Copper-Mediated Simple and Efficient Synthesis of Tribenzohexadehydro[12]annulene and Its Derivatives

Masahiko Iyoda,* Siriwan Sirinintasak, Yoshihiro Nishiyama, Anusorn Vorasingha, Fatema Sultana, Kazumi Nakao, Yoshiyuki Kuwatani, Haruo Matsuyama, Masato Yoshida, Yoshihiro Miyake

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan Fax +81(426)772525; E-mail: iyoda-masahiko@c.metro-u.ac.jp

Received 4 May 2004

This article is dedicated to Professor Teruaki Mukaiyama for his 77th birthday.

Abstract: A simple and efficient synthesis of tribenzohexadehydro[12]annulene and its derivatives was carried out using coupling reaction of acetylenes with iodoarenes in the presence of catalytic amounts of CuI and PPh₃, together with three equivalents of K_2CO_3 in DMF. This synthetic procedure was applied to the synthesis of a large annulenoannulene derivative.

Key words: annulenes, cross-coupling, cyclizations, macrocycles, oligomerization

There has been a considerable interest in cyclic phenylacetylenes such as dehydroannulenes,¹ cyclynes,² and phenylacetylene macrocycles,³ because of their π -conjugation, all-carbon networks,^{4,5} formation of unusual metal complexes,² self-association⁶ and inclusion properties.⁷ Tribenzohexadehydro[12]annulene (tribenzocyclyne) (1a) is a unit structure of graphyne.⁴ Since 1a is one of the most useful cyclic acetylenes, a variety of synthetic methods for 1a have been developed. Annulene 1a can be prepared by Stephens-Castro coupling of copper (2iodophenyl)acetylide,⁸ palladium-catalyzed trimerization of 4-(2-bromophenyl)-2-methylbutyn-2-ol,⁹ palladiumcatalyzed co-cyclization of 1,2-diiodobenzene with acetylene,¹⁰ a combination of Wittig reaction and bromination/ dehydrobromination procedures¹¹ or recently reported alkyne metathesis.¹² However, the synthesis of **1a** still remains troublesome, especially for medium to large scale reactions. Here we report a practical procedure for the synthesis of 1a and related compounds.

Although the Sonogashira reaction of phenylacetylene with bromo- or iodobenzene using $Pd(PPh_3)_2Cl_2$ and CuI in Et₃N produces diphenylacetylene in a quantitative yield,¹³ cyclotrimerization of (2-bromophenyl)acetylene under similar conditions affords **1a** in a very low yield due to homo-coupling of (2-bromophenyl)acetylene as a preferable reaction.¹⁴ The cyclotrimerization of (2-iodophenyl)acetylene under similar Sonogashira conditions also formed only a trace amount of **1a**. Thus, the homo-coupling of acetylene units takes place more easily than the normal Sonogashira coupling in the case of (2-bromophenyl)- and (2-iodophenyl)acetylenes.

SYNTHESIS 2004, No. 9, pp 1527–1531 Advanced online publication: 26.05.2004 DOI: 10.1055/s-2004-822393; Art ID: C04204SS © Georg Thieme Verlag Stuttgart · New York A copper-catalyzed cross-coupling of phenylacetylene with iodobenzene in an aprotic solvent such as DMF and DMSO was reported to produce diphenylacetylene in a quantitative yield.¹⁵ Since this reaction proceeds smoothly to produce no homo-coupling product, we tried to apply the cyclotrimerization of (2-iodophenyl)acetylene (**3a**) and its derivatives with catalytic amounts of CuI and PAr₃ (Ar = Ph or 2-furyl) in the presence of K₂CO₃ as a base in DMF. Although the reaction takes place at high temperatures (160–165 °C), the desired product **1a** and related annulenes **1b–d** can be prepared in moderate to good yields (Figure 1). Additionally, the annulenoannulene derivative **2c** can be synthesized in a short pathway.

Figure 1 The structures of the annulenes 1a-d and 2a,c

For the construction of the [12]annulene framework, the cyclotrimerization of 3a-d was first investigated under various conditions using CuI and PAr₃ (Scheme 1 and Table 1). The reaction of 3a with CuI (30–50 mol%) and PPh₃ (30–50 mol%) in DMF proceeded smoothly at 160–165 °C for 24 hours to afford 1a in 54–55% yields (entries 1 and 2). A similar reaction of 3a in DMSO, however, resulted in the formation of a complex mixture of unidentified products (entry 3). As the ligand, tri(2-furyl)phosphine can be employed for the cyclotrimerization to give 1a in 41% yield (entry 4).

Scheme 1 Synthesis of 1–4

Although the reaction of phenylacetylene with iodobenzene in the presence of CuI (5 mol%) and PPh₃ (10 mol%) proceeded smoothly at 120 °C to produce diphenylacetylene, **3a** was recovered unchanged under similar conditions. As other ligands, $P(o-tolyl)_3$, AsPh₃ and Ph₂PCH₂CH₂PPh₂ can be employed for the cyclotrimerization of **3a** to afford **1a** in lower yields. Additionally, the reaction of **3a** with a stoichiometric amount of CuI and PPh₃ (1 equivalent) also leads to **1a** in 44% yield.

The cyclotrimerization of **3a** can be applied for the preparation of substituted tribenzohexadehydro[12]annulenes **1b**–**d**. (2-Iodoaryl)acetylenes **3b**–**d** were prepared by the Sonogashira reaction of the corresponding 1,2-diiodoarenes, followed by deprotection with K_2CO_3 in methanol. As shown in Table 1, the reactions of **3b**–**d** with CuI (30 mol%) and P(2-furyl)₃ (30 mol%) in DMF at 160 °C for 24 hours produced **1b**–**d** in 28%, 37% and 17% yields (entries 5, 6 and 8). In the case of **3c**, the reaction with 30 mol% of CuI and PPh₃ under similar conditions afforded **1c** in 31% yield (entry 7). Although the copper-catalyzed cyclotrimerization of **3b**–**d** with PPh₃ yielded **1b**–**d**, the reaction with P(2-furyl)₃ afforded **1b**–**d** in better yields (entries 5–8).

Table 1 Cyclotrimerization of **3a–d** with CuI and PAr₃^a

Entry	3	CuI (mol%)	Ligand (mol%)	Solvent	Product (%) ^b
1	3 a	30	PPh ₃ (30)	DMF	1a (55)
2	3 a	50	PPh ₃ (50)	DMF	1a (54)
3	3 a	30	PPh ₃ (30)	DMSO	1a (0)
4	3 a	30	P(2-furyl) ₃ (30)	DMF	1a (41)
5	3b	30	P(2-furyl) ₃ (30)	DMF	1b (28)
6	3c	30	P(2-furyl) ₃ (30)	DMF	1c (37)
7	3c	30	PPh ₃ (30)	DMF	1c (31)
8	3d	30	P(2-furyl) ₃ (30)	DMF	1d (17)

^a Conditions: 160-165 °C, 24 h.

^b Isolated yield.

For the construction of the [12]annulene framework, we next tried the [6+6] or [10+2] cyclization using the copper-mediated cross-coupling strategy. As shown in Scheme 2, the reaction of 7a with 1.5 equivalents of 1,2diethynylbenzene in the presence of CuI (30 mol%), PPh₃ (30 mol%) and K₂CO₃ (3 equivalents) in DMF at 160 °C for 24 hours afforded 1a in 33% yield, whereas a similar reaction of 8a with 1 equivalent of 1,2-diiodobenzene produced 1a in 51% yield. Since the annulenoannulene 2a is an interesting target molecule,^{1,16} the synthesis of **2a** was tried using our [10+2] coupling reaction. Thus, the crosscoupling of 8a with 0.5 equivalents of 1,2,4,5-tetraiodobenzene was carried out using CuI and PPh₃ in DMF. However, the reaction gave a complex mixture, and only a trace amount of 2a was detected by MS analysis, presumably due to an extremely low solubility of 2a and its precursors.

Scheme 2 Synthesis of 1a, 2a and 2c

Taking into account the low solubility of **2a**, the synthesis of **2c** was attempted, because eight butyl groups may increase the solubility of **2c** enough to isolate a pure compound. The precursor **8c** was prepared starting from **4c**.¹⁷ The Sonogashira reaction of **4c** with trimethylsilylacetylene (TMSA), followed by deprotection yields **5c** (two steps, 80%). The cross-coupling of **5c** with **4c** in the presence of PdCl₂(PPh₃)₂ and CuI in Et₃N afforded **6c** (93%). The Sonogashira reaction of **6c** with TMSA, followed by deprotection produced the diethynyl precursor **8c** in 64% overall yield. The reaction of **8c** with 1,2,4,5-tetraiodobenzene (0.5 equivalents) in the presence of CuI (1 equiv

alent) and PPh₃ (1 equivalent) in DMF at 160–165 °C for 24 hours produced the desired product 2c in 1% yield. The annulenoannulene 2c is a stable yellow crystalline compound and has a moderate solubility in CH₂Cl₂, THF and CS₂.

Figure 2 Electronic (a) and fluorescence spectra (b) of 2c in CH_2Cl_2

Interestingly, **2c** shows an intense fluorescence at 495, 535 and 555 nm (Figure 2) with a large Storks shift of 190 nm, reflecting the tribenzohexadehydro[12]annulene structure. The fluorescence quantum yield ($\Phi = 0.21$) of **2c** is fairly large. Additionally, **2c** forms a 2:1 silver complex with AgBF₄ at equilibrium (Figure 3), although we assume a partial formation of the 2:1 complex after mixing **2c** and AgBF₄. The formation of the (**2c**)₂-AgBF₄ complex was confirmed by TOF-MS and ¹H NMR analysis.¹⁸

Figure 3 The silver complex $(2c)_2$ -AgBF₄

¹H and ¹³C NMR spectra were recorded on JEOL LA-500 and JEOL LA-400 instruments. Spectra are reported (in δ) referenced to Me₄Si. Mass spectra were recorded on JEOL JMS-AX 500 and KRATOS AXIMA-CFR instruments. Only the more intense or structurally diagnostic mass spectral fragment ion peaks are reported. High-Resolution MS was determined on JEOL JMS-SX102A instrument. Electronic spectra were recorded on a SHIMADZU UV-VIS-NIR scanning spectrophotometer (Model UV-3101-PC). Melting points were determined with a Rigaku DSC8230L differential scanning calorimetry apparatus and a Yanaco MP-500D melting point apparatus. Elemental analyses were performed in the microanalysis laboratory of Tokyo Metropolitan University. Column chromatography was carried out with use of EM reagents silica gel

60, 70–230 mesh ASTM, Daiso silica gel 1001W, or neutral alumina activity II-III, 70–230 mesh ASTM. All solvents were dried by conventional procedures and distilled before use. 1,2-Diiodo-4,5dimethylbenzene,¹⁹ 4,5-dibutyl-1,2-diiodo-benzene,²⁰ 1,2-diiodo-4,5-dimethoxybenzene²¹ and (2-iodophenyl)-acetylene^{8b,22} were prepared according to literature procedures.

(2-Iodoaryl)acetylenes 3; General Procedure

To a 50 mL two-necked flask equipped with an argon balloon, 1,2diiodoarene (10 mmol), trimethylsilylacetylene (1.17 g, 12 mmol), Et₃N (20 mL), CuI (38 mg, 0.2 mmol) and PdCl₂(PPh₃)₂ (70 mg, 0.1 mmol) were added. The reaction mixture was stirred for 6–15 h at r.t. The solvent was removed under reduced pressure. The residue was passed through a short column of Al₂O₃ and eluted with hexane–CH₂Cl₂ to give the crude product which was purified by column chromatography on silica gel (hexane–CH₂Cl₂) to afford 1iodo-2-trimethylsilylethynylarene.

To a solution of 1-iodo-2-trimethylsilylethynylarene (5 mmol) in MeOH (20 mL) was added K_2CO_3 (69 mg, 0.5 mmol), and the mixture was stirred for 1–5 h at r.t. The mixture was poured into H_2O and extracted with Et_2O . The organic phase was washed with sat. aq NH₄Cl solution, and dried over MgSO₄. After removal of the drying reagent, the solvent was evaporated under reduced pressure to give a residue which was passed through a silica gel column (hexane– CH_2Cl_2) to afford **3**.

1-Ethynyl-2-iodo-4,5-dimethylbenzene (3b)

Colorless crystals; yield: 43%; mp 71.5-72 °C.

 ^{1}H NMR (CDCl₃): δ = 2.18 (s, 3 H), 2.21 (s, 3 H), 3.31 (s, 1 H), 7.27 (s, 1 H), 7.60 (s, 1 H).

¹³C NMR (CDCl₃): δ = 19.17, 19.31, 79.78, 85.25, 96.60, 125.83, 134.29, 136.68, 139.40, 139.65.

MS (EI): *m*/*z* (%) = 256 (100, M⁺), 129 (30), 128 (53).

HRMS-FAB: *m*/*z* calcd for C₉H₁₀I: 255.9749; found: 255.9750.

1,2-Dibutyl-4-ethynyl-5-iodobenzene (3c)

Colorless oil; yield: 51%.

¹H NMR (CDCl₃): δ = 0.92–0.96 (m, 6 H), 1.35–1.40 (m, 4 H), 1.49–1.55 (m, 4 H), 2.50–2.55 (m, 4 H), 3.31 (s, 1 H), 7.28 (s, 1 H), 7.59 (s, 1 H).

 ^{13}C NMR (CDCl₃): δ = 13.93, 22.62, 22.68, 31.71, 31.89, 32.94, 33.02, 79.67, 85.39, 96.78, 125.75, 134.02, 139.06, 140.71, 143.73.

MS (EI): m/z (%) = 340 (81, M⁺), 255 (100), 170 (20).

HRMS-FAB: *m/z* calcd for C₁₆H₂₁I: 340.0688; found: 340.0688.

1-Ethynyl-2-iodo-4,5-dimethoxybenzene (3d)

Colorless crystals; yield: 40%; mp 107.4-107.6 °C.

¹H NMR (CDCl₃): δ = 3.31 (s, 1 H), 3.86 (s, 3 H), 3.88 (s, 3 H), 6.99 (s, 1 H), 7.21 (s, 1 H).

¹³C NMR (CDCl₃): δ = 55.97, 56.16, 79.29, 85.30, 89.64, 115.41, 120.79, 120.88, 148.85, 150.01.

MS (EI): m/z (%) = 288 (100, M⁺), 273 (19), 118 (49).

HRMS-FAB: *m*/*z* calcd for C₁₀H₉IO₂: 287.9647; found: 287.9646.

Cyclotrimerization of 3; General Procedure (Table 1)

To a solution of (2-iodoaryl)acetylene **3** (1.5 mmol) and PPh₃ (118 mg, 0.45 mmol) or P(2-furyl)₃ (104.5 mg, 0.45 mmol) in DMF (5 mL) were added CuI (86 mg, 0.45 mmol) and K₂CO₃ (622 mg, 4.5 mmol). The mixture was heated with stirring for 24 h in an oil bath at 160 °C under argon atmosphere. The mixture was poured into H₂O and extracted with toluene. The combined organic phase was washed with sat. aq NH₄Cl solution, and dried over MgSO₄. The

Synthesis 2004, No. 9, 1527-1531 © Thieme Stuttgart · New York

drying reagent was removed by filtration, and the solvent was evaporated under reduced pressure. The residue was passed through a short column on Al_2O_3 and eluted with hexane– CH_2Cl_2 to give the crude product which was purified by column chromatography on silica gel (hexane– CH_2Cl_2 , 10:1 to 5:1) to afford **1** together with a small amount of a cyclic tetramer (tetrabenzooctadehydro[16]annulene or its derivatives).

Hexadehydrotribenzo[12]annulene (1a)⁸⁻¹²

Yellow plates; yield: 55%; mp 208.5-210 °C.

¹H NMR (CDCl₃): δ = 7.19 (m, 6 H), 7.39 (m, 6 H).

¹³C NMR (CDCl₃): δ = 92.99, 126.35, 128.39, 132.10.

Hexamethylhexadehydrotribenzo[12]annulene (1b)^{10,12}

Yellow crystals; yield: 28%; mp ca. 340 °C (dec.). ¹H NMR (CD₂Cl₂): δ = 2.21 (s, 18 H), 7.10 (s, 6 H). ¹³C NMR (CD₂Cl₂): δ = 19.70, 92.42, 124.29, 133.15, 138.22. MS (EI): *m/z* (%) = 384 (100, M⁺), 192 (14).

HRMS (EI): *m*/*z* calcd for C₃₀H₂₄: 384.1878; found: 384.1832.

Hexabutylhexadehydrotribenzo[12]annulene (1c) Yellow crystals; yield: 37%; mp 153–154.5 °C.

¹H NMR (CDCl₃): $\delta = 0.95$ (t, J = 7.3 Hz, 18 H), 1.37–1.41 (m, 12 H), 1.51–1.57 (m, 12 H), 2.52 (t, J = 7.9 Hz, 12 H), 7.11 (s, 6 H). ¹³C NMR (CDCl₃): $\delta = 14.00, 22.74, 32.05, 32.89, 92.18, 124.08, 132.33, 141.18.$

MS (EI): m/z (%) = 636 (100, M⁺), 551 (17), 318 (13).

HRMS–FAB: *m/z* calcd for C₄₈H₆₀: 636.4695; found: 636.4687.

Hexamethoxyhexadehydrotribenzo[12]annulene (1d)¹²

Yellow crystals; yield: 17%; mp > 250 °C.

¹H NMR (CDCl₃): δ = 3.87 (s, 18 H), 6.74 (s, 6 H).

¹³C NMR (CD₂Cl₂): δ = 55.89, 91.91, 113.78, 119.81, 149.06.

MS (EI): m/z (%) = 480 (100, M⁺), 335 (13), 281 (5).

HRMS–FAB: *m/z* calcd for C₃₀H₂₄O₆: 480.1573; found: 480.1573.

Coupling of 7a with 1,2-Diethynylbenzene

To a mixture of CuI (63 mg, 0.33 mmol), PPh₃ (87 mg, 0.33 mmol) and K_2CO_3 (414 mg, 3 mmol) in DMF (10 mL) was added **7a**²³ (430 mg, 1 mmol) and 1,2-diethynylbenzene (189 mg, 1.5 mmol) under argon. The mixture was stirred for 24 h at 160 °C. The mixture was poured into H₂O and extracted with Et₂O. The organic phase was washed with sat. aq NH₄Cl solution, and dried over MgSO₄. After removal of the solvent, **1a** was isolated by silica gel column chromatography (99 mg, 33%).

Coupling of 8a with 1,2-Diiodobenzene

In a similar manner to the reaction of **7a** with 1,2-diethynylbenzene, the reaction of **8a** (226 mg, 1 mmol), 1,2-diiodobenzene (330 mg, 1 mmol), CuI (63 mg, 0.33 mmol), PPh₃ (87 mg, 0.33 mmol) and K_2CO_3 (414 mg, 3 mmol) in DMF (10 mL) afforded **1a** (153 mg, 51%).

1-Bromo-4,5-dibutyl-2-ethynylbenzene (5c)

To a 20 mL-flask, 1-bromo-2-iodo-4,5-dibutylbenzene (2.53 g, 6.4 mmol), trimethylsilylacetylene (1.0 mL, 7.09 mmol), Et_3N (12 mL), CuI (121.7 mg, 0.64 mmol) and PdCl₂(PPh₃)₂ (453.3 mg, 0.64 mmol) were added. The reaction mixture was stirred overnight at r.t. under argon. The mixture was poured into sat. aq NH₄Cl solution (20 mL) and extracted with Et_2O (3 × 20mL). The combined organic phase was washed with sat. aq NaCl solution (20 mL) and dried

over MgSO₄. After filtration, solvent was removed under reduced pressure, and the residue was separated by column chromatography on silica gel (hexane) to afford 1-bromo-4,5-dibutyl-2-trimethylsi-lylethynyl benzene (2.26 g, 96%).

To a 20 mL-flask, 1-bromo-4,5-dibutyl-2-trimethylsilylethynyl benzene (2.26 g, 6.2 mmol), K_2CO_3 (857.5 mg, 6.2 mmol) and MeOH (15 mL) were added. The mixture was stirred for 30 min at r.t. The mixture was poured into sat. aq NaCl solution (25 mL) and extracted with Et_2O (3 × 20 mL). The combined organic phase was dried over MgSO₄. After filtration, solvent was evaporated, and the residue was separated by column chromatography on Al_2O_3 (hexane) to afford **5c** (1.59 g, 88%) as a yellow oil.

 ^1H NMR (CDCl_3): δ = 0.92–0.96 (m, 6 H), 1.37–1.41 (m, 4 H), 1.51–1.54 (m, 4 H), 2.51–2.57 (m, 4 H), 3.30 (s, 1 H), 7.30 (s, 1 H), 7.34 (s, 1 H).

 $^{13}\mathrm{C}$ NMR (CDCl₃): $\delta = 13.94, 22.64, 22.68, 31.64, 32.09, 32.97, 32.99, 80.43, 82.27, 121.16, 122.20, 132.69, 134.58, 139.88, 143.73.$

Bis(2-bromo-4,5-dibutylphenyl)acetylene (6c)

To a 10 mL-flask were added 1-bromo-4,5-dibutyl-2-ethylnyl benzene (1.44 g, 4.9 mmol), 1-bromo-2-iodo-4,5-dibutylbenzene (1.94 g, 4.9 mmol), Et₃N (8.8 mL), CuI (93.4 mg, 0.49 mmol) and PdCl₂(PPh₃)₂ (346.8 mg, 0.49 mmol). The mixture was stirred overnight at r.t. The mixture was poured into sat. aq NH₄Cl solution (20 mL) and extracted with Et₂O (3×20 mL). The combined organic phase was washed with sat. aq NaCl solution (20 mL) and dried over MgSO₄. After filtration, solvent was evaporated, and the residue was passed through a short Al₂O₃ column and eluted (hexanebenzene, 9:1). The crude product was purified by column chromatography on silica gel (hexane-benzene, 9:1) to give **6c** (2.56 g, 93%).

¹H NMR (CDCl₃): δ = 0.95 (2 t, *J* = 7.3 Hz, 2 × 6 H), 1.36–1.43 (m, 8 H), 1.51–1.58 (m, 8 H), 2.53–2.59 (m, 8 H), 7.36 (s, 2 H), 7.37 (s, 2 H).

 ^{13}C NMR (CDCl₃): δ = 13.96, 22.69, 22.70, 31.75, 32.12, 33.03, 33.11, 91.44, 122.21, 122.32, 132.74, 134.00, 139.81, 143.17.

MS (EI): m/z (%) = 562 (52, M⁺ + 4), 560 (100, M⁺ + 2), 558 (51, M⁺), 477 (21), 475 (40), 473 (20).

HRMS–FAB: *m/z* calcd for C₃₀H₄₀Br₂: 558.1497; found: 558.1490.

Bis(2-ethynyl-4,5-butylphenyl)acetylene (8c)

Bis(2-bromo-3,4-dibutylphenyl)acetylene (**6c**, 2.51 g, 4.48 mmol), trimethylsilylacetylene (2.5 mL, 17.7 mmol), PPh₃ (117.6 mg, 0.49 mmol), CuI (42.7 mg, 0.22 mmol), PdCl₂(PPh₃)₂ (158.8 mg, 0.23 mmol) and piperidine (20 mL) were placed in a 50 mL-flask. The mixture was evacuated with argon and stirred overnight at 80 °C. The mixture was poured into sat. aq. NH₄Cl solution (25 mL) and extracted with Et₂O (3×20 mL). The combined organic phase was washed with sat. aq NaCl solution (20 mL) and dried over MgSO₄. After filtration, solvent was evaporated, and the residue was separated by column chromatography on silica gel (hexane–benzene, 4:1) to afford bis(2-trimetylsilylethynyl-4,5-dibutylphenyl)acetylene (2.07 g, 78%) as a viscous oil.

To a solution of bis(2-trimetylsilylethynyl-4,5-dibutylphenyl)acetylene (1.47 g, 2.47 mmol) in THF (10 mL) and MeOH (10 mL) was added K₂CO₃ (341.5 mg, 2.47 mmol) under argon. The mixture was stirred for 1 h at r.t. The mixture was poured into sat. aq NaCl solution (25 mL) and extracted with Et₂O (3×20 mL). The combined organic phase was dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was separated by column chromatography on Al₂O₃ (hexane-benzene, 4:1) to afford **8c** (916 mg, 82%) as a viscous oil.

¹H NMR (CDCl₃): $\delta = 0.951$ (t, J = 7.3 Hz, 6 H), 0.954 (t, J = 7.3 Hz, 6 H), 1.37–1.42 (m, 8 H), 1.52–1.59 (m, 8 H), 2.56–2.60 (m, 8 H), 3.26 (s, 2 H), 7.31 (s, 2 H), 7.35 (s, 2 H).

 13 C NMR (CDCl₃): δ = 13.98, 22.70, 22.72, 32.06, 32.12, 33.01, 33.03, 79.99, 82.64, 91.00, 121.52, 123.60, 132.84, 133.20, 141.11, 141.64.

MS (EI): m/z (%) = 450 (100, M⁺), 365 (25), 293 (6).

HRMS–FAB: *m/z* calcd for C₃₄H₄₂: 450.3287; found: 450.3291.

Annulenoannulene 2c

To a mixture of 1,2,4,5-tetraiodobenzene (227 mg, 0.39 mmol), K_2CO_3 (324 mg, 2.34 mmol), CuI (148 mg, 0.78 mmol) and PPh₃ (614 mg, 2.34 mmol) was added a solution of **8c** (352 mg, 0.78 mmol) in DMF (2 mL) under argon. The mixture was stirred for 20 h at 160 °C. The mixture was poured into sat. aq NH₄Cl solution (25 mL) and extracted with CS₂ (3 × 30 mL). The combined organic phase was washed with sat. aq NaCl solution (20 mL) and dried over MgSO₄. The solvent was removed under reduced pressure, and the residue was separated by column chromatography on Al₂O₃ (hexane–benzene, 4:1) to give **2c** (3 mg, 1%) as yellow crystals; mp >250 °C.

¹H NMR (CS₂/CD₂Cl₂, 1:1): $\delta = 1.02-1.05$ (m, 24 H), 1.44–1.51 (m, 16 H), 1.58–1.64 (m, 16 H), 2.60 (t, J = 7.6 Hz, 16 H), 7.08 (s, 4 H), 7.09 (s, 4 H), 7.17 (s, 2 H).

 ^{13}C NMR (CS₂/CD₂Cl₂, 1:1): δ = 13.97, 22.58, 22.67, 31.91, 31.97, 32.88, 32.89, 79.98, 82.53, 91.00, 121.57, 123.61, 132.70, 133.07, 140.89, 141.41.

UV/VIS (CH₂Cl₂): λ_{max} (log ϵ) = 252 (4.32), 310 (4.98), 345 (5.03), 399 (3.81), 440 (3.49), 454 (3.41), 486 nm (3.11).

LDTOF-MS: *m/z* 970 (M⁺).

Acknowledgment

The authors are grateful to Prof. Yoshito Tobe for fruitful discussions. This work has been supported in part by CREST of JST (Japan Science and Technology Corporation).

References

- (a) Nakagawa, M. In *The Chemistry of the Carbon-Carbon Triple Bond*, Part 2; Patai, S., Ed.; Wiley: Chichester, **1978**, 635. (b) Haley, M. M. *Synlett* **1998**, 557.
- (2) (a) Youngs, W. J.; Tessier, C. A.; Bradshaw, J. D. Chem. Rev. 1999, 99, 3153. (b) Chakraborty, C.; Tessier, C. A.; Youngs, W. J. J. Org. Chem. 1999, 64, 2947.
 (c) Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. J. Am. Chem. Soc. 2000, 122, 7404. (d) Laskoski, M.; Steffen, W.; Morton, J. G. M.; Smith, M. D.; Bunz, U. H. F. Angew. Chem. Int. Ed. 2002, 41, 2378.
- (3) (a) Zhao, D.; Moore, J. S. *Chem. Commun.* 2003, 807.
 (b) Yamaguchi, Y.; Yoshida, Z. *Chem.-Eur. J.* 2003, 9, 5430. (c) Grave, C.; Schlüter, A. D. *Eur. J. Org. Chem.* 2002, 3075. (d) Bodwell, G. J.; Satou, T. *Angew. Chem. Int. Ed.* 2002, 41, 4003.
- (4) (a) Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. (b) Baughman, R. H.; Galváo, D. S.; Cui, C.; Wang, Y.; Tománek, D. Chem. Phys. Lett. 1993, 204, 8. (c) Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 58, 11009.

- (5) (a) Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 836. (b) Diederich, F. In Modern Acetylene Chemistry; Stang, P. J.; Diederich, F., Eds.; VCH: Weinheim, 1995, 443.
- (6) (a) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Müllen, K.; Pakula, T. J. Am. Chem. Soc. 2003, 125, 1682.
 (b) Tobe, Y.; Utsumi, N.; Kawabata, K.; Nagano, A.; Adachi, K.; Araki, S.; Sonoda, M.; Hirose, K.; Naemura, K. J. Am. Chem. Soc. 2002, 124, 7266. (c) Tanatani, A.; Mio, M. J.; Moore, J. S. J. Am. Chem. Soc. 2002, 124, 5350.
 (d) Nakamura, K.; Okubo, H.; Yamaguchi, M. Org. Lett. 2001, 3, 1097. (e) Allen, M. T.; Diele, S.; Harris, K. D. M.; Hegmann, T.; Kariuki, M.; Lose, D.; Preece, J. A.; Tschierske, C. J. Mater. Chem. 2001, 11, 302.
- (7) (a) Kawase, T.; Tanaka, K.; Seirai, Y.; Shiono, N.; Oda, M. *Angew. Chem. Int. Ed.* **2003**, *42*, 5597. (b) Kawase, T.; Seirai, Y.; Darabi, H. R.; Oda, M.; Sarakai, Y.; Tashiro, K. *Angew. Chem. Int. Ed.* **2003**, *42*, 1659. (c) Kawase, T.; Tanaka, K.; Fujiwara, N.; Darabi, H. R.; Oda, M. *Angew. Chem. Int. Ed.* **2003**, *42*, 1624.
- (8) (a) Campbell, I. D.; Eglinton, G.; Henderson, W.; Raphael, R. A. J. Chem. Soc., Chem. Commun. 1966, 87.
 (b) Solooki, D.; Ferrara, J. D.; Malaba, D.; Bradshaw, J. D.; Tessier, C. A.; Youngs, W. J. Inorg. Synth. 1997, 31, 122.
- (9) Huynh, C.; Linstrumelle, G. *Tetrahedron* **1988**, 44, 6337.
- (10) Iyoda, M.; Vorasingha, A.; Kuwatani, Y.; Yoshida, M. *Tetrahedron Lett.* **1998**, *39*, 4701.
- (11) (a) Staab, H. A.; Graf, F. *Tetrahedron Lett.* **1966**, 751.
 (b) Staab, H. A.; Graf, F. *Chem. Ber.* **1970**, *103*, 1107.
- (12) Miljani, O. S.; Vollhardt, K. P. C.; Whitener, G. D. *Synlett* **2003**, 29.
- (13) Sonogashira, K. In *Comprehensive Organic Synthesis*, Vol. 3; Pergamon Press: Oxford, **1990**, 521.
- (14) 1,4-bis(2-bromophenyl)-1,3-butadiyne was obtained in 33% yield: Vorasingha, A. *Dissertation*; Tokyo Metropolitan University: Japan, **1999**.
- (15) (a) Okuro, K.; Furuune, M.; Miura, M.; Nomura, M. *Tetrahedron Lett.* **1992**, *33*, 5363. (b) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. *J. Org. Chem.* **1993**, *58*, 4716.
- (16) Kehoe, J. M.; Kiley, J. H.; English, J. J.; Johnson, C. A.; Petersen, R. C.; Haley, M. M. Org. Lett. 2000, 2, 969.
- (17) 1-Iodo-2-bromo-4,5-dibutylbenzene was prepared by bromination of 1,2-dibutylbenzene with $Br_2(63\%)$, followed by iodination with I_2 and H_5IO_6 in AcOH- H_2SO_4 - H_2O (64%).
- (18) The silver complex $(2c)_2AgBF_4$: ¹H NMR (CD₂Cl₂): $\delta = 0.87$ (m, 24 H), 1.02 (m, 16 H), 1.48 (m, 16 H), 2.39 (m, 8 H), 2.54 (m, 8 H), 7.09 (s, 4 H), 7.14 (s, 4 H), 7.69 (s, 2 H); LDTOF-MS: *m*/*z* calcd for C₁₄₈H₁₆₄Ag: 2048.19; found: 2049.5.
- (19) Suzuki, H.; Nakamura, K.; Goto, R. Bull. Chem. Soc. Jpn. 1966, 39, 128.
- (20) Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59, 1294.
- (21) Kajigaeshi, S.; Kakinami, T.; Moriwaki, M.; Watanabe, M.; Fujisaki, S.; Okamoto, T. *Chem. Lett.* **1988**, 795.
- (22) (a) Bott, R. W.; Eaborn, C.; Walton, D. R. M. J. Chem. Soc. 1965, 384. (b) Hommes, H.; Verkruijsse, H. D.; Brandsma, L. Tetrahedron Lett. 1981, 2495.
- (23) Kowalik, J.; Tolbert, L. M. J. Org. Chem. 2001, 66, 3229.
- (24) (a) Staab, H. A.; Bader, R. *Chem. Ber.* **1970**, *103*, 1157.
 (b) Diercks, R.; Vollhardt, K. P. C. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 266.

Synthesis 2004, No. 9, 1527-1531 © Thieme Stuttgart · New York