Hydrogenation of carbon dioxide in the presence of rhodium catalysts

N. V. Kolesnichenko,^{a*} N. N. Ezhova,^b E. V. Kremleva,^a and E. V. Slivinskii[†]

 ^aA. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 485 0922. E-mail: nvk@ips.ac.ru
^bInstitute of High Temperatures, Russian Academy of Sciences, 13/19 ul. Izhorskaya, 127412 Moscow, Russian Federation. Fax: +7 (095) 230 0922

The results of CO_2 hydrogenation in the presence of the Wilkinson complexes, *viz.*, RhCl₃ and acacRh(CO)₂, at room temperature and excess PPh₃ are presented. The influence of different ions on the catalytic properties of the Rh complexes was studied. Methanol and methyl formate are formed along with formic acid in the presence of an inorganic salt. Ions that are the most active in the formation of formic acid are the least active in methanol formation.

Key words: hydrogenation, carbon dioxide, formic acid, methanol, triphenylphosphine.

It has previously¹ been established that carbon dioxide undergoes a rapid hydrogenation to formic acid in the presence of the Wilkinson complex with excess PPh₂ at room temperature and low pressures. Hydride rhodium complexes were found to be catalytically active species in this reaction. The deactivation of RhCl(PPh₃)₃ is caused by the elimination of triphenylphosphine from the coordination sphere. This process is suppressed when the reaction occurs in excess PPh₃ or in the presence of HCl and KNO₃.² To get further insight into the nature of catalytically active complexes and to find methods for their stabilization, it seemed of interest to study the influence of various additives on the catalytic properties of the Wilkinson complex in this reaction. In this work, we report on the results of studying the influence of the nature of inorganic salts on stability of the Wilkinson complex in carbon dioxide hydrogenation to formic acid. The effect of different phosphorus-containing additives on the selectivity of the process is also discussed.

Experimental

Hydrogenation of carbon dioxide was conducted in a stainless steel autoclave (150 mL) with an electromagnetic stirrer. Before the reaction, the rhodium complexes ([Rh] = 10^{-2} g-at L⁻¹) and additives used (PPh₃, inorganic salts, methanol) were stirred in a mixture consisting of dimethyl sulfoxide (DMSO) and triethylamine (NEt₃) under H₂. After this, CO₂ (4 MPa) was introduced into the reactor following by hydrogen to bring the pressure in the reactor to 6 MPa. This moment was considered to be the onset of the reaction. The reaction was carried out at 25 °C for 22 h. The liquid product was sampled during hydro-

[†] Deceased.

genation. Formic acid was detected by ¹H NMR. The concentration of formic acid obtained as an adduct HCOOH • NEt₃ was calculated from the amount of amine used. The content of methanol and methyl formate was determined by GLC on a Chrom-5 chromatograph (capillary column 50 m, phase PEG20M, flame-ionization detector, carrier gas nitrogen, 80 °C). Dimethylformamide was used as an internal standard. The concentration of introduced salts was 10^{-2} mol L⁻¹. In experiments with variable molar ratio of NEt₃ to methanol, the overall concentration of methanol and triethylamine was kept constant and taken on the basis of the NEt₃ concentration usually used in this reaction.

Complexes $RhCl(PPh_3)_3^3$ and $acacRh(CO)_2^4$ and ligand ethriolphosphite (ETPO)⁵ were synthesized according to known procedures. Commercially available (Fluka) $RhCl_3$, PPh_3 , and DMSO were used as received. Triethylamine was distilled before use.

Results and Discussion

As shown previously,² the hydrogenation of CO₂ to formic acid in the presence of the Wilkinson complex with an additive of KNO₃ occurs with a higher rate than that with HCl addition. Therefore, the influence of different cations of nitrate salts on the catalytic properties of the Wilkinson complex was studied. The replacement of K⁺ by lithuim cations decreases the reaction rate (Fig. 1). However, in the presence of Li⁺, the yield of formic acid after 22 h is higher than that in the case of the Wilkinson complex without salt additives. In the presence of ammonium nitrate, the reaction rate is low, and after 22 h the reaction still proceeds. In the case of Cr³⁺ and Al³⁺ ions, an induction period appears; however, the reaction rate increases sharply after 16 h. Thus, in all cases, the addition of salts results in the stabilization of catalyti-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2436-2439, November, 2004.

1066-5285/04/5311-2542 © 2004 Springer Science+Business Media, Inc.

Fig. 1. Influence of cations of nitrate salts on the yield of formic acid in the presence of the RhCl(PPh₃)₃ +3PPh₃ catalytic system: *1*, KNO₃; *2*, without addition of salts; *3*, LiNO₃; *4*, Al(NO₃)₃; *5*, Cr(NO₃)₃; *6*, NH₄NO₃.

cally active complexes, and the reaction rate increases significantly only in the case of KNO₃.

In the presence of salts, methanol and methyl formate are formed along with formic acid (Table 1). The highest yield of formic acid was obtained when using K^+ and Li^+ , whereas the highest yield of methanol is achieved in the presence of Al^+ and Cr^+ . Based on their activity in formic acid formation, the cations can be arranged in the following series (see Table 1):

 $K^+ > Li^+ > Al^{3+} \approx Cr^{3+} > NH_4^+,$

while for the formation of methanol the series is

 $Cr^{3+} > Al^{3+} > Li^+ > K^+ > NH_4^+.$

It can be concluded that cations that are the most active in formic acid formation are the least active in the formation of methanol.

Table 1. Influence of the nature of the cation on the catalytic properties of the $RhCl(PPh_3)_3+3PPh_3$ system in CO_2 hydrogenation

Salt	[HCOOH]	[MeOH]	[MF]*	
	mol L ⁻¹			
_	0.950	_	_	
KNO3	1.250	0.025	0.010	
LiNO ₃	0.970	0.045	0.020	
$Al(NO_3)_3$	0.640	0.092	0.026	
$Cr(NO_3)_3$	0.640	0.124	0.010	
NH ₄ NO ₃	0.520	0.006	0.004	

* MF is methyl formate.

Table 2. Influence of the nature of the anion on the catalytic activity of the RhCl(PPh₃)₃+3PPh₃ system in CO₂ hydrogenation

Salt	[HCOOH]	[MeOH]	[MF]			
		$mol L^{-1}$				
_	0.950	_	_			
KI	0.950	0.040	0.020			
KNO3	1.250	0.025	0.010			
K_2SO_4	0.530	0.015	0.005			
K_2CO_3	0.690	0.010	0.008			
K ₃ PO ₄	0.800	0.039	0.010			

The nature of anions also exerts a significant effect on the formation of formic acid and methanol (Table 2). In the presence of potassium nitrate, the yield of formic acid increased. Phosphate and iodide anions do not virtually affect the formation of formic acid, but methanol is also formed in their presence. The addition of sulfate and carbonate ions decreases the yield of formic acid. At the same time, the yield of methanol increases in the presence of these salts. The order of decreasing activity in formic acid formation for anions is

$$NO_3^- > I^- > PO_4^{3-} > CO_3^{2-} \ge SO_4^{2-}$$

In the case of methanol formation, the order of decreasing activity is

$$I^- > NO_3^- > PO_4^{3-} > SO_4^{2-} \ge CO_3^{2-}$$

The formation of methanol at room temperature is an unusual result because, as known,^{6,7} high pressures and elevated temperatures are needed to form methanol from carbon dioxide. To explore the possibility of increasing the methanol yield and to get insight into the nature of an active site, we studied the influence of different ligands on the yield of methanol in the presence of various rhodium precursors of the catalyst of CO_2 hydrogenation (Table 3).

In the case of RhCl₃ modified with PPh₃, only formic acid is formed. When salt KNO3 is added, the yield of formic acid decreases, and methanol and methyl formate are formed. If the reaction is carried out without triphenylphosphine in the presence of KNO₃ only, no formic acid is formed, and the yield of methanol increases significantly. The highest yield of methanol is achieved when the reaction is carried out in the presence of RhCl₃ and OPPh₃, and no formic acid is formed in this case. When $acacRh(CO)_2$ was used, the highest yield of methanol was obtained on unmodified $acacRh(CO)_2$ in the presence of KNO₃. Nearly no methanol forms in the absence of NEt₃. Interesting results were obtained when ethriolphosphite with an enhanced withdrawing power was used. Unlike PPh₃, the modification of acacRh(CO)₂ with ETPO does not result in the formation of formic acid but

Ligand	[HCOOH]	[MeOH]	[MF]				
(P/Rh = 6)	mol L ⁻¹						
	RhCl ₃						
PPh3*	0.500	_	_				
PPh ₃	0.390	0.004	0.002				
Without ligand	_	0.040	0.001				
OPPh ₃ *	_	0.210	0.003				
acacRh(CO) ₂							
PPh3*	0.500	_	_				
PPh3**	0.420	0.004	0.002				
Without ligand	—	0.457	0.014				
Without ligand	—	Traces	—				
OPPh ₃ *	—	0.032	Traces				
ETPO	—	0.064	0.002				
ETPO*	—	0.177	0.158				
RhCl(PPh ₃) ₃							
PPh ₃ *	0.950	—	—				
PPh ₃	1.250	0.025	0.010				
OPPh ₃	—	0.155	0.015				
OPPh ₃	—	0.030	Traces				

Table 3. Hydrogenation of CO_2 in the presence of the rhodium catalysts

* In the absence of KNO₃.

** In the absence of NEt₃.

a large amount of methanol is formed. The yield of methanol decreases sharply when KNO_3 is added. For the Wilkinson complex, the highest yield of methanol was obtained in the presence of KNO_3 and $OPPh_3$.

For the catalytic system of $RhCl_3$ and $OPPh_3$, the replacement of KNO_3 by other salts decreases the yield of methanol (Table 4). Similar results were obtained for $acacRh(CO)_2$.

The presence of a salt in the reaction medium stabilizes a catalytically active complex to form methanol and methyl formate. As a rule, salts that manifest activity in the formation of formic acid are inactive in the formation of methanol. A necessary condition for the formation of HCOOH is the presence of PPh₃ in the reaction medium, while the presence of PPh₃ is not necessary for methanol

Table 4. Hydrogenation CO_2 to formic acid in the presence of different salts

Compound	Ligand $(P/Rh = 6)$	Additive	[MeOH]	[MF]
			mol	L^{-1}
RhCl ₃	OPPh ₃	Na ₃ PO ₄	0.008	0.002
5	OPPh ₃	K ₂ ČO ₃	0.007	_
	OPPh ₃	ĸĨ	0.002	0011
	_	K_2CO_3	0.030	0.016
$acacRh(CO)_{2}$	_	KĪ	0.070	_
	_	K_2CO_3	0.030	0.016
	OPPh ₃	Na ₃ PO ₄	0.012	0.014

formation. The presence of triethylamine in the reaction medium is needed for the formation of both formic acid and methanol.

Evidently, methanol and formic acid form on different catalytically active sites. The influence of ions on their stability is selective; however, the presence of a salt in the reaction medium exerts a stabilizing effect on the formation of both formic acid and methanol.

Methyl formate can form through the esterification of formic acid with methanol. To reveal the role of methanol in the hydrogenation of CO_2 , we studied the influence of the CH_3OH concentration on the distribution of the reaction products. The addition of a minor amount of methanol instead of DMSO insignificantly increases the yield of formic acid and sharply increases the yield of methyl formate (Fig. 2, *a*). However, the further increase

Fig. 2. Plots of the concentrations of formic acid and methanol *vs.* molar ratios $CH_3OH : DMSO(a)$ and $NH_3 : CH_3OH(b)$ in CO_2 hydrogenation in the presence of the catalytic system RhCl(PPh₃)₃+3PPh₃: *1*, HCOOH; *2*, methyl formate.

in the methanol concentration results in an increase in the yield of formic acid and a decrease in the yield of methyl formate. The decrease in the methyl formate yield is apparently related to the fact that esterification is not the only way to form methyl formate under the conditions of CO_2 hydrogenation. The highest yield of the acid is achieved at the ratio MeOH : DMSO = 6.8. Thus, methanol is an esterifying agent and also promotes the hydrogenation of CO_2 to formic acid. The hydrogenation of CO_2 is thermodynamically unfavorable and can occur in a high yield only in the presence of tertiary amines.⁸ Methanol binds formic acid to form methyl formate and thus initiates CO_2 hydrogenation in the same manner as NEt₃.

The influence of the NEt₃ : MeOH ratio on the yield of reaction products was studied. An increase in the NEt₃ to methanol molar ratio to 0.15 (see Fig. 2, *c*) increases the yield of all reaction products; however, the further increase in this ratio decreases the yields of both formic acid and methyl formate. Carbon dioxide is not hydrogenated without NEt₃ in the presence of DMSO as a solvent (Table 3), and neither formic acid, nor methyl formate were found in the reaction products. The partial replacement of NEt₃ by methanol considerably decreases the yield of formic acid. Thus, under conditions of CO_2 hydrogenation, formic acid can form in a high yield in the presence of NEt_3 only, which is a component of a catalytically active complex.

References

- N. N. Ezhova, N. V. Kolesnichenko, A. V. Bulygin, E. V. Slivinskii, and S. Khan, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 2008 [*Russ. Chem. Bull., Int. Ed.*, 2002, **51**, 2165].
- N. N. Ezhova, N. V. Kolesnichenko, A. V. Bulygin, E. V. Kremleva, M. P. Filatova, and E. V. Slivinskii, *Neftekhimiya*, 2004, 44, 27 [*Petroleum Chemistry*, 2004, 44 (Engl. Transl.)].
- 3. D. N. Lawson, J. A. Osborn, and G. Wilkinson, J. Chem. Soc. (A), 1996, 1728.
- 4. K. C. Dewhirst, W. Keim, and C. A. Reilly, *Inorg. Chem.*, 1968, 7, 24.
- 5. U. S. Varshavsky and T. G. Cherkasov, J. Inorg. Chem., 1967, 6, 1709.
- G. C. Chinchen, P. J. Denny, D. J. Parker, M. S. Spenser, and D. Whan, *Appl. Catal.*, 1987, **30**, 333.
- 7. K. C. Waugh, Catal. Today, 1992, 15, 51.
- W. Leitner, E. Dinjus, and F. Gassner, J. Organomet. Chem., 1994, 475, 257.

Received June 5, 2004; in revised form October 14, 2004