590, 1561, 1425, 1401, 1377, 1281, 1231, 1212, 1090, 
1031, 988, 878, 832, 765, 586 cm-1; 1H NMR (300 MHz, CDCl3): 
major isomer,  8.00 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 
7.32-7.26 (m, 4H), 7.22-7.18 (m, 1H), 4.95-4.87 (m, 1H), 4.79-4.76 
(m, 2H), 4.50-4.44 (m, 1H), 3.87 (q, J = 7.2 Hz, 2H), 0.87 (t, J = 
7.2 Hz, 3H); minor isomer,  7.79 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 
8.4 Hz, 2H), 7.32-7.26 (m, 3H), 7.22-7.18 (m, 2H), 4.95-4.87 (m, 
3H), 4.50-4.44 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.18 (t, J = 7.2 
Hz, 3H); 13C NMR (75 MHz, CDCl3):  191.6, 191.5, 167.4, 166.8, 
140.9, 140.4, 136.5, 136.1, 134.4, 134.1, 130.3, 129.9, 129.2, 
129.1, 129.0, 128.9, 128.4, 128.2, 127.9, 78.0, 62.3, 62.1, 57.0, 
56.2, 43.1, 43.0, 13.9, 13.6. The ee was determined by HPLC with 
a Chiralcel AD-H column (85:15 hexanes: isopropanol, 1 mL/min, 
254 nm); First (major) diastereomer: tr (major) = 9.24 min, tr 
(minor) = 15.54 min; 45% ee; Second (minor) diastereomer: tr 

(major) = 12.72 min, tr (minor) = 19.21 min, 27% ee. 
 Ethyl 2-(4-bromobenzoyl)-4-nitro-3-phenylbutanoate (4k): 

White solid, yield 90%, ratio of diastereomers 1.6:1, Mp 121.9-
123.8 oC, [ ]D

25
 -10.1 (c 0.49, CHCl3). IR (KBr): 3031, 2986, 2926, 

1725, 1685, 1584, 1556, 1496, 1455, 1384, 1294, 1260, 1166, 
1070, 1024, 983, 882, 830, 700, 567 cm-1; 1H NMR (300 MHz, 
CDCl3): major isomer,  7.91 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.4 
Hz, 2H), 7.32-7.26 (m, 3H), 7.22-7.18 (m, 2H), 4.94-4.87 (m, 1H), 
4.77-4.76 (m, 2H), 4.50-4.44 (m, 1H), 3.86 (q, J = 7.2 Hz, 2H), 
0.89 (t, J = 7.2 Hz, 3H); minor isomer,  7.71 (d, J = 8.4 Hz, 2H), 
7.56 (d, J = 8.4 Hz, 2H), 7.32-7.26 (m, 3H), 7.22-7.18 (m, 2H), 
4.94-4.87 (m, 3H), 4.50-4.44 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 
1.18 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3):  191.9, 
191.8, 167.4, 166.7, 136.5, 136.1, 134.8, 134.5, 132.2, 132.1, 
130.3, 130.0, 129.7, 129.2, 129.0, 128.9, 128.2, 127.9, 125.9, 78.0, 
62.4, 62.1, 57.0, 56.2, 43.1, 43.0, 13.9, 13.6. The ee was 
determined by HPLC with a Chiralcel AD-H column (85:15 
hexanes: isopropanol, 1 mL/min, 254 nm); First (major) 
diastereomer: tr (major) = 10.09 min, tr (minor) = 17.56 min; 55% 
ee; Second (minor) diastereomer: tr (major) = 13.73 min, tr (minor) 
= 21.89 min, 40% ee. 

 

 


