Structural Changes of Amorphous GeTe₂ Films by Annealing (Formation of Metastable Crystalline GeTe₂ Films)

Hirofumi Fukuмото, Keiji Tsuneтомо, Takeshi Imura and Yukio Osaka

Department of Electrical Engineering, Hiroshima University, Higashi-Hiroshima 724 (Received July 31, 1986)

Amorphous GeTe₂ films with the thickness $\sim 0.5 \, \mu \text{m}$, prepared by sputtering technique, transform into the crystalline GeTe₂ films with the isomorphic structure to β -cristobalite, cubic SiO₂, at T_a (annealing temperature)=200°C. The cubic phase of GeTe₂ is metastable and decomposes into the mixed crystal of GeTe and Te at T_a =250°C.

§1. Introduction

The system $Ge_{1-x}Te_x$ is characterized by its ability to form glass when the chalcogen rich composition is quenched from the melt. Films deposited from the vapor are also amorphous over almost the entire compositional range when formed on substrates at room temperature. The memory-type electrical switching in the composition near x=0.85 (Te-GeTe eutectic composition) has aroused particular interest in this system.¹⁾ Also the optical switching analogous to the electrical switching may be possible, as discussed in detail for the system $Ge_{15}Te_{81}Sb_2S_2$.²⁾

The Te-rich amorphous alloys $(0.66 \le x < 1)$ exhibit steadily increasing glass transition temperatures with increasing Ge content until the chemically ordered composition GeTe₂ is reached.3-5) Unfortunately, the chemically ordered composition GeTe₂ was inaccessible by rapid quenching of the melt such as splat cooling technique.⁴⁾ The sputtered glass specimens extend the range of observation of T_g beyond the composition GeTe₂.6 A T_g maximum (about 230°C) exists at the composition GeTe₂, which suggests that the composition can easily take stable amorphous phase. In addition, the composition GeTe₂ is associated with such a structure model as we find in vitreous SiO₂, that is, every pair of Te atoms has been crosslinked to another pair of Te atoms via a Ge atom.

Long before a new concept on the structures

of inorganic covalent glasses⁷⁾ was developed, Zachariasen had suggested in his most famous paper on the structure of vitreous SiO₂ that the glass structure should be described as a chemically ordered (4-2 coordinated) continuous random network.8) For more than four decades it became customary to describe diffraction data on network glasses in Zachariasen's language. In contrast, an alternative description has been proposed which regards glasses as consisting of at least two kinds of morphologically and stoichiometrically distinct large molecular clusters. 7) In this molecular cluster network model proposed by Phillips,⁷⁾ cluster interface play an integral role in determining the glass forming tendency. The existence of these heterogeneous clusters requires that the chemical order of the network is intrinsically broken. 9 However, irrespective of this new concept, Phillips' topological theory of network glass formation⁷⁾ has claimed that amorphous GeTe₂ is topologically isomorphic to amorphous SiO₂. 10) Another topological isomorphism that is similar to GeTe₂ has been also suggested by the compositional dependence of Mössbauer spectroscopy on anion ternary $Ge(Te_xSe_{1-x})_2.^{11)}$

In bulk, the crystalline form for the system $Ge_{1-x}Te_x$ in the region $x \ge 0.5$ is the mixture of crystalline GeTe and crystalline Te. The absence of crystalline $GeTe_2$ in bulk is attributed to the disproportionation reaction $GeTe_2 \rightarrow GeTe + Te$, which results also in the

devitrification of the bulk glass for x>0.6.

In this paper, we report the structural change induced by annealing for amorphous films of GeTe₂ composition prepared by sputtering technique. From X-ray diffraction, electrical conductivity, optical absorption, and Raman scattering measurements, it is suggested that the amorphous GeTe₂ films with thickness $0.2 \sim 0.5 \, \mu \text{m}$ transform into a metastable phase of the crystalline GeTe₂ at T_a (annealing temperature)=200°C. The structure of crystalline GeTe₂ seems to be cubic and isomorphic to β -cristobalite SiO₂.

§2. Experimental

Films of a-Ge_{1-x}Te_x alloy were prepared by rf sputtering of Ge target upon which small pieces of Te were placed in radial array. The Te content in the film was controlled by the area ratio of pieces of Te to the target. Typically, the pressure of Ar, the rf power and the substrate temperature were 0.67 Pa, 20 W and 20° C (water cooled), respectively.

Substrate materials used were: (1) crystalline silicon for Raman scattering, (2) fused silica for dc-conductivity, X-ray diffraction and optical measurements. The samples were annealed at fixed T_a in N_2 gas at an atmospheric pressure for 30 minutes.

After evaporation of Mo electrodes on the film $\sim 0.2 \, \mu \text{m}$ thick, dc-conductivity measurements were carried out in vacuum ($\sim 10^{-1}$ Pa) as temperature increased. The crystal structure of films was examined by an X-ray diffractometer (JEOL JDX-10PA, CuK_α). Optical transmittance and reflectance measurements were carried out with Shimadzu UV-365 spectrometer. Raman scattering measurements were carried out by Jasco R-500 Raman spectrometer with Ar⁺ laser (5145 A). The chemical composition of films was determined by Rutherford backscattering spectrometry at 165° direction for 2.5 MeV He⁺ ion beam (~10 nA) generated from a Van de Graaff accelerator installed at Faculty of Engineering, Hiroshima University.

§3. Results and Discussion

3.1 X-ray diffraction

Figure 1 shows X-ray diffraction patterns of $Ge_{0.32}Te_{0.68}$ (almost $GeTe_2$) film with the

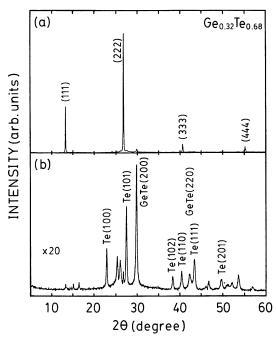


Fig. 1. X-ray diffraction patterns (CuK_{α}) of GeTe₂ films: (a) T_a =200°C, and (b) T_a =250°C.

thickness $\leq 0.5 \, \mu \text{m}$ at $T_a = 200$ (a) and 250°C (b). In the as-deposited film, the broad pattern observed shows that this film is amorphous. At $T_a = 200$ °C sharp diffraction lines appear at $2\theta = 13.3$, 26.7, 40.6 and 55.2°. Full-widths at half maximum (FWHM's) of these lines are as narrow as the FWHM of the instrument. At $T_a = 250$ °C most of the sharp lines agree with those of crystalline GeTe and crystalline Te; slightly remaining lines as in Fig. 1(a) and small amount of GeTe₄ lines are included.

The sharp lines at $T_a = 200^{\circ}$ C are fitted very well to the (111) aligned pattern of such cubic GeTe₂ that the structure is isomorphic to that of β -cristobalite SiO₂. The lattice constant is determined to be 11.5 A from the lines at 13.3° (111), 26.7° (222), 40.6° (333) and 55.2° (444), which leads to the nearest neighbor distance between Ge and Te, 2.50 A. The electron diffraction of amorphous films of GeTe₂ composition prepared by a flash evaporation shows that the nearest neighbor distance is 2.55 A.12) Using Paulings' value for the covalent radii, 13) the calculated Ge-Te distance is 2.54 A. These values suggest that the assumption of cubic GeTe2 for the film at $T_a = 200^{\circ}$ C is reasonable, although the present

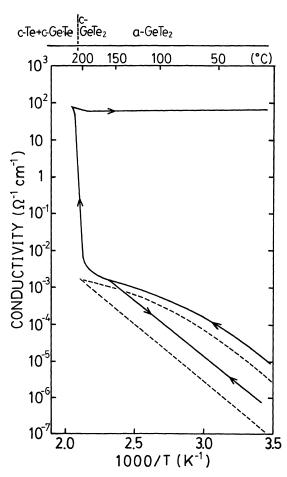


Fig. 2. Electrical conductivity of GeTe₂ films $(0.2 \mu m)$ versus reciprocal temperature. Dashed lines show the results of sputtered GeTe₂ $(0.59 \mu m)$ of ref. 6.

value is only about 2% smaller probably due to slight ionicity og Ge-Te bond.

3.2 Electrical conductivity and optical absorption

Figure 2 shows the temperature dependence of the electrical conductivity of the film with thickness of $0.2 \, \mu m$. The conductivity shows pronounced annealing effects below $T_a = 170^{\circ}\text{C}$. As the comparison, the result on amorphous GeTe₂ (thickness $0.59 \, \mu m$, prepared by rf sputtering technique) obtained by deNeufville⁶⁾ is also shown with dashed lines. The activation energy of the conductivity before and after anneal at $T_a = 170^{\circ}\text{C}$ was $0.52 \, \text{eV}$ and $0.61 \, \text{eV}$, respectively. Our value of the activation energy after anneal agrees very well with that of deNeufville.⁶⁾ deNeufville pointed

out that the uniqueness of the GeTe₂ composition is verified by the activation energy for the conductivity after anneal $(0.61\pm0.02\,\text{eV})$, which is higher than the values reported for amorphous films of Te¹⁴⁾ and GeTe, ¹⁵⁾ and that it is consistent with a structural model for this composition involving only Ge–Te bonds.

The vanishing of annealing effects above $T_a=170^{\circ}\text{C}$ seems to correspond to the appearance of cubic GeTe₂. The rapid increase of the conductivity between $T_a=200^{\circ}\text{C}$ and $T_a=220^{\circ}\text{C}$ corresponds to the irreversible transformation from cubic GeTe₂ into the mixture of crystalline GeTe and crystalline Te, both semimetallic materials.

The transmittance and reflectance of films deposited on fused silica were analysed by a standard method¹⁶⁾ to obtain the absorption coefficient. Figure 3 shows the absorption coefficient spectra. The absorption coefficient for crystalline GeTe is also shown by a dashed curve.¹⁷⁾ At T_a =200°C, the absorption coefficient decreases slightly in comparison

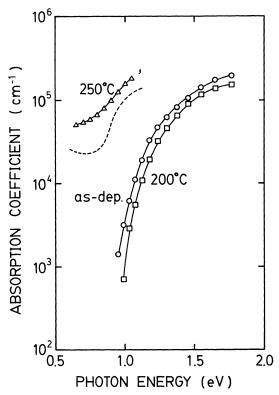


Fig. 3. Absorption coefficient spectra. The dashed curve shows the absorption coefficient of crystalline GeTe films (after ref. 17).

with the amorphous film (as-deposited film), which seems to be due to the appearance of cubic GeTe₂. These two spectrum, however, are similar on the whole, which suggests that the structure in the as-deposited amorphous film is a disordered phase of β -cristobalite substituted by Ge and Te. At T_a =250°C, the absorption coefficient below 1.0 eV increases remarkably. This corresponds to the formation of the mixed crystal of GeTe and Te. The difference between the absorption coefficient at T_a =250°C and that of crystalline GeTe may be due to coexistence of crystalline Te.

3.3 Raman scattering

Figure 4 shows the variation of Raman spectra by annealing. The spectrum in asdeposited film is similar to that of amorphous GeTe₂ prepared by rf sputtering or evaporation. 18) The spectrum shows the two broad bands around 125 and 155 cm^{-1} . $T_a = 180^{\circ}$ C, the width of these bands becomes slightly narrow. The irradiation of Ar⁺ laser (50 mW) for 9 hours at $T_a = 180^{\circ}$ C changes the spectrum remarkably. The broad band around 125 cm⁻¹ became very sharp. This seems to be the appearance of cubic GeTe₂ by the laser irradiation, because the broad band around 125 cm⁻¹ in the amorphous Ge_xTe_{I-x} system is assigned to be A₁ mode of GeTe₄ tetrahedral unit. 18) At $T_a = 250^{\circ}$ C, the sharp band around 125 cm⁻¹ disappears, and the sharp bands around 120 cm^{-1} and 140 cm^{-1} appear. These bands are assigned to be A₁ and E mode in crystalline Te, respectively.¹⁹⁾

§4. Conclusions

From X-ray diffraction, electrical conductivity, optical absorption, and Raman scattering measurements, the following conclusions were derived;

- 1) the amorphous $GeTe_2$ film with the thickness ~0.5 μ m transforms to the crystalline $GeTe_2$ at $T_a \simeq 200^{\circ}C$,
- 2) the crystal structure of GeTe₂ films is cubic and isomorphic to β -cristobalite SiO₂,
- 3) the cubic GeTe₂ decomposes into GeTe and Te at $T_a \simeq 250^{\circ}$ C.

As mentioned in §1, the crystalline $GeTe_2$ was inaccessible in the bulk Ge_xTe_{1-x} system, which is attributed to the disproportionation

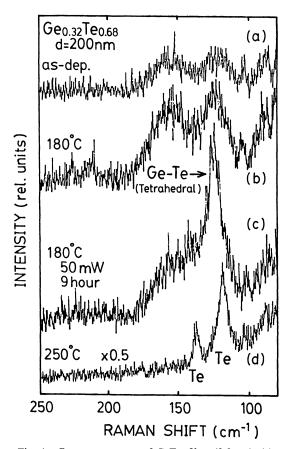


Fig. 4. Raman spectrum of GeTe₂ films (0.2 μ m): (a) as-deposition, (b) T_a =180°C, (c) Ar⁺ laser irradiation for 9 hours at T_a =180°C, and (d) T_a =250°C.

reaction $GeTe_2 \rightarrow GeTe + Te$ for the region $x \ge 0.6$. In this sense, the cubic $GeTe_2$ growing near $T_a = 200^{\circ}C$ seems to be a metastable material that can exist only in the thin film. The stability of the metastable films may be supported by the thin-film character or the existence of the substrate. The preliminary results show that the films of which the thickness larger than $5 \mu m$ do not reveal at all the cubic $GeTe_2$ phase by annealing. The instability of cubic $GeTe_2$ phase will be discussed elsewhere in relation to the film thickness and the existence of the substrate.

References

- 1) S. R. Ovshinsky: Phys. Rev. Lett. 21 (1968) 1450.
- J. Feinleib, J. P. de Neufville, S. C. Moss and S. R. Ovshinsky: Appl. Phys. Lett. 18 (1971) 254.
- C. Wood, L. R. Gilbert, R. Maeller and C. M. Garner: J. Vac. Sci. Technol. 10 (1973) 739.
- 4) T. Takamori, R. Roy and G. J. McCarthy: Mater.

- Res. Bull. 5 (1970) 529.
- N. K. Abrikosov, V. F. Bankina, L. V. Poretskaya, L. E. Schlimova and E. V. Skudnova: Semiconducting II-VI, IV-VI, and V-VI compounds, Monographs in Semiconductor Physics (Plenum Press, New York, 1969).
- 6) J. P. deNeufville: J. Non-Cryst. Solids **8 & 10** (1972) 85
- 7) J. C. Phillips: J. Non-Cryst. Solids **34** (1979) 153; **43** (1981) 37.
- W. H. Zachariasen: J. Am. Chem. Soc. 54 (1932) 3841.
- 9) P. Boolchand, J. Grothaus and J. C. Phillips: Solid State Commun. 45 (1983) 183.
- 10) J. C. Phillips: Solid State Commun. 47 (1983) 203.
- 11) M. Stevens, J. Gorthaus and P. Boolchand: Solid

- State Commun. 47 (1983) 199.
- D. B. Dove, J. Chang and B. Molnar: J. Non-Cryst. Solids 8 & 10 (1972) 376.
- 13) L. A. Pauling: *The Nature of the Chemical Bond* (Cornell Univ. Press, New York, 1960) 3rd ed.
- 14) H. Keller and J. Stuke: Phys. Status Solidi 8 (1965)
- S. K. Bahl and K. L. Chopra: J. Appl. Phys. 41 (1970) 2196.
- T. Nakashita, M. Hirose and Y. Osaka: Jpn. J. Appl. Phys. 17 (1978) 985.
- S. K. Bahl and K. L. Chopra: J. Appl. Phys. 40 (1969) 4940.
- 18) G. B. Fisher and J. Tauc: Proc. 5th. Int. Conf. Amor. Liq. Semicon (Garmisch, 1973) p. 1259.
- 19) B. H. Torrie: Solid State Commun. 8 (1970) 1899.