Letter

CF₃COOH/O₂-Mediated Metal-Free Domino Construction of the Isatin Skeleton

Α

Jiadi Zhou^a Yongjian Chen^a Fang Wang^b Qiwei Zhang^b Jianjun Li^{*a,b}

C-H, C-O, C-N bond cleavage C-C, C=O, C-N bond formation Δ CF₂COOH (1 equiv) $B^1 = alkyl$ $B^1 = alkyl$ 02 (1 atm) A R^2 B^1 , $B^2 = alky$ C-H. C-O bond cleavage C-C, C=O bond formation Metal-free Mild and simple reaction conditions 31 examples Divergent glycine esters 23-81% yield

^a Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China

^b College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China

lijianjun@zjut.edu.cn

Received: 18.06.2019 Accepted after revision: 28.07.2019 Published online: 14.08.2019 DOI: 10.1055/s-0039-1690018; Art ID: st-2019-u0315-I

Abstract Directed by the strategy of C–H activation, an efficient construction of the isatin skeleton was developed through aerobic oxidation of glycine esters. The reactions were performed under CF₃COOH/O₂ conditions in the absence of metal catalysts. The reaction mechanisms were investigated with control experiments.

Key words metal-free, isatin skeleton, C–H activation, CF $_3$ COOH, oxygen

Isatin and its derivatives exist widely in natural products and many of them are bioactive compounds or pharmaceutics.¹ Although, a number of methods have been established for the construction of such structures, the reported syntheses of isatins often require substrate prefunctionalization, multiple steps, and starting materials that are not readily available.² Therefore, the development of novel and practical methods for the synthesis of isatins by double carbonylation of aromatic C–H bonds *ortho* to an amino group has drawn much attention. In recent years, Cu-based,³ Sb-based,⁴ Pd-based,⁵ and Oxone/NaNO₂-based⁶ coupling reactions have been developed (Scheme 1). Nevertheless, the development of more practical methods for the synthesis of isatin and its derivatives remains highly desirable.

The direct α -C–H bond functionalization of glycine derivatives has become a straightforward strategy for the synthesis of α -substituted amino acid derivatives⁷ and other useful structures.⁸ Nevertheless, the oxidative coupling of glycine derivatives without metal catalysts and chemical oxidants is rare. Here, we reported an efficient construction of the isatin skeleton through aerobic oxidation of glycine esters under mild reaction conditions that requires only CF_3COOH and O_2 .

Our efforts toward this C-H activation strategy for the synthesis of isatins initially focused on intramolecular cyclization of N-alkyl-N-arylglycinates. When a mixture of 1a (1.0 mmol), CuCl (10 mol%), and O₂ (1 atm) was stirred in acetonitrile at 70 °C for 12 hours, a trace amount of 2a was indeed formed (Table 1, entry 1). This encouraging result prompted us to optimize the reaction conditions further. A series of Brønsted acids, such as CCl₃COOH, CF₃COOH, H₂SO₄, and TfOH were screened, and the results indicated that CF₃COOH (1 equiv) could promote the aerobic oxidation to a significant extent (entries 2-5). To our surprise, a similar vield of **2a** was obtained without copper catalyst, albeit with an extended reaction time of 48 hours (entry 7). Screening of the loading amounts of CF₃COOH indicated that 1 equiv was optimal (entries 7–10). In the absence of CuCl. other Brønsted acids were also less active (entries 11-13).

Acid could promote the formation of intermediates **A**, **E**, and **H** by the generation of H_2O_2 , which is crucial to the reaction (Scheme 3 and Scheme 4). On the other hand, in the absence of O_2 , almost none of the desired product was detected (Table 1, entry 14). Various solvents, such as, DCE, THF, MeOPh, and EtOH were further examined, and MeCN was still the best solvent (entries 15–18). The optimal reaction conditions were thus established as **1a** (1.0 mmol), CF₃COOH (1.0 mmol), and O_2 (1 atm) stirring in acetonitrile at 70 °C for 48 hours.

Synlett

J. Zhou et al.

Letter

В

Table 1 Optimization of Reaction Conditions^a

Entry	Cat. (10 mol%)	Acid (equiv)	Solvent	Time (h)	Yield (%) ^b	
1	CuCl	-	MeCN	12	trace	
2	CuCl	CCl₃COOH (1)	MeCN	12	57	
3	CuCl	CF ₃ COOH (1)	MeCN	12	67	
4	CuCl	$H_{2}SO_{4}(1)$	MeCN	12	trace	
5	CuCl	$CF_3SO_3H(1)$	MeCN	12	trace	
6	-	CF ₃ COOH (1)	MeCN	12	31	
7	-	CF ₃ COOH (1)	MeCN	48	65	
8	-	CF ₃ COOH (0.5)	MeCN	48	40	
9	-	CF ₃ COOH (2)	MeCN	48	63	

Entry	Cat. (10 mol%)	Acid (equiv)	Solvent	Time (h)	Yield (%) ^b
10	-	-	MeCN	48	n.d.
11	-	CCl₃COOH (1)	MeCN	48	50
12	-	$H_2SO_4(1)$	MeCN	48	trace
13	-	$CF_3SO_3H(1)$	MeCN	48	trace
14 ^c	-	$CF_3COOH(1)$	MeCN	48	trace
15	-	$CF_3COOH(1)$	MeOPh	48	61
16	-	$CF_3COOH(1)$	DCE	48	53
17	-	$CF_3COOH(1)$	EtOH	48	12
18	-	$CF_3COOH(1)$	THF	48	50

^a Reaction conditions: **1a** (1.0 mmol), catalyst, acid, O₂ (1 atm) in the solvent at 70 °C.

^b Isolated yield.

^c The reaction was performed under N₂ atmosphere.

With the best conditions established, the scope of the reaction with substituted *N*-alkyl-*N*-arylglycinates was investigated (Table 2).⁹ Electron-donating groups on the *para*-

J. Zhou et al.

position of the phenyl ring of **1** enhanced the efficiency of the reaction, giving the desired products **2a**-**i** in moderate to good yields (52–81%). However, when electron-with-drawing groups were introduced, the desired products **2k** and **2l** were obtained in low yields. A *meta*-substituted glycine ester also delivered the corresponding product **2j**. Notably, when substrates with *ortho*-methyl substituted or unsubstituted aromatic moiety were used, the reaction became complex (**2m** and **2n**). We then investigated the substrate scope with respect to the *N*-groups, such as methyl, ethyl, *n*-propyl, and *n*-butyl, which also gave the corresponding isatins **2a**-**d** in moderate yields.

Table 2	Reaction of <i>N</i> -Alky	yl-N-arylglycin	ates ^a	
R ¹		CF ₃ COO	H, O ₂ → R ¹ (ℓ) 0 °C	
Entry	R ¹	R ²	Product	Yield (%) ^b
1	4-methyl	methyl	2a	65
2	4-methyl	ethyl	2b	66
3	4-methyl	<i>n</i> -propyl	2c	62
4	4-methyl	<i>n</i> -butyl	2d	52
5	4-isopropyl	methyl	2e	81
6	4-isopropyl	ethyl	2f	70
7	4- <i>tert</i> -butyl	methyl	2g	74
8	4- <i>tert</i> -butyl	ethyl	2h	64
9	4-methoxy	methyl	2i	63
10	3,5-dimethyl	ethyl	2j	72
11	4-fluoro	methyl	2k	25 ^c
12	4-chloro	methyl	21	23 ^c
13	2-methyl	methyl	2m	mixture
14	Н	methyl	2n	mixture

 $^{\rm a}$ Reaction conditions: 1 (1 mmol), CF_3COOH (1 equiv), MeCN (5 mL), 70 °C under O_2 (1 atm).

^b Isolated yield.

^c NMR yield.

The scope of the reaction with substituted *N*-H-*N*-arylglycine esters **3** were investigated (Table 3).¹⁰ None of intramolecular cyclization products were detected, which indicated that the reaction proceeded through different mechanism. To our delight, several functional groups, such as methyl, isopropyl, *tert*-butyl, methoxy, fluoro, chloro, and bromo groups, on the aromatic moiety were well-tolerated, gave the corresponding products **4a**–**p** and **4s** in moderate to good yields. When *meta*-methyl substituted substrates were reacted, the target products **4q** and **4r** were obtained in 70% and 66% yields, respectively. However, *ortho*-methyl substituted and unsubstituted aniline glycine derivatives gave a complex reaction mixture (**4t** and **4u**). If strong EWGs (NO₂, and CF₃) were introduced, no desired products were detected due to poor conversion of the starting materials (**4v** and **4w**).

Table 3 Reaction of N-Alkyl-N-arylglycinates^a

Entry	R ¹	R ²	Product	Yield (%) ^b	
1	4-methyl	methyl	4a	65	
2	4-isopropyl	methyl	4b	75	
3	4-tert-butyl	methyl	4c	78	
4	4-methoxy	methyl	4d	56	
5	4-fluoro	methyl	4e	62	
6	4-chloro	methyl	4f	53	
7	4-methyl	ethyl	4g	64	
8	4-isopropyl	ethyl	4h	79	
9	4- <i>tert</i> -butyl	ethyl	4i	51	
10	4-fluoro	ethyl	4j	72	
11	4-chloro	ethyl	4k	55	
12	4-bromo	ethyl	41	52	
13	4-methyl	isopropyl	4m	46	
14	4- <i>tert</i> -butyl	isopropyl	4n	72	
15	4-methoxy	isopropyl	4o	50	
16	4-fluoro	isopropyl	4р	46	
17	3,5-dimethyl	methyl	4q	70	
18	3,5-dimethyl	isopropyl	4r	66	
19	4-methyl	benzyl	4s	70	
20	2-methyl	ethyl	4t	mixture	
21	Н	ethyl	4u	mixture	
22	4-nitro	ethyl	4v	none	
23	4-trifluoromethyl	ethyl	4w	none	

 a Reaction conditions: **3** (1 mmol), CF₃COOH (1 equiv), MeCN (5 mL), 70 $^\circ$ C under O₂ (1 atm).

^b Isolated yield (based on 0.5 equiv of **3**).

To explore the mechanism, a series of control reactions were conducted, as shown in Scheme 2. It was found that the addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO) (1 equiv) inhibits the reaction, suggesting a single-electron-transfer pathway might be involved. We are delighted to detect compound **I** by high-resolution mass spectrometry (HRMS), implying that the C–O bond in the ester was activated (Scheme 2, eq. 1).¹¹ Under the standard intermolecular cyclization, intermediates **D**, **E**, **F**, and **H** were detected by a similar method (Scheme 4).¹¹ Compound **5** was found

Synlett

I. Zhou et al.

to react with N-methyl-p-toluidine under the standard conditions, and 2a was obtained in 70% yield (Scheme 2, eq. 2). Then the standard conditions were applied to 6 and 7 (Scheme 2, eq. 3 and 4), and no reaction occurred, which ruled out the possibility of a direct intramolecular Friedel-Crafts type reaction of glycine ester. 2-(Methyl(*p*-tolyl)amino)acetamide and *p*-tolylglycine showed no reactivity (Scheme 2, eq. 5 and 6). Furthermore, substrates with different ester groups were investigated: the methyl ester, ethyl ester, isopropyl ester, *tert*-butyl ester, and benzyl ester gave **2a** in 61, 67, 57, 0, and 68% yield, respectively (Scheme 2, eq. 7). The results show that the α -proton adjacent to the ester group is crucial for the formation of isatin. Finally, the source of the oxygen atom in the amide was studied by adding H_2O^{18} to the reaction mixture, whereupon product **2h** was formed in 60% yield without the ¹⁸O-incorporation product [¹⁸O] 2h (Scheme 2, eq. 8). The possibility that the oxygen atom comes from H₂O was thus excluded.

Based on the above results, a possible mechanism of intramolecular cyclization was proposed (Scheme 3). In the presence of dioxygen, the relatively active C–H bond of the glycine ester is oxidized by O_2 to give a radical intermediate **A**. Second, **A** is trapped by dioxygen to produce a peroxide radical **B**. After a possible intramolecular 1,6-H shift, the C– H bond adjacent to the oxycarbonyl group is activated, followed by β -cleavage and elimination of water, to give acyl radical **C**. This species is further oxidized to a carbonyl cation, which is followed by an intramolecular Friedel–Crafts cyclization. After a proton loss and rearomatizaion, the isatin product is afforded.

A plausible mechanism for intermolecular cyclization is depicted in Scheme 4. The glycine ester 3g was first oxidized by O₂ to give the hydroperoxide intermediate **D**. The iminium ion intermediate **E** could then be formed through an acid-catalyzed S_N1-type procedure from **D**. Subsequently, coupling of **E** with another 3g results in the intermediate **F**; intramolecular nucleophilic attack of the NH group to the ester in **F** affords the intermediate **G**, which is further oxidized to give the intermediate **H**. Finally, hydrolytic cleavage of **H** produces the isatin product.

In conclusion, a metal-free domino construction of the isatin skeleton was developed through aerobic oxidation of glycine esters. The reaction thus provides a new way to achieve C–H activation. Based on the published reports and on our experiments, two plausible mechanisms were proposed. A detailed investigation of the mechanism and further application of this protocol is under way in our laboratory.

Funding Information

We are grateful to the National Natural Science Foundation of China (No. 21776254) for financial help.

Letter

Scheme 2 Control experiments

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690018

References

- (1) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 112, 6104.
- (2) (a) Tang, B. X.; Song, R. J.; Wu, C. Y.; Liu, Y.; Zhou, M. B.; Wei, W. T.; Deng, G. B.; Yin, D. L.; Li, J. H. J. Am. Chem. Soc. 2010, 132, 8900. (b) Rogness, D. C.; Larock, R. C. J. Org. Chem. 2011, 76, 4980. (c) Huang, P. C.; Gandeepan, P.; Cheng, C. H. Chem.

Scheme 4 A possible mechanism for intermolecular cyclization

Commun. 2013, 49, 8540. (d) Zi, Y.; Cai, Z. J.; Wang, S. Y.; Ji, S. J. Org. Lett. 2014, 16, 3094. (e) llangovan, A.; Satish, G. J. Org. Chem. 2014, 79, 4984.

- (3) (a) Kuan, S. H. C.; Sun, W.; Wang, L.; Xia, C.; Tay, M. G.; Liu, C. Adv. Synth. Catal. 2017, 359, 3484. (b) Liu, T.; Yang, H.; Jiang, Y.; Fu, H. Adv. Synth. Catal. 2013, 355, 1169. (c) Garg, P.; Jadhav, S. D.; Singh, A. Asian J. Org. Chem. 2017, 6, 1019. (d) See also ref. 2a.
- (4) (a) Jia, X.; Zhu, Y.; Yuan, Y.; Zhang, X.; Lü, S.; Zhang, L.; Luo, L. ACS Catal. 2016, 6, 6033. (b) Ji, H.; Zhu, Y.; Shao, Y.; Liu, J.; Yuan, Y.; Jia, X. J. Org. Chem. 2017, 82, 9859.
- (5) Li, W.; Duan, Z.; Zhang, X.; Zhang, H.; Wang, M.; Jiang, R.; Zeng, H.; Liu, C.; Lei, A. Angew. Chem. Int. Ed. 2015, 54, 1893.
- (6) Liao, Y. Y.; Gao, Y. C.; Zheng, W.; Tang, R. Y. Adv. Synth. Catal. 2018, 360, 3391.
- (7) (a) Huo, C.; Wang, C.; Wu, M.; Jia, X.; Xie, H.; Yuan, Y. Adv. Synth. Catal. 2014, 356, 411. (b) Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Angew. Chem. Int. Ed. 2014, 53, 13544. (c) Jia, X.; Liu, X.; Shao, Y.; Yuan, Y.; Zhu, Y.; Hou, W.; Zhang, X. Adv. Synth. Catal. 2017, 359, 4399. (d) Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew. Chem. Int. Ed. 2013, 52, 12942. (e) Salman, M.; Zhu, Z. Q.; Huang, Z. Z. Org. Lett. 2016, 18, 1526. (f) Wei, X. H.; Wang, G. W.; Yang, S. D. Chem. Commun. 2015, 51,

832. (g) Xie, J.; Huang, Z. Z. Angew. Chem. Int. Ed. 2010, 49, 10181. (h) Xie, Z.; Liu, X.; Liu, L. Org. Lett. 2016, 18, 2982. (i) Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem. Int. Ed. 2011, 50, 10429. (j) Zhang, Y.; Ni, M.; Feng, B. Org. Biomol. Chem. 2016, 14, 1550. (k) Zhu, Z. Q.; Bai, P.; Huang, Z. Z. Org. Lett. 2014, 16, 4881.

- (8) (a) Huo, C.; Chen, F.; Yuan, Y.; Xie, H.; Wang, Y. Org. Lett. 2015, 17, 5028. (b) Huo, C.; Xie, H.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Chem. Eur. J. 2015, 21, 5723. (c) Huo, C.; Yuan, Y.; Chen, F.; Wang, Y. Adv. Synth. Catal. 2015, 357, 3648. (d) Jia, X.; Hou, W.; Shao, Y.; Yuan, Y.; Chen, Q.; Li, P.; Liu, X.; Ji, H. Chem. Eur. J. 2017, 23, 12980. (e) Jia, X.; Lu, S.; Yuan, Y.; Zhang, X.; Zhang, L.; Luo, L. Org. Biomol. Chem. 2017, 15, 2931. (f) Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Org. Lett. 2012, 14, 4030. (g) Liu, J.; Wang, Y.; Yu, L.; Huo, C.; Wang, X.; Jia, X. Adv. Synth. Catal. 2014, 356, 3214. (h) Lu, S.; Zhu, Y.; Ma, X.; Jia, X. Adv. Synth. Catal. 2016, 358, 1004. (i) Richter, H.; Mancheno, O. G. Org. Lett. 2011, 13, 6066. (j) Xie, Z.; Jia, J.; Liu, X.; Liu, L. Adv. Synth. Catal. 2016, 358, 919. (k) Li, H.; Huang, S.; Wang, Y.; Huo, C. Org. Lett. 2018, 20, 92. (l) See also ref. 4a.
- (9) Intramolecular Cyclization; General Procedure A: A 25 mL round-bottom flask containing N-alkyl-N-arylglycinate (1 mmol), CF₃COOH (0.5 mmol), and MeCN (5 mL) was stirred at

Ε

J. Zhou et al.

70 °C under O₂ (1 atm) for 12 h. CF₃COOH (0.5 mmol) was added and, after stirring for 36 h, the reaction mixture was concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel.

5-Methoxy-1-methylindoline-2,3-dione (2i)

Prepared by following General Procedure A using ethyl *N*-(4-methoxyphenyl)-*N*-methylglycinate (223 mg, 1.0 mmol). Purification by column chromatography (*n*-hexane/EtOAc, 5:2) gave **2i** (120 mg, 63%) as a red solid. ¹H NMR (400 MHz, CDCl₃): δ = 7.17–7.13 (m, 2 H), 6.82 (d, *J* = 8.4 Hz, 1 H), 3.81 (s, 3 H), 3.22 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃): δ = 183.7, 158.3, 156.6, 145.3, 124.6, 117.8, 110.9, 109.6, 56.0, 26.2. HRMS (ESI⁺): *m/z* [M + Na]⁺ calcd for C₁₀H₉NNaO₃: 214.0475; found: 214.0476.

(10) **Intermolecular Cyclization; General Procedure B:** A 25 mL round-bottom flask with *N*-H-*N*-arylglycinate (1 mmol), CF₃COOH (0.5 mmol) and MeCN (5 mL) was stirred at 70 °C under O₂ (1 atm) for 6 h. CF₃COOH (0.5 mmol) was added and, after stirring for 6 h, the reaction mixture was concentrated under reduced pressure and the crude product was purified by column chromatography on silica gel.

Methyl 2-(5-Isopropyl-2,3-dioxoindolin-1-yl)acetate (4b) Prepared by following General Procedure B using methyl (4-isopropylphenyl) glycinate (207 mg, 1.0 mmol). Purification by column chromatography (*n*-hexane/EtOAc, 8:1) gave **4b** (98 mg, 75%) as a red solid. ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (s, 1 H), 7.46 (d, *J* = 8.1 Hz, 1 H), 6.74 (d, *J* = 8.1 Hz, 1 H), 4.49 (s, 2 H), 3.79 (s, 3 H), 2.90 (hept, *J* = 6.8 Hz, 1 H), 1.24 (d, *J* = 6.9 Hz, 6 H). ¹³C NMR (101 MHz, CDCl₃): δ = 182.8, 167.4, 158.3, 148.3, 145.3, 136.8, 123.4, 117.7, 110.0, 52.8, 41.1, 33.5, 23.8 (2C). MS (ESI⁺): *m*/*z* = 262.05 [M + H]⁺. HRMS (ESI⁺): *m*/*z* [M + Na]⁺ calcd for C₁₄H₁₅NNaO₄: 284.0893; found: 284.0889.

(11) Detailed analysis conditions for intermediates I: A 25 mL roundbottom flask containing **1a** (1 mmol), CF₃COOH (0.5 mmol), TEMPO (1 equiv), and MeCN (5 mL) was stirred at 70 °C under O₂ (1 atm) for 12 h. The reaction mixture was concentrated under reduced pressure and the crude material was analyzed by HRMS-APCI using ESI⁺ ionization.Detailed analysis conditions for intermediates **D**, **E**, **F**, and **H**: To a 25 mL round-bottom flask containing **3g** (1 mmol), CF₃COOH (0.5 mmol), and MeCN (5 mL) was stirred at 70 °C under O₂ (1 atm) for 2 h, then the reaction mixture was concentrated under reduced pressure and the crude material was analyzed by HRMS-APCI using ESI⁺ ionization.