Christel Jørgensen,^a Christian Pedersen,^a Inger Søtofte^b

^a Department of Organic Chemistry, Technical University of Denmark, Building 201, DK-2800, Lyngby, Denmark Fax +45(45)933968. E-mail: okcp@pop.dtu.dk

^b Chemistry Department, Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark

Received 4 July 1997; 13 October 1997

Abstract: Two new 2,3-aziridino-2,3-dideoxyhexonamides **3** and **11** were prepared by a three-step procedure from commercially available D-glucono-1,5-lactone and D-gulono-1,4-lactone, respectively. The lactones were converted into methyl 3,4:5,6-di-*O*-isopropylidene-2-*O*-mesyl esters **2** and **10**, which upon treatment with ammonia formed the title aziridino compounds. These were reductively cleaved by hydrazine to give 3-amino-2,3-dideoxyhexonic hydrazides **13** and **15**, which were easily converted into the corresponding lactone **14** and acid **16**, respectively.

Key words: sugar lactones, aziridines, amino acids

Enantiopure aziridine-2-carboxylic acids are an important class of compounds as they can be used as intermediates in the synthesis of α - and β -amino acids. An aziridine ring can be opened by nucleophiles with complete stereochemical inversion.¹ Optically active aziridine-2-carboxylic acid derivatives have previously been prepared from starting materials such as oxiranes,² the naturally occurring hydroxy acids,³ L-amino acids⁴ and carbohydrates.^{5,6} Asymmetric aziridination, with and without the use of chiral auxiliaries, has also been reported.⁷⁻⁹ We describe here a novel and easy three-step procedure for the preparation of 2,3-aziridino-2,3-dideoxyhexonamides using readily available sugar lactones. The applicability of these new products is illustrated by a simple transformation into 3-amino-2,3-dideoxyhexonolactones. The latter may be reduced to aminodeoxy-hexoses, which constitute the sugar part of a large number of antibiotics.¹⁰ The aziridinohexonamides allow a simultaneous generation of the C-3 amino and C-2 deoxy functions. In contrast, 3-aminodeoxyhexoses are usually prepared by introducing the C-3 amino function into mono- and dideoxyhexoses.

It has been previously reported that the acid-catalyzed isopropylidenation of D-glucono-1,5-lactone with 2,2dimethoxypropane (2,2-DMP) and methanol gives the diacetal methyl ester 1 in good yield.¹¹ Different derivatives of this ester have been synthesized by modification of the C-2 position (halogenation and deoxygenation, 12 *O*-acylation and *O*-alkylation 13,14). In the present work, the 2-*O*mesyl ester 2^{14} was treated with concentrated aqueous ammonia to give the 2,3-aziridino-2,3-dideoxyhexonamide 3 as the main product (Scheme 1). The reaction is believed to proceed via elimination 12,13 to 4 followed by addition of ammonia to give 5, which subsequently yields the *trans*-aziridine 3 (Scheme 2). The addition of ammonia appeared to be diastereoselective as predicted from the work of Chittenden and Regeling,¹² but the ¹H NMR spectrum of the crude product showed several minor byproducts, none of which have been isolated and identified. The observed selectivity is in analogy with similar additions to α -bromoacrylates.⁶ Compound **3** could be easily isolated in 46% yield by crystallization after treatment with a basic ion-exchange resin.

The structure of **3** was established by X-ray analysis of the *N*-tosylated derivative **6**, which also proved to be more suitable for NMR spectroscopic characterization. The unprotected aziridine **3** gave broad signals in both ¹H and ¹³C NMR spectra due to slow exchange of the NH proton and/or slow inversion at the nitrogen atom. *N*-Tosylation is known to lower the energy barrier for inversion¹⁵ and, in agreement with this, ¹H NMR spectrum of **6** showed sharp lines revealing the expected low value (4.3 Hz) of the $J_{2,3}$ coupling constant.¹⁶

SYNTHESIS

E-mail: is@kemi.dtu.dk.

Starting with D-mannono-1,4-lactone, obtained from isoascorbic acid,¹⁷ the crystalline diacetal methyl ester **8** was prepared analogously to **2** in 52% overall yield (Scheme 3). The assigned structure was established by comparison of the ¹H NMR data of **7** and **8**. As the only notable change, the doublet at $\delta = 4.35$ ($J_{2,3} = 3.0$ Hz) in **7** was moved downfield to $\delta = 5.35$ ($J_{2,3} = 2.2$ Hz) in **8** indicating *O*-mesylation at C-2. The *manno*-configurated compound **7** had previously been prepared from **1** by epimerization of the OH-group, but no physical data were reported.¹³ Treatment of **8** with concentrated aqueous ammonia gave **3** in accordance with the suggested mechanism.

Scheme 3

As the original stereochemistry at C-2 and C-3 is assumed to be lost during the reaction, only C-4 or C-5 isomeric products could lead to other isomers. Using commercially available D-gulono-1,4-lactone and applying the same reaction conditions as described above, a similar regioselective di-*O*-isopropylidenation took place to give **9**. Mesylation of crude **9** gave the crystalline *gulo*-derivative **10** in 56% overall yield. Treatment of **10** with concentrated aqueous ammonia yielded the crystalline 2,3-aziridino-2,3-dideoxy hexonamide **11** in 40% yield (Scheme 4). Unidentified byproducts were also formed in this case. The *ido*-configuration was proven by X-ray analysis of the *N*tosylate **12**.

Reductive cleavage of aziridine-2-carboxylic acids provides a route to α - and β -amino acids. Hydrogenolysis can be used, but substitution patterns, catalyst and solvent effect the direction of the reduction. With N-tosylated aziridine-2-carboxylates high yields of both α -amino and β amino esters have been obtained.^{8,18} Recently a highly regioselective reduction with samarium(II) iodide was reported, leading exclusively to β -amino esters.¹⁹ In the present work it was found that boiling 3 with aqueous hydrazine gave the 3-amino-2,3-dideoxyhydrazide 13 in quantitative yield. The reaction is believed to proceed via a ketene intermediate.²⁰ A similar cleavage of the aziridine ring has been observed for N-alkylated aziridines.²¹ Treatment of the hydrazide 13 with bromine gave the crystalline 3-amino-2,3-dideoxylactone 14 as the hydrobromide in 74% yield (Scheme 5). Analogously, the hy-

In summary, we have described a three-step synthesis of two 2,3-aziridino-2,3-dideoxyhexonamides with D-*gluco* and D-*ido* configuration. Although the yields are moderate, the method is convenient as the starting materials are readily available and the experimental procedures are simple (no chromatography). These diastereomerically pure aziridine-2-carboxyamides **3** and **11** proved to be useful precursors for 3-amino-2,3-dideoxyhexonic acids.

Melting points are uncorrected. Optical rotations were measured on a Perkin Elmer 241 polarimeter. NMR spectra were recorded on Bruker AC-250 or AM-500 instruments. CHCl₃ (δ = 7.27 and 76.9) was used

as an internal reference for CDCl₃ solutions and dioxane ($\delta = 67.4$) for ¹³C NMR spectra measured in D₂O. H₂O ($\delta = 4.60$) was used as internal reference for ¹H NMR spectra measured in D₂O solutions. Column chromatography was performed on silica gel using the flash technique. Microanalyses were performed by Research Institute for Ph armacy and Biochemistry, Prague, and Chemistry Department II, University of Copenhagen.

Methyl 3,4;5,6-Di-O-isopropylidene-2-O-mesyl-D-gluconate (2):

D-Glucono-1,5-lactone (10.6 g, 59.6 mmol) was stirred for 48 h at r.t. in a mixture of 2,2-dimethoxypropane (20 mL), anhyd acetone (6 mL), MeOH (2 mL) and MeSO₃H (0.1 mL). The mixture was then neutralized with NaHCO₃, filtered and concentrated to give crude **1** (~17 g), which was dissolved in pyridine (40 mL) and cooled in an ice bath. MeSO₂Cl (10.0 g, 89.4 mmol) was added and the mixture was stirred for 1 h at 0 °C and then 1 h at r.t. When the mixture was poured into a large volume of ice water (250 mL), the product precipitated as a white solid. Filtration and recrystallization from MeOH/H₂O gave **2** (12.7 g, 58%); mp 82–84°C. Further recrystallization of a sample from MeOH/H₂O gave a product with mp. 84–85°C (Lit.¹² mp 86–88°C); [α]_D+42.6 (c = 1.8, CHCl₃) (Lit.¹² [α]_D+19.4). The NMR data are in accordance with the literature.¹⁴

2,3-Aziridino-2,3-dideoxy-5,6-O-isopropylidene-D-gluconamide (3):

The methyl ester **2** (13 g, 35 mmol) was suspended in 25% aq ammonia (200 mL) and stirred for 5 d. The ammonia was then evaporated and the crude product was passed through a column of ion exchange resin (IRA 420 OH⁻, 100 mL) in order to remove mesylate ions. The resin was washed with H₂O (500 mL) and the eluate concentrated to give about 6 g (80 %) of a crude syrup, which was coevaporated twice with EtOAc. The syrup could then be crystallized from EtOAc to give **3** (3.5 g, 46 %) as colorless crystals; mp 106–108 °C. Recrystallization from EtOAc gave a product with mp 110–111 °C. $[\alpha]_D$ –44. 1 (*c* = 1.0, H₂O).

¹³C NMR (D₂O): δ = 174.8 (C-1), 11 1.0 (isoprop-*C*), 77.8 (C-5), 72.3 (C-4), 66.2 (C-6), 39.4, 34.4 (C-2 and C-3), 26.2, 24.8 (isoprop-*C*H₃). C₉H₁₆N₂O₄ (216.2): calc. C 49.99 H 7.46 N 12.95 ; found C 49.79 H 7.46 N 12.95.

2,3-Aziridino-2,3-dideoxy-5,6-*O*-isopropylidine-N-tosyl-D-gluconamide (6):

The aziridine **3** (1.6 g, 7.4 mmol) was dissolved in pyridine (6 mL) and cooled in an ice bath. *p*-Toluenesulfonyl chloride (1.6 g, 8.4 mmol) was added and the mixture was stirred for 2 h at 0 °C. Crystallization of the product took place upon addition of ice water (15 mL) to give **6** (1.0 g, 37%); mp 157–158 °C. No attempts were made to optimize the yield. Recrystallization from EtOAc did not alter the mp; $[\alpha]_D$ –27.3 (*c* = 1.3, CHCl₃).

¹³C NMR (CDCl₃): δ = 167.5 (C-l), 145.2, 129.9, 127.3 (C_{arom}), 110.0 (isoprop-*C*), 76.6 (C-5), 71. 1 (C-4), 66.8 (C-6), 52.3, 44.2 (C-2 and C-3), 26.7, 25.0 (isoprop-*C*H₃), 21.5 (Ar-*C*H₃).

¹H NMR (CDCl₃): δ = 7.85 (d, J = 8.2 Hz, 2 H_{arom}), 7.40 (d, J = 8.2 Hz, 2 H_{arom}), 5.9–6.0 (2 br s, 2 H, CONH₂), 4.05–4.16 (m, 3 H, H-4, H-5, H-6a), 3.95 (br t, J = 8.0 Hz, 1 H, H-6b), 3.54 (d, J = 4.3 Hz, 1 H, H-2), 3.53 (br s, 1H, OH), 3.09 (dd, J = 4.3 ; 8.8 Hz, 1 H, H-3), 2.45 (s, 3H, Ar-CH₃), 1.46 (s, 3H, CH₃), 1.35 (s, 3H, CH₃).

 $C_{6}H_{22}N_{2}O_{6}S$ (370.4): calc. C 51.88 H 5.99 N 7.56; found C 51.95 H 5.97 N 7.52.

Selected Crystal Structure Data for 6:²³

 $C_{16}H_{22}N_2O_6S = 370.42$; crystal system orthorhombic; space group $P2_12_12_1$; Z = 4; cell parameters a = 6.760(4) Å, b = 12.248(4) Å, c = 21.732(4) Å; radiation (CuK α) λ = 1.5418 Å; 315 parameters for 2716 reflections (I > 2 σ (*I*)); final R = 0.065.

Methyl 3,4;5,6-Di-*O*-isopropylidene-2-*O*-mesyl-D-mannonate (8): D-Mannono-1,4-lactone (4.5 g, 25 mmol) was stirred for 48 h in a mixture of 2,2-dimethoxypropane (10 mL), anhyd acetone (2.5 mL), MeOH (1 mL) and a drop of MeSO₃H. The mixture was worked up as described above to give the crude methyl 3,4:5,6-di-*O*-isopropylidene-D-mannonate (7, ~ 5.8 g) as a syrup.

Compound 7:

¹³C NMR (CDCl₃): δ = 171.9 (C-1), 109.8 (2 C, isoprop-*C*), 82.0, 77.0, 76.9, 71.0 (C-2, C-3, C-4 and C-5), 67.6 (C-6), 52.3 (OCH₃), 26.8, 26.6, 26.2, 25.1 (isoprop-CH₃).

The product **7** was treated with MeSO₂Cl (4.3 g, 38 mmol) in pyridine (15 mL) for 1 h at 0 °C and 1 h at r.t. When the mixture was poured into ice water (100 mL) the product precipitated immediately. Filtration and washing with MeOH/H₂O gave **8** (4.86 g, 52%); mp 67–68°C. Recrystallization from MeOH/H₂O gave colorless needles; mp 68–69°C; $[\alpha]_{\rm D}$ –4.8 (c = 1.8, CHCl₃).

Compound 8:

¹³C NMR (CDCl₃): δ = 166.4 (C-1), 110.4, 110.0 (isoprop-*C*), 80.1, 76.8 (2 C), 76.6 (C-2, C-3, C-4 and C-5), 67.6 (C-6), 52.6 (OCH₃), 39.1 (OMs), 27.1, 26.6, 26.3, 25.2 (isoprop-*CH*₃).

¹H NMR (CDCl₃): δ = 5.37 (d, *J* = 2.2 Hz, 1 H, H-2), 4.42 (dd, *J* = 2.2; 7.0 Hz, 1 H, H-3), 4.14 (dd, *J* = 5.6; 8.5 Hz, 1 H, H-6a), 4.05 (dd, *J* = 7.0; 8.5 Hz, 1 H, H-4), 4.01 (m, 1 H, H-5), 3.96 (dd, *J* = 4.5; 8.5 Hz, 1 H, H-6b), 3.80 (s, 3 H, OCH₃), 3.19 (s, 3 H, OSO₂CH₃), 1.40 (s, 3 H, CH₃), 1.39 (s, 6 H, CH₃), 1.32 (s, 3 H, CH₃).

C14H24O9S (368.4): calc. C 45.64 H 6.57; found C 45.75 H 6.38.

Preparation of 3 from 8:

The methyl ester **8** (1.05 g, 2.9 mmol) was suspended in 25% aq ammonia (15 mL) and the mixture was stirred for 5 d and then worked up as described above. Crystallization from EtOAc afforded **3** (0.16 g, 26%); mp 106–108°C; $[\alpha]_D$ –42.8(c = 1.0, H₂O).

Methyl 3,4;5,6-Di-O-isopropylidene-2-O-mesyl-D-gulonate (10):

D-Gulono-1,4-lactone (10.9 g, 61.2 mmol) was stirred for 48 h in 2,2dimethoxypropane (20 mL), anhyd acetone (6 mL), MeOH (2 mL) and MeSO₃H (0. 1 mL) and worked up as described above to give crude methyl 3,4:5,6-di-O-isopropylidene-D-gulonate (**9**, ~17 g) as a syrup.

Compound 9:

³C NMR (CDCl₃): δ = 171.9 (C-1), 109.7, 109.2 (isoprop-*C*), 78.1, 76.5, 74.6, 70.9 (C-2, C-3, C-4 and C-5), 65.3 (C-6), 52.1 (OCH₃), 26.6 (2C), 25.6, 25.1 (isoprop- *C*H₃).

The product **9** was then mesylated with MeSO₂Cl (10 g, 87.7 mmol) as described above. When poured into ice water (250 mL) a syrup was obtained. The H₂O was decanted and the syrup dissolved in a mixture of MeOH and H₂O (2:1) by gentle heating. The product then crystallized to give **10** (12.5 g, 56%); mp 73–75°C. Recrystallization from MeOH/H₂O gave a product with mp 78–79°C; $[\alpha]_D$ –8.7 (*c* = 2.0, CHCl₃).

Compound 10:

¹³C NMR (CDCl₃): δ = 166.8 (C-l), 110.6, 109.7 (isoprop-*C*), 76.4, 76.2, 75.6, 74.0 (C-2, C-3, C-4 and C-5), 65.5 (C-6), 52.8 (OCH₃), 39.0 (OSO₂CH₃), 26.9, 26.8, 25.9, 25.4 (isoprop-*C*H₃).

¹H NMR (CDCl₃): δ = 5.20 (d, *J* = 3.8 Hz, 1 H, H-2), 4.45 (dd, *J* = 3.8; 8.0 Hz, 1 H, H-3), 4.21 (dd, *J* = 2.9; 8.0 Hz, 1 H, H-4), 4.05 (m, 2 H, H-5 and H-6a), 3.89 (dd, *J* = 6.0; 6.5 Hz, 1 H, H-6b), 3.83 (s, 3 H, OCH₃), 3.14 (s, 3 H, OSO₂CH₃), 1.43 (s, 3 H, CH₃), 1.41 (s, 3 H, CH₃), 1.39 (s, 3 H, CH₃), 1.35 (s, 3 H, CH₃).

 $C_{14}H_{24}O_9S$ (368.4): calc. C 45.64 H 6.57; found C 45.84 H 6.73.

2,3-Aziridino-2,3-dideoxy-5,6-*O*-isopropylidene-D-idonamide (11):

The methyl ester **10** (6.7 g, 18 mmol) was suspended in 25% aq ammonia (90 mL) and treated as described above. The major product crystallized on addition of EtOAc to give **11** (1.6 g, 40 %); mp 138–141 °C. Recrystallization from EtOH gave a product with mp 148–149 °C; $[\alpha]_{\rm D}$ +18.4 (c = 1.0, H₂O).

 $C_9H_{11}N_2O_4$ (216.2): calc. C 49.99 H 7.46 N 12.95 : found C 50.19 H 7.30 N 12.92.

2,3-Aziridino-2,3-dideoxy-5,6-*O*-isopropylidene-N-tosyl-D-idonamide (12):

The aziridine **11** (1.0 g, 4.6 mmol) was tosylated as described above. Crystallization of the product took place by addition of ice water to give **12** (0.60 g, 35%); mp 164–166 °C. Recrystallization from EtOAc

gave a product with mp 171 °C; $[\alpha]_D - 1.8$ (c = 1.0, CHCl₃). $[\alpha]_D - 24.0$ (c = 1.1, pyridine). No attempts were made to optimize the yield. ¹³C NMR (CDCl₃): $\delta = 167.4$ (C-1), 129.9, 127.5 (C_{arom}), 110.0 (iso-prop-*C*), 76.4 (C-5), 69.0 (C-4), 65.3 (C-6), 52.1, 42.8 (C-2 and C-3), 26.0, 24.9 (isoprop-*C*H₃), 21.6 (Ar- *C*H₃).

¹H NMR (CDCl₃): δ = 7.88 (d, J = 8.2 Hz, 2 H_{arom}), 7.37 (d, J = 8.2 Hz, 2 H_{arom}), 5.85 and 5.58 (2 br s, 2 H, CONH₂), 4.28 (ddd, J = 4.0; 6.8, 7.0 Hz, 1 H, H-5), 4.13 (m, 1 H, H-4, shows dd with J = 4.0 and 9.0 Hz after exchange with D₂O), 4.10 (dd, J = 7.0; 8.5 Hz, 1 H, H-6a), 4.01 (dd, J = 6.8; 8.5 Hz, 1 H, H-6b), 3.47 (d, J = 4.1 Hz, 1 H, H-2), 3.23 (br d, J = 5.0 Hz, 1 H, OH, exchangeable with D₂O), 3.17 (dd, J = 4.1, 9.0 Hz, 1 H, H-3), 2.47 (s, 3 H, Ar-CH₃), 1.42 (s, 3 H, CH₃), 1.35 (s, 3 H, CH₃).

 $C_{16}H_{22}NO_6S$ (370.4): calc. C 51.88 H 5.99 N 7.56; found C 51.94 H 6.09 N 7.54.

Selected Crystal Structure Data for 12:²²

 $C_{16}H_{22}N_2O_6S = 370.42$; crystal system monoclinic; space group P2₁; Z = 2; cell parameters a = 5.918(3) Å, b = 26.801(2) A, c = 5.908(2) Å; radiation (MoK α) λ = 0.71073 Å; 233 parameters for 1297 reflections [I > 2 σ (I)]; final R = 0.059.

3-Amino-2,3-dideoxy-D-*arabino*-hexono-1,4-lactone Hydrogen Bromide (14):

The aziridine **3** (2.0 g, 9.3 mmol) was dissolved in a mixture of H_2O (10 mL) and hydrazine hydrate (10 mL) and refluxed for 2 h. The solution was evaporated 4 times with H_2O in order to remove the hydrazine and then concentrated to give 3-amino-2,3-dideoxy-5,6-di-O-isopropylidene-D-*arabino*-hexonohydrazide (**13**; 2.1 g, 100%) as a partly crystalline solid; mp ~ 215°C (dec.).

Compound 13:

¹³C NMR (D₂O): δ = 176.8 (C-1), 110.0 (isoprop-*C*), 75.0 (C-5), 69.7 (C-4), 65.3 (C-6), 50. 1 (C-3), 35.5 (C-2), 24.9, 23.4 (isoprop-*C*H₃). ¹H NMR (D₂O): δ = 4.10 (m, 1 H, H-5), 4.06 (dd, *J* = 6.8; 8.5 Hz, 1 H, H-6a), 3.84 (dd, *J* = 5.0; 8.5 Hz, 1 H, H-6b), 3.63 (dd, *J* = 4.5; 6.5 Hz, 1 H, H-4), 3.48 (ddd, *J* = 4.5; 5.5; 8.0 Hz, 1 H, H-3), 2.49 (dd, *J* = 5.5; 17.0 Hz, 1 H, H-2a), 2.43 (dd, *J* = 8.0; 17.0 Hz, 1 H, H-2b), 1.24 (s, 3 H, CH₃), 1.25 (s, 3 H, CH₃).

The crude solid product **13** was dissolved in 10% aq CF₃CO₂H (10 mL) and stirred for 1 h at r.t. The mixture was then concentrated and the residue dissolved in H₂O (20 mL). Br₂ was added (dropwise) until no more N₂ evolved and the solution was taken to almost dryness. The remaining crude product crystallized upon addition of EtOH to give **14** (1.65 g, 74%); mp ~225°C (dec.). Recrystallization from 90% EtOH gave a product with mp 226–227°C (dec); $[\alpha]_D$ +16.5 (c = 1.0, H₂O).

Compound 14:

¹³C NMR (D₂O): δ = 176.9 (C-1), 80.4 (C-4), 69.4 (C-5), 62.8 (C-6), 50.5 (C-3), 35.1 (C-2).

¹H NMR (D₂O): $\delta = 4.69$ (t, J = 6.2 Hz, 1 H, H-4), 4.27 (ddd, J = 0.7; 6.2; 8.0 Hz, 1 H, H-3), 3.99 (dt, J = 3.0, 6.2 Hz, 1 H, H-5), 3.72 (dt, J = 3.0; 12.5 Hz, 1 H, H-6a), 3.61 (dd, J = 3.0; 12.5 Hz, 1 H, H-6b), 3.17 (dd, J = 8.0; 18.5 Hz, 1 H, H-2a), 2.65 (dd, J = 0.7; 18.5 Hz, 1 H, H-2b).

C₆H₁₂BrNO₄ (242.1): calc. C 29.77 H 5.00 N 5.79 Br 33.01; found C 29.80 H 4.93 N 5.80 Br 33.70.

3-Amino-2,3-dideoxy-D-xylo-hexonic Acid (16):

The aziridine **11** (0.44 g) was refluxed for 2 h with a mixture of hydrazine hydrate (2 mL) and H₂O (2 mL) and then worked up as described above to give 3-amino-2,3-dideoxy-5,6-di-O-isopropylidene-D-*xylo*-hexonohydrazide (**15**; 0.47 g, 100%) as a colorless syrup.

Compound 15:

¹³C NMR (D₂O): δ = 173.2 (C-1), 110.9 (isoprop-C), 77.1 (C-5), 73.3 (C-4), 66.3 (C-6), 51.2 (C-3), 38.6 (C-2), 26.1, 25.0 (isoprop- CH₃). ¹H NMR (D₂O): δ = 4.12 (dt, *J* = 5.0; 6.9 Hz, 1 H, H-5), 3.92 (dd, *J* = 6.9; 8.2 Hz, 1 H, H-6a), 3.60 (dd, J = 6.9; 8.2 Hz, 1 H, H-6b), 3.28 (dd, J = 4.5; 5.0 Hz, 1 H, H-4), 3.00 (m, 1 H, H-3), 2.27 (dd, J = 5.3; 14.5 Hz, 1 H, H-2a), 2.10 (dd, J = 8.5; 14.5 Hz, 1 H, H-2b), 1.22 (s, 3 H, CH₃), 1.18 (s, 3 H, CH₃).

Compound 16:

Hydrolysis with 10% aq CF₃CO₂H (4 mL) followed by treatment with Br₂ as described above gave a solution, which was neutralized with IRA-67 OH⁻ and concentrated to give the title compound **16** (0.33 g, 91%) as a syrup (containing some lactone). Crystallization from MeOH/H₂O gave colorless crystals, which started to decompose from ~180°C; [α]_D –24.5 (c = 0.8, H₂O).

¹³C NMR (D_2O): $\delta = 178.1$ (C-1), 72.5, 69.9 (C-4 and C-5), 63.4 (C-6), 52.7 (C-3), 36.9 (C-2).

¹H NMR (D₂O): δ = 3.78 (ddd, *J* = 2.0; 5.5; 6.2 Hz, 1 H, H-5), 3.75 (dd, *J* = 2.0; 6.0 Hz, 1 H, H-4), 3.59–3.65 (m, 3 H, H-6a, H-6b and H-3), 2.58 (dd, *J* = 5.2; 16.8 Hz, 1 H, H-2a), 2.48 (dd, *J* = 8.0; 16.8 Hz, 1 H, H-2b).

 $C_6H_{13}NO_5$ (179.2): calc. C 40.22 H 7.31 N 7.82; found C 40.08 H 7.01 N 7.66.

- (1) Tanner, D. Angew. Chem. **1994**, 106, 625; Angew. Chem., Int. Ed. Engl. **1994**, 33, 599.
- (2) Legters, J.; Thijs, L.; Zwanenburg, B. *Tetrahedron Lett.* 1989, 30, 4881.

Zwanenburg, B.; Thijs, L. Pure & Appl. Chem. **1996**, 68, 735.

- (3) Tanner, D.; Birgersson, C.; Dhaliwal; H. K. *Tetrahedron Lett.* 1990, 31, 1903.
- (4) Kuyl-Yeheskiely, E.; Lodder, M.; van der Marel, G. A.; van Boom, J. H. *Tetrahedron Lett.* **1992**, *33*, 3013.
 Wipf, P.; Miller, C. P. *Tetrahedron Lett.* **1992**, *33*, 6267.
- (5) Dubois, L.; Dodd, R. H. *Tetrahedron* 1993, 49, 901.
 Dauban, P.; Chiaroni, A.; Riche, C.; Dodd, R. H. *J. Org. Chem.* 1996, 61, 2488.
- (6) Jähnisch, K. *Liebigs Ann.* 1997, 757 and references cited herein.
 (7) Garner, P.; Dogan, O; Pillai, S. *Tetrahedron Lett.* 1994. *35*,
- 1653.
 (8) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328.
- (9) Cardillo, G.; Gentilucci, L.; Tomasini, C.; Castejon-Bordas, M. P. V. *Tetrahedron: Asymmetry* **1996**, *7*, 755.
- (10) Pelyvás, I. F.; Monneret, C., Herczegh, P. Synthetic Aspects of Aminodeoxy Sugars of Antibiotics, Springer-Verlag: Berlin, Heidelberg, 1988.
- (11) Regeling, H.; de Rouville, E.; Chittenden, G. J. F. Recl. Trav. Chim. Pays-Bas 1987, 106, 461.
- (12) Regeling, H.; Chittenden, G. J. F. *Recl. Trav. Chim. Pays-Bas* **1989**, *108*, 330.
- (13) Vlahov, I. R.; Vlahova, P. I.; Schmidt, R. R. Tetrahedron: Asymmetry 1993, 293.
- (14) Csuk, R.; Hugener, M.; Vasella, A. Helv. Chim. Acta 1988. 71, 609.
- (15) Lambert, J. B.; Takeuchi, Y. Cyclic Organonitrogen Stereodynamics, VCH Publishers: Weinheim, 1992.
- (16) Backes, J, In Houben-Weyl; Methoden der Organischen Chemie, Vol. E 16 c; Klamann, D., Thieme: Stuttgart, 1992, p 370.
- (17) Vekemans, J. A. J. M.; Boerekamp, J.: Godefroi, E. F.; Chittenden, G. J. F. *Recl. Trav. Chim. Pays-Bas* **1985**, 104, 266.
- (18) Lim, Y.; Lee. W. K. Tetrahedron Lett 1995, 36, 8431.
- (19) Molander, G. A.; Stengel P. J. J. Org. Chem. 1995, 60, 6660.
- (20) Paulsen, H.: Stoye, D. Chem. Ber. 1966, 99, 908.
- (21) Deyrup, J. A.; Clough, S. C. J. Am. Chem. Soc. 1968, 90, 3592.
- (22) Atomic coordinates have been deposited at the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB21EZ, UK, and are available on request. Requests should be accompanied by a full citation of this paper