ORGANIC LETTERS

2011 Vol. 13, No. 18 4894–4897

Rhodium-Catalyzed Olefin Isomerization/ Enantioselective Intramolecular Alder-Ene Reaction Cascade

Ryuichi Okamoto,[†] Eri Okazaki,[†] Keiichi Noguchi,[‡] and Ken Tanaka*,[†]

Department of Applied Chemistry, Graduate School of Engineering, and Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

tanaka-k@cc.tuat.ac.jp

Received July 23, 2011

ABSTRACT

The olefin isomerization/enantioselective intramolecular Alder-ene reaction cascade was achieved by using a cationic rhodium(I)/(R)-BINAP complex as a catalyst. A variety of substituted dihydrobenzofurans and dihydronaphthofurans were obtained from phenol- or naphthol-linked 1.7-envnes, respectively, with good yields and ee values.

The transition-metal-catalyzed intramolecular Alderene reaction of 1,6-enynes is a valuable method for the construction of carbocycles and heterocycles.^{1,2} The Trost group first reported an enantioselective variant of this

† Department of Applied Chemistry.

reaction by using palladium catalysts, although the enantioselectivity was moderate.^{3a} The Zhang group realized the highly enantioselective reaction by using rhodium catalysts.^{3b} After these pioneering works, a number of highly efficient enantioselective reactions have been reported.⁴ In these reports, 1,6-enynes, in which the propargyl group and the allyl group are connected with heteroatoms or malonates, have been most frequently

[‡] Instrumentation Analysis Center.

⁽¹⁾ For reviews, see: (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (b) Trost, B. M. Chem.—Eur. J. 1998, 4, 2405. (c) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (d) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (e) Brummond, K. M.; McCabe, J. M. In Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005; p 151. (f) Zhang, Z.; Zhu, G.; Tong, X.; Wang, F.; Xie, X.; Wang, J.; Jiang, L. Curr. Org. Chem. 2006, 10, 1457. (g) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew. Chem., Int. Ed. 2008, 47, 4268.

⁽²⁾ For examples, see: (a) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781. (b) Trost, B. M.; Lautens, M.; Chan, C.; Jeberatnam, D. J.; Mueller, T. J. Am. Chem. Soc. 1991, 113, 636. (c) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255. (d) Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976. (e) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 714. (f) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490. (g) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2002, 124, 5025. (h) Tong, X.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 6370. (i) Tong, X.; Li, D.; Zhang, Z.; Zhang, X. J. Am. Chem. Soc. 2004, 126, 7601. (j) Fürstner, A.; Martin, R.; Majima, K. J. Am. Chem. Soc. 2005, 127, 12236. (k) Fürstner, A.; Majima, K.; Martin, R.; Krause, H.; Kattnig, E.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 1992. (l) Wang, J.; Xie, X.; Ma, F.; Peng, Z.; Zhang, L.; Zhang, Z. Tetrahedron 2010, 75, 1281.

^{(3) (}a) Trost, B. M.; Lee, D. C.; Rise, F. *Tetrahedron Lett.* **1989**, *30*, 651. (b) Cao, P.; Zhang, X. *Angew. Chem., Int. Ed.* **2000**, *39*, 4104.

⁽⁴⁾ For examples, see: (a) Hatano, M.; Terada, M.; Mikami, K. Angew. Chem., Int. Ed. 2001, 40, 249. (b) Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 8198. (c) Lei, A.; He, M.; Wu, S.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 4104. (d) Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 4526. (e) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125, 4704. (f) Lei, A.; He, M.; Zhang, X. J. Am. Chem. Soc. 2003, 125, 11472. (g) Hashmi, A. S. K.; Haufe, P.; Nass, A. R. Adv. Synth. Catal. 2003, 345, 1237. (h) Hashmi, A. S. K.; Haufe, P.; Nass, A. R.; Bats, J. W. Adv. Synth. Catal. 2004, 346, 421. (i) Mikami, K.; Kataoka, S.; Yusa, Y.; Aikawa, K. Org. Lett. 2004, 6, 3699. (j) He, M.; Lei, A.; Zhang, X. Tetrahedron Lett. 2005, 46, 1823. (k) Mikami, K.; Kataoka, S.; Aikawa, K. Org. Lett. 2005, 7, 5777. (l) Mikami, K.; Kataoka, S.; Wakabayashi, K.; Aikawa, K. Tetrahedron Lett. 2006, 47, 6361. (m) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed. 2007, 46, 3942. (n) Liu, F.; Liu, Q.; He, M.; Zhang, X.; Lei, A. Org. Biomol. Chem. 2007, 5, 3531. (o) Nicolaou, K. C.; Li, A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem., Int. Ed. 2009, 48, 6293. (p) Corkum, E. G.; Hass, M. J.; Sullivan, A. D.; Bergens, S. H. Org. Lett. 2011, 13, 3522.

employed due to their high stability and facile preparation (Scheme 1). However, 1,6-enynes, possessing the heteroatom-substituted alkene moiety, have not been employed presumably due to their low stability and troublesome preparation (Scheme 1).

Scheme 1

On the other hand, our research group recently reported the cationic rhodium(I)/dppf complex-catalyzed olefin isomerization⁵/propargyl Claisen rearrangement cascade of ether-linked 1,6-enynes A, possessing the 1,1-disubstituted alkene moiety, leading to allenyl aldehydes C (Scheme 2). In this cascade reaction, 1.5-envnes **B**, possessing the enol ether moiety, are generated in situ and subsequently undergo the propargyl Claisen rearrangement in one pot. We anticipated that if 1,7-enynes **D**, in which the CR³R⁴ moiety of A is replaced with the phenyl group, are employed, 1,6-enynes E, possessing the trisubstituted enol ether moiety, are generated in situ⁷ and subsequently undergo the enantioselective intramolecular Alder-ene reaction to give enantioenriched dihydrobenzofurans F in one pot (Scheme 2). Although Mikami and co-workers reported the enantioselective intramolecular Alder-ene reactions of trisubstituted olefinic 1,6-enynes, ^{4a,e} those possessing a terminally disubstituted alkene moiety have been scarcely explored.8 Therefore, the enantioselective transformation from E to F is challenging. Herein, we report the asymmetric synthesis of substituted dihydrobenzofurans by the cationic rhodium(I)/(R)-BINAP complexcatalyzed olefin isomerization/enantioselective intramolecular Alder-ene reaction cascade.9

The reaction of 1,7-enyne 1a was first investigated in the presence of a cationic rhodium(I)/(R)-BINAP complex

Scheme 2

thid work

Table 1. Optimization of Reaction Conditions for Rh-Catalyzed Cascade Reaction of 1,7-Enyne $\mathbf{1a}^a$

				% yield ^b (% ee)		
entry	ligand	temp	conv (%)	2a	3a	4a
1	(R)-BINAP	rt	43	31	10 (97)	0
2	(R)-BINAP	80 °C	100	0	11 (97)	73
3	(R)-Segphos	80 °C	100	0	16 (96)	62
4	(R)-H ₈ -BINAP	80 °C	100	15	45(97)	26
5	(S,S)-DIOP	80 °C	100	32	0	18
6	(S,S)-BDPP	80 °C	100	51	0	15
7^c	(S,S)-Chiraphos	80 °C	100	78	0	5
8^c	(R,R)-Me-Duphos	80 °C	45	43	0	0
9^c	(R,R)-QuinoxP*	80 °C	98	81	0	0
10^d	(R)-BINAP	$70~^{\circ}\mathrm{C}$	97	8	69 (98)	4

 a [Rh(cod)₂]BF₄ (0.010 mmol, 10 mol %), ligand (0.010 mmol, 10 mol %), **1a** (0.10 mmol), and (CH₂Cl)₂ (1.5 mL) were used. b Isolated yield. As **2a** and **3a** were isolated as a mixture, their yields were determined by 1 H NMR. c [Rh(nbd)₂]BF₄ was used. d [Rh(cod)₂]BF₄ (0.015 mmol, 5 mol %), ligand (0.015 mmol, 5 mol %), **1a** (0.30 mmol), and (CH₂Cl)₂ (1.5 mL) were used.

(10 mol %). At room temperature for 16 h, the desired dihydrobenzofuran **3a** was obtained with a high ee value (Table 1, entry 1). However, the reaction was sluggish and enol ether **2a** was generated as a major product. Although a complete conversion of **1a** was observed at 80 °C for 16 h, achiral benzofuran **4a** was generated as a major product (entry 2). The effect of chiral bisphosphine ligands (Figure 1) was then examined at 80 °C (entries 2–9), which revealed that biaryl bisphosphines are effective ligands for the formation of **3a** and **4a** (entries 2–4), and (*R*)-BINAP showed the highest reaction rate (entry 2). To suppress the formation of **4a**, the reaction conditions were carefully optimized. Gratifyingly, when the reaction was conducted using 5 mol % catalyst at 70 °C, **3a** was obtained in good yield with a high ee value (entry 10).

Org. Lett., Vol. 13, No. 18, 2011

⁽⁵⁾ For a recent review of the transition-metal-catalyzed olefin isomerization, see: Tanaka, K. In *Comprehensive Organometallic Chemistry III*; Crabtree, R. H., Mingos, D. M. P., Ojima, I., Eds.; Elsevier: Oxford, 2007; Vol. 10, p 71.

⁽⁶⁾ Tanaka, K.; Okazaki, E.; Shibata, Y. J. Am. Chem. Soc. 2009, 131, 10822.

⁽⁷⁾ In the cationic rhodium(I)/bisphosphine complex-catalyzed Alder-ene reaction of oxygen-linked 1,6-enynes, the formation of 1,5-enynes, possessing the enol ether moiety, was observed as the undesired side reaction. See: ref 3b.

⁽⁸⁾ A single example using the 1,6-enyne possessing a terminally disubstituted alkene moiety has been reported. However, this reaction is limited to an *N*-tosylate protected amide. See: ref 4d.

⁽⁹⁾ Recently, novel cascade reactions initiated by the transition-metal-catalyzed olefin isomerization reaction were reported. See: (a) Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2008, 130, 14452. (b) Terada, M.; Toda, Y. J. Am. Chem. Soc. 2009, 131, 6354.

Figure 1. Structures of chiral bisphosphine ligands.

With the optimized reaction conditions in hand, we explored the scope of the cationic rhodium(I)/(R)-BINAP complex-catalyzed olefin isomerization/enantioselective intramolecular Alder-ene reaction cascade (Table 2). Various aryl (entries 1-4), alkenyl (entry 5), and alkyl substituents (entries 6-8) could be incorporated at the alkyne terminus. This study revealed that the electronic nature of the aromatic substituents at the alkyne terminus showed a modest impact on the product yields [electron-deficient aryl (entries 3 and 4) > electron-rich aryl (entries 1 and 2)]. 10 On the other hand, the ee values of aryl-, cyclohexenyl-, and cyclohexyl-substituted products were higher than those of primary alkyl-substituted ones (entries 1–6 vs entries 7 and 8). With respect to the substituents at the alkene moiety, phenyl-substituted enyne 1i could be transformed into the corresponding dihydrobenzofuran 3i with a high ee value, although the product yield was low (entry 9). 11 In these reactions, the major olefin geometries were in an E configuration (entries 1–9). However, the products obtained from naphthyl-linked 1,7-envnes 1i and 1k were Z isomers (entries 10 and 11). ¹² The absolute configuration of dihydronaphthofuran (-)-3k was unambiguously determined to be S by the anomalous dispersion method (Figure 2).

The reactions of 1,7-enynes 11 and 1m, possessing the 1,2-disubstituted alkene moiety, were also examined

Table 2. Rh-Catalyzed Olefin Isomerization/Enantioselective Intramolecular Alder-Ene Reaction Cascade of 1,7-Enynes $\mathbf{1a} - \mathbf{k}^a$

entry		1	conditions		product % yield ^b (% ee)
1	Ph	1a	70 °C 16 h	Ph Me	(-)- 3a 69 ^c (98)
2 ^d	OMe	1b	70 °C 48 h	MeO N	(+)- 3b 69 ^e (97)
3	CF ₃	1c	70 °C 16 h	F ₃ C M	(–) -3c 76 (98)
4	CI	1d	70 °C 48 h	CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-C	(-)- 3d 85 (97)
5	Me	1e	70 °C 16 h	Me	(-)- 3e 68 (98)
6	Cy	1f	60 °C 24 h	Cy Me	(–) -3f 81 (99)
7	n-Bu Me	1g	60 °C 72 h	n-Bu Me	(-)- 3g 66 (88)
8	CI	1h	70 °C 48 h	CI	(–) -3h 69 (86)
9 ^d	Ph	1i	80 °C 72 h	Ph.,	(-)- 3i 23 (94) <i>E/Z</i> = 94:6
10	Ph	1j	60 °C 16 h	Ph O Mi	(-)- 3j 60 (98) <i>E/Z</i> = 9:91
11	Br O Me	1k	60 °C (Me	-Br (S)-(-)- 3k 72 (97) E/Z = 7:93

 a Reactions were conducted using [Rh(cod)₂]BF₄ (0.015 mmol, 5 mol %), (R)-BINAP (0.015 mmol, 5 mol %), and 1a-k (0.30 mmol) in (CH₂Cl)₂ (1.5 mL). b Isolated yield. c Isolated as a mixture of 2a and 3a. Pure 2a and 3a were isolated by GPC. d Catalyst: 10 mol %. c Isolated as a mixture of 3b and 4b. Pure 3b was isolated by GPC.

(Scheme 3). Although the desired chiral dihydrobenzofurans were not obtained at all, the corresponding benzofurans **4l** and **4m** were obtained in moderate yields.

4896 Org. Lett., Vol. 13, No. 18, 2011

⁽¹⁰⁾ In the reactions of 1c and 1d, the formation of the corresponding benzofurans was suppressed.

⁽¹¹⁾ The corresponding benzofuran **4i** was also generated in ca. 13% yield.

⁽¹²⁾ Importantly, the benzene or naphthalene linkage in 1,7-enynes is necessary to gain high product yield. The reaction of ethylene-linked 1,7-enyne In proceeded in low yield, although the product 3n could not be isolated in a pure form due to the formation of an unidentified mixture of byproduct. In addition, the reaction of tosylamide-linked 1,7-enyne 10 was sluggish.

Figure 2. ORTEP diagram of (S)-(-)- $3\mathbf{k}$ with ellipsoids at 30% probability.

Scheme 3

We propose the following mechanism (Scheme 4). In the first step, the olefin isomerization 13 proceeds to afford 1,6-enyne 2. Enyne 2 reacts with rhodium to afford rhodacy-clopentene G. β -Hydride elimination followed by reductive elimination affords dihydrobenzofuran (E)-3. In the case of dihydronaphthofurans, Z isomers were obtained presumably through the rhodium-catalyzed isomerization of E isomers in order to release the steric hindrance. 14 Subsequent rhodium-catalyzed olefin isomerization affords benzofuran 4. 15

Indeed, isolated 2a was transformed into 3a and 4a at 70 °C in the presence of the cationic rhodium(I)/(R)-BINAP catalyst (Scheme 5). Furthermore, heating of 3a in (CH₂Cl)₂ in the absence of the Rh catalyst did not furnish 4a (Scheme 6).

Scheme 4

Scheme 5

Scheme 6

In conclusion, the olefin isomerization/enantioselective intramolecular Alder-ene reaction cascade was achieved by using a cationic rhodium(I)/(R)-BINAP complex as a catalyst. A variety of substituted dihydrobenzofurans and dihydronaphthofurans were obtained from phenol- or naphthol-linked 1,7-enynes, respectively, with good yields and ee values. Further utilization of the cationic rhodium-(I) complex for various cascade reactions is underway in our laboratory.

Acknowledgment. This work was supported partly by a Grant-in-Aid for Scientific Research (No. 20675002) from MEXT, Japan. We thank Takasago International Corporation, for the gift of H_8 -BINAP and Segphos, and Umicore, for generous support in supplying a rhodium complex.

Supporting Information Available. Experimental procedures, compound characterization data, and an X-ray crystallographic information file. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 13, No. 18, 2011

⁽¹³⁾ For the cationic rhodium(I)/bisphosphine complex-catalyzed isomerization of allyl ethers to enol ethers, see: (a) Fatig, T.; Soulié, J.; Lallemand, J.-Y.; Mercier, F.; Mathey, F. *Tetrahedron* **2000**, *56*, 101. (b) Hiroya, K.; Kurihara, Y.; Ogasawara, K. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 2287.

⁽¹⁴⁾ For the cationic rhodium(I)/bisphosphine complex-catalyzed *E*/*Z* isomerization of alkenes, see: Tanaka, K.; Shoji, T.; Hirano, M. *Eur. J. Org. Chem.* **2007**, 2687.

⁽¹⁵⁾ For the cationic rhodium(I)/bisphosphine complex-catalyzed isomerization of α -alkylidenecycloalkanones to cycloalkenones, see: Takeishi, K.; Sugishima, K.; Sasaki, K.; Tanaka, K. *Chem.—Eur. J.* **2004**, *10*, 5681.