Tetrahedron: Asymmetry 23 (2012) 564-569

Contents lists available at SciVerse ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Total synthesis of the acetyl derivatives of *lyxo-*(2*R*,3*R*,4*R*)-phytosphingosine and (–)-jaspine B

Ganipisetti Srinivas Rao, Bandari Chandrasekhar, Batchu Venkateswara Rao*

Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India

ARTICLE INFO

Article history: Received 9 March 2012 Accepted 5 April 2012 Available online 18 May 2012

ABSTRACT

The total synthesis of acetyl derivatives of *lyxo-(2R,3R,4R)*-phytosphingosine and (–)-jaspine B using a Grignard reaction on sugar-imine and a Wittig reaction as the key steps. © 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Sphingoids are the characteristic structural unit of sphingolipids and are basically long-chain amino-diol and amino-triol bases. Sphingoids are important membrane constituents and play an important role in cell regulation as well as signal transduction.¹ Furthermore, glycosphingolipids show important biological activities such as antitumor,^{2a} antiviral,^{2b} antifungal,^{2c} and cytotoxic properties.^{2d} Phytosphingosines, one of the major classes of sphingoids, have been isolated and identified either separately or as parts of sphingolipids from plants,^{3a} marine organisms,^{3b-c} fun-^d yeasts,^{3e} and even mammalian tissues^{3f-k} of the kidney,^{3g} ligi,³ ver,^{3h} uterus,³ⁱ intestine,^{3j} and skin.^{3k} Phytosphingosines are one of the most important and common species of the naturally occurring sphingoid bases.⁴ Phytosphingosines themselves have also been found to be bioactive lipids. For example, *ribo*-phytosphingosine 1 is a potential heat stress signal in yeast cells.⁵ It has also been confirmed that various diastereomers of phytosphingosines 1-4 exhibit different activities and metabolisms (Fig. 1).^{1b,6}

Much effort has been devoted toward the synthesis of these molecules for their use in biological studies. All of the diastereomers of the phytosphingosines have been synthesized since they have shown noticeable variation in their bioactivity.⁷ However, all *lyxo*-phytosphingosines **2** and **3** have attracted much less attention from the synthetic community.⁸

In 2002, pachastrissamine **5** (jaspine B) (Fig. 2), the first naturally occurring anhydrophytosphingosine derivative, was isolated from the Okinawan marine sponge *Pachastrissa* sp. by Higa et al.⁹ In 2003, Debitus et al. isolated the same compound from a different marine sponge, *Jaspis* sp. and named it jaspine B **5**.¹⁰ This marine natural product exhibited high cytotoxic activity against various tumor cell lines in vitro.^{9,10} Delgado et al. reported that the potency of the cytotoxicity is dependent on the stereochemistry of the tetrahydrofuran moiety.¹¹ Jaspine B **5** has an *erythro*-amino alcohol

* Corresponding author. Tel./fax: +91 40 27193003. *E-mail address:* venky@iict.res.in (B. Venkateswara Rao). moiety in the tetrahydrofuran ring, which may be a key structural feature for its biological activity. Our group reported that (-)-jaspine B **8** showed promising results on MCF7 cells maybe because of the *cis*-configuration of its amino and hydroxy groups (*erythro* configuration).^{12a} It has also shown better activity compared to the *trans*-configuration.

Tetrahedror

The novel structural features and interesting biological activities of pachastrissamine have prompted chemists to develop several syntheses for jaspine B **5**, its stereoisomers **6–9**, and its analogues.^{13,14} Our group published the first total synthesis of jaspine B **5** and its C2 epimer **6**.¹⁵ We also reported the synthesis of *ent-4-epi*-jaspine B **7** and (–)-jaspine B **8** and their biological activities in comparison to jaspine B **5**, ^{12a} and also synthesised 3*-epi*jaspine B **9**.^{12b} Recently we developed a common strategy for the synthesis of *D-ribo*-phytosphingosine **1** and 2*-epi*-jaspine B **6** from *D*-ribose,⁷⁵ jaspine B **5** and *D-lyxo*-phytosphingosine **2** from *L*-ascorbicacid.⁸¹

In continuation of our efforts in the stereoselective synthesis of bioactive azasugars,¹⁶ and carbasugars¹⁷ by using Grignard addition reactions on sugar-imines, we herein report the application of the above strategy for the development of efficient and common methods for the synthesis of *N*,*O*,*O*,*O*-tetra-acetyl *lyxo*-(2*R*,3*R*,4*R*)-phytosphingosine **10** and *N*,*O*-diacetyl-(-)-jaspine B **11**. The starting material for our approach was D-glucose, which is an inexpensive sugar and possesses the desired chirality.

The retro-synthetic analysis of **10** and **11** is depicted in Scheme 1. Compound **12** is a common intermediate for the synthesis of **10** and **11** and it can be obtained from compound **13** after appropriate manipulation. The amino group can be introduced by nucleophilic addition on sugar-imine **14** and the required lipid chain can be added by a Wittig olefination. Sugar-imine **14** can be obtained from p-glucose.

2. Results and discussions

Our synthesis of **10** and **11** started from **13**, which can be prepared from commercially available p-glucose using our earlier

^{0957-4166/\$ -} see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetasy.2012.04.009

Scheme 1. Retro-synthetic analysis of acetyl derivatives of L-lyxo-phytosphingosine 10 and (–)-jaspine B 11.

Scheme 2. Synthesis of the acetyl derivative of *lyxo*-phytosphingosine **10**: Reagents and conditions: (a) Cbz-Cl, NaHCO₃, MeOH, 1 h; (b) (i) O₃, CH₂Cl₂, -78 °C, 30 min then DMS, -78 °C to rt, 30 min; (ii) NaBH₄, MeOH, 1 h; (c) NaH, THF, 30 min; (d) TFA-H₂O, 0 °C to rt, 4 h; (e) (i) NalO₄, MeOH, H₂O, rt, 1 h, (ii) C₁₃H₂₇Ph₃P⁺Br⁻, *n*-BuLi, THF, 0 °C, 1 h; (f) 4 M NaOH, EtOH, reflux, 6 h; (g) (i) H₂, Pd/C, MeOH, 6 h, (ii) Ac₂O, Et₃N, CH₂Cl₂, 6 h.

Scheme 3. Synthesis of diacetyl (-)-jaspine B 11: Reagents and conditions: (a) (i) H₂, Pd/C, MeOH, 6 h, (ii) (Boc)₂O, Et₃N, CH₂Cl₂, 2 h; (b) TsCl, Et₃N, DMAP, CH₂Cl₂; (c) (i) TFA, CH₂Cl₂, 2 h; (ii) (Ac)₂O, Et₃N, CH₂Cl₂, 4 h.

procedure (Scheme 2).^{16c} The allylamine **13** was treated with CbzCl in the presence of NaHCO₃ in dry MeOH to afford compound **15**. Oxidative cleavage of terminal double bond in 15 with O₃ in CH₂Cl₂ at -78 °C produced the aldehyde, which upon treatment with NaBH₄ in dry MeOH gave **16** in 94% yield. In order to protect the primary hydroxyl group, compound **16** was treated with sodium hydride to give the cyclic carbamate 17. Deprotection of the 2,3-O-isopropylidene group in 17 was achieved using TFA·H₂O to afford hemiacetal 18. Oxidative cleavage of 18 with NaIO₄ in MeOH·H₂O gave the aldehyde, which upon treatment with excess Wittig reagent ($C_{12}H_{25}P^+Ph_3Br^-$ in dry THF) at 0 °C, gave **19**. Deprotection of the carbamate in 19 was achieved with 4 M NaOH to give 12; the stereochemistry of the double bond was confirmed as the Z-isomer by ¹H NMR coupling constants. Hydrogenation of compound 12 in the presence of Pd/C in MeOH under a hydrogen atmosphere gave L-lyxo-phytosphingosine **3**. For the sake of characterization, this was converted into acetyl derivative **10** by using Ac₂O in the presence of Et₃N. The spectroscopic data of **10** were in good agreement with the reported values.¹⁸

For the synthesis of the acetyl derivative of (–)-jaspine B **11**, the following reactions were carried out (Scheme 3). Hydrogenation of compound **12** using Pd/C in MeOH followed by protection of the resultant amino functionality with (Boc)₂O in the presence of Et₃N afforded carbamate **20**. Regioselective tosylation of the primary hydroxy group of **20** prompted spontaneous cyclization to give tetrahydrofuran derivative **21** (Scheme 3).^{13b} Deprotection of the Boc group in **21** with TFA/CH₂Cl₂ provided the (–)-jaspine B **8**, which upon acetylation using Ac₂O in the presence of excess Et₃N gave the acetyl derivative of (–)-jaspine B **11**. The physical properties of Boc protected (–)-jaspine B **21** and its diacetyl derivative **11** were in good agreement with the reported values.^{13e}

3. Conclusions

In conclusion we have successfully demonstrated a common strategy for the synthesis of the acetyl derivatives of L-lyxo-phyto-sphingosine and (–)-jaspine B with good overall yields (16.8% and 13.7% respectively), from inexpensive and commercially available D-glucose by using Grignard addition on a chiral sugar-imine and a Wittig olefination. This strategy is also useful for making some other analogues and isomers of phytosphingosine and jaspine B with high stereoselectivity in order to study their activity.

4. Experimental

TLC was performed on Merck Kiesel gel 60, F254 plates (layer thickness 0.25 mm). Column chromatography was performed on silica gel (60–120 mesh) using ethyl acetate and hexane mixture as the eluent. Melting points were determined on a Fisher John's melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin–Elmer RX-1 FT-IR system. ¹H NMR and ¹³C NMR spectra were recorded using Varian Gemini-200 MHz, Bruker Avance-300 MHz, and Varian Inova-500 MHz spectrometer. ¹H NMR data are expressed as chemical shifts in ppm followed by multiplicity (s–singlet; d–doublet; t–triplet; q–quartet; m–multi-

plet), number of proton(s), and coupling constant(s) J (Hz). ¹³C NMR chemical shifts are expressed in ppm. Optical rotations were measured with JASCO digital polarimeter. Accurate mass measurement was performed on Q STAR mass spectrometer (Applied Biosystems, USA).

4.1. Benzyl benzyl((*R*)-1-((3a*R*,5*R*,6*S*,6a*R*)-6-(benzyloxy)-2,2dimethyltetrahydro-furo[2,3-*d*][1,3]dioxol-5-yl)allyl)carbamate 15

To a stirred solution of 13 (2.4 g, 6.1 mmol) in dry MeOH (20 mL) was added sodium bicarbonate (1.02 g, 12.2 mmol) followed by CbzCl (1.52 mL, 9.15 mmol) at 0 °C. The mixture was stirred at rt for 3 h. Next, MeOH was evaporated under reduced pressure and reaction mixture was extracted with EtOAc and water. The combined organic layers were washed with water and brine, and dried over anhydrous Na₂SO₄. The solvent was removed on a rotary evaporator and the resulting crude material was purified by column chromatography on silica gel by eluting with ethyl acetate:hexane (1:9) to give 15 (2.96 g, 92%) as a colorless liquid. $[\alpha]_D^{26} = -49.2 \ (c \ 2.0, \ CHCl_3); \ IR \ \nu_{max}: \ 2985, \ 2932, \ 1695, \ 1455, \ 1413, \ 1374, \ 1247, \ 1215, \ 1074, \ 1024, \ 740, \ 699 \ cm^{-1}; \ ^1H \ NMR$ (CDCl₃ 300 MHz): δ 7.00–7.41(m, 15H), 5.81–6.20 (m, 2H), 4.73– 5.31 (m, 5H), 4.32-4.66 (m, 5H), 4.02 (m, 1H), 3.59 (m, 1H), 1.17–1.42 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz): δ 156.9, 138.3, 137.1, 136.1, 134.5, 128.2, 128.1, 127.8, 127.7, 127.6, 127.1, 116.9, 111.2, 104.7, 81.7, 81.2, 79.6, 71.5, 67.2, 57.7, 50.7, 26.4, 26.0 (because of the rotamers multiple peaks are observed in NMR); ESIMS m/z: 530 [M+H]⁺; HRMS (ESI): Calcd for C₃₂H₃₆NO₆ [M+H]⁺ 530.2542, found 530.2528.

4.2. Benzyl benzyl((R)-1-((3aR,5R,6S,6aR)-6-(benzyloxy)-2,2dimethyltetrahydro-furo[2,3-d][1,3]dioxol-5-yl)-2hydroxyethyl)carbamate 16

To a solution of compound **15** (2.0 g, 3.78 mmol) in CH_2CI_2 (20 mL) at -78 °C, ozone gas was passed for 30 min (until the solution turns to a light blue color) and the reaction mixture was quenched with dimethyl sulfide (1.0 mL, 7.56 mmol), stirred for 30 min, and the reaction mixture was washed with CH_2CI_2 (2 × 20 mL). The combined organic layers were washed with water and brine, and dried over anhydrous Na_2SO_4 . The solvent was removed on a rotary evaporator and the resulting crude aldehyde was used in the next step without further purification.

To the solution of the resulting crude aldehyde in dry MeOH (20 mL) at 0 °C was added NaBH₄ (142 mg, 3.78 mmol) and the reaction mixture stirred for 2 h. The reaction mixture was quenched with a saturated NH₄Cl solution and the solvents were removed in vacuo. The crude compound was partitioned between CH₂Cl₂ and H₂O. The aqueous layer was washed with CH₂Cl₂ (2 × 20 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed on a rotary evaporator and the resulting crude material was purified by column chromatography on silica gel by eluting with ethyl acetate:hexane (1:4) to give compound **16** (1.91 g, 94% for two steps)

as a colorless oil. $[\alpha]_D^{26} = -59.3$ (*c* 1.5, CHCl₃); IR ν_{max} : 3469, 2929, 1692, 1454, 1412, 1374, 1247, 1215, 1074, 1024, 740, 699 cm⁻¹; ¹H-NMR (CDCl₃, 300 MHz): δ 7.00–7.42 (m, 15H), 5.88 (br s, 1H), 5.00–5.30 (m, 2H), 4.30–5.00 (m, 6H), 4.17 (br d, 1H, *J* = 15.5 Hz), 3.94 (dd, 1H, *J* = 4.2 and 11.5 Hz), 3.55–3.85 (m, 2H), 1.67 (br s, 1H), 1.18–1.44 (m, 6H); ¹³C NMR (CDCl₃, 75 MHz): δ 156.9, 138.3, 137.0, 136.1, 128.5, 128.0, 127.8, 127.4, 111.8, 104.8, 82.1, 81.2, 78.8, 71.7, 67.6, 63.4, 58.1, 51.0, 29.6, 26.6, 26.2 (because of the rotamers multiple peaks are observed in NMR); ESIMS *m/z*: 534 [M+H]⁺; HRMS (ESI): Calcd for C₃₁H₃₅NO₇Na [M+Na]⁺ 556.2311, found 556.2288.

4.3. (*R*)-3-Benzyl-4-((3a*R*,5*R*,6*S*,6a*R*)-6-(benzyloxy)-2,2dimethyltetrahydrofuro[2,3-*d*][1,3]dioxol-5-yl)oxazolidin-2one 17

To an ice cooled, stirred solution of compound **16** (1.7 g. 3.18 mmol) in dry THF (15 mL), was slowly added NaH (0.26 g, 60% w/v dispersion in mineral oil, 6.37 mmol) over 5 min (portionwise). Then the reaction was allowed to return to room temperature and stirred for 2 h. The reaction mixture was quenched with crushed ice and extracted with ethyl acetate (3×100 mL). The combined organic extracts were washed with water and brine, and dried over Na₂SO₄. The solvent was removed on a rotary evaporator and the residue was purified by column chromatography on silica gel using ethyl acetate:hexane (1:4) as the eluent to give pure compound 17 (1.24 g, 92%) as a colorless liquid. $[\alpha]_D^{26}=-39.7~(c$ 1.0, CHCl₃); IR v_{max}: 2924, 1742, 1427, 1371, 1217, 1074, 1023, 744, 700 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 7.12–7.36 (m, 10H), 5.88 (d, 1H, J = 3.8 Hz), 4.64 (d, 1H, J = 16.1 Hz), 4.60 (d, 1H, J = 11.7 Hz), 4.52 (d, 1H, J = 3.8 Hz), 4.43 (dd, 1H, J = 6.7 and 9.2 Hz), 4.33 (d, 1H, J = 11.7 Hz), 4.28 (t, 1H, J = 3.3 Hz), 4.16–4.26 (m, 2H), 3.83 (td, 1H, J = 3.3 and 9.2 Hz), 3.74 (d, 1H, J = 3.4 Hz), 1.34 (s, 3H), 1.28 (s, 3H); 13 C NMR (CDCl₃, 75 MHz): δ 158.5, 136.6, 136.0, 128.8, 128.6, 128.2, 127.7, 127.5, 112.0, 105.0, 82.4, 81.6, 77.0, 71.7, 63.8, 54.5, 46.5, 26.8, 26.3; ESIMS m/z: 426 [M+H]⁺; HRMS (ESI): Calcd for C₂₄H₂₈NO₆ [M+H]⁺ 426.1916, found 426.1903.

4.4. (*R*)-3-Benzyl-4-((2*R*,3*R*,4*R*,5*S*)-3-(benzyloxy)-4,5dihydroxytetrahydrofuran-2-yl)oxazolidin-2-one 18

Compound 17 (1.2 g, 2.82 mmol) was treated with 20 mL of TFA:H₂O (3:2) at 0 °C then the reaction mixture was warmed to room temperature and stirred for 3 h. Solvents were removed by three coevaporations with toluene (10 mL), and the residue was purified by column chromatography on silica gel using ethyl acetate:hexane (2:3) as the eluent to give pure compound 18 (0.87 g, 80%) as a colorless liquid. $[\alpha]_D^{26} = -18.9$ (*c* 1.0, CHCl₃); IR vmax: 3389, 2924, 1720, 1443, 1241, 1105, 1073, 1026, 746, 701 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz): δ 7.13–7.40 (m, 10H), 5.55 (d, 1H, J = 3.8 Hz), 4.84 (d, 1H, J = 15.5 Hz), 4.66 (d, 1H, J = 11.7 Hz), 4.60 (dd, 1H, J = 2.0 and 5.5 Hz), 4.32–4.42 (m, 2H), 4.08–4.24 (m, 3H), 3.92 (dd, 1H, J = 2.0 and 5.5 Hz), 3.81 (m, 1H), 3.05 (br s, 1H); ¹³C-NMR (CDCl₃, 75 MHz): δ 159.1, 137.1, 135.4, 128.9, 128.5, 128.0, 2 x 127.9, 127.5, 96.3, 84.0, 76.1, 74.3, 71.7, 64.3, 54.5, 45.7; ESIMS *m/z*: 386 [M+H]⁺; HRMS (ESI): Calcd for C₂₁H₂₄NO₆ [M+H]⁺ 386.1603, found 386.1588.

4.5. (*R*)-3-Benzyl-4-((1*R*,2*R*,Z)-2-(benzyloxy)-1hydroxyhexadec-3-enyl)oxazolidin-2-one 19

To a stirred solution of compound **18** (0.70 g, 1.82 mmol) in MeOH/H₂O (15 mL, 2:1 v/v) were added NaIO₄ (0.78 g, 3.64 mmol) and saturated NaHCO₃ solution (0.2 mL) at 0 °C. Stirring was con-

tinued for 2 h; after consumption of the starting material, methanol was removed under reduced pressure, and the resulting residue was diluted with H₂O and washed with CH₂Cl₂ (2×10 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ and brine, and dried over anhydrous Na₂SO₄. The solvent was removed on a rotary evaporator and the resulting crude aldehyde was used in the next step without any purification.

To a precooled solution of Wittig salt $C_{13}H_{27}Ph_3P^+Br^-$ (2.86 g, 5.46 mmol) in THF (30 mL) was slowly added n-BuLi (2.5 M in hexane, 1.45 mL, 3.64 mmol) under N₂ protection. The orange solution was stirred for about 30 min, after which a solution of the above crude aldehyde in dry THF (10 mL) was added dropwise under N₂ protection. The mixture was stirred at this temperature for another 30 min, and guenched by saturated NH₄Cl solution. The mixture was diluted with water and extracted with EtOAc (3×20 mL). The combined organic layer was washed with brine, and dried over Na₂SO₄. The solvent was removed on a rotary evaporator and the residue was purified by column chromatography on silica gel using ethyl acetate:hexane (1:9) as the eluent to give pure compound 19 (0.85 g, 90% for two steps) as a colorless oil. $[\alpha]_{D}^{26} = -28.5$ (*c* 1.0, CHCl₃); IR v_{max}: 2923, 2853, 1748, 1426, 1376, 1256, 1210, 1070, 1038, 880, 702; ¹H-NMR (CDCl₃, 300 MHz): δ 7.09–7.30 (m, 10H), 5.57(m, 1H), 5.03 (dd, 1H, *J* = 10.3 Hz), 4.70 (d, 1H, *J* = 15.6 Hz), 4.46 (d, 1H, J = 11.2 Hz), 4.28 (m, 1H), 4.15 (d, 1H, J = 11.2 Hz), 3.95-4.05 (m, 2H), 3.82 (m, 1H), 3.72 (d, 1H, J = 6.8 Hz), 3.53 (m, 1H), 1.70-2.06 (m, 4H), 1.05-1.25 (m, 20H), 0.78 (t, 1H, J = 6.6 Hz; ¹³C NMR (CDCl₃, 75 MHz): δ 158.6, 137.6, 137.5, 135.7, 128.7, 128.4, 128.0, 127.8, 124.9, 74.4, 70.0, 69.7, 62.01, 55.8, 45.9, 31.8, 29.6, 29.4, 29.2, 29.1, 28.7, 27.9, 22.6, 14.0; ESIMS m/z: 522 [M+H]⁺; HRMS (ESI): Calcd for C₃₃H₄₈NO₄ [M+H]⁺ 522.3583, found 522.3598.

4.6. (2R,3R,4R,Z)-2-(Benzylamino)-4-(benzyloxy)octadec-5-ene-1,3-diol 12

Compound 19 (0.50 g, 0.95 mmol) was taken in EtOH (20 ml); to this solution at room temperature was added ag 4 M NaOH (1.5 mL), then it was heated at reflux for 12 h. After completion of the reaction, it was neutralized with 1 M aq. HCl (6 mL) and extracted with EtOAc (2×20 mL). The combined organic layer was washed with brine and dried over Na2SO4. The solvent was removed on a rotary evaporator and the residue was purified by column chromatography on silica gel using ethyl acetate:hexane (2:3) as the eluent to give pure compound 12(0.40 g, 85% for two steps)as a colorless oil. $[\alpha]_{D}^{26} = -53.4$ (*c* 1.0, CHCl₃); IR v_{max} : 3342, 2923, 2853, 1728, 1457, 1062, 735, 699 cm⁻¹; ¹H-NMR (CDCl₃, 300 MHz): δ 7.21–7.38 (m, 10H), 5.77 (m, 1H), 5.30 (dd, 1H, J=9.4 and 10.4 Hz), 4.60 (d, 1H, J = 11.4 Hz), 4.29 (d, 1H, J = 11.4 Hz), 4.23 (m, 1H), 3.74-3.85 (m, 3H), 3.68 (m, 1H), 3.63 (m, 1H), 2.62-2.74 (m, 4H), 1.98-2.17 (m, 2H), 1.21-1.41 (m, 18H), 0.88 (t, 1H, J = 7.2 Hz; ¹³C NMR (CDCl₃, 75 MHz): δ 137.3, 128.4. 128.3, 127.9, 127.8, 127.2, 125.4, 75.1, 73.9, 70.0, 60.1, 58.3, 50.9, 31.9, 29.6, 2×29.5 , 29.4, 29.3, 28.1, 22.6, 14.1; ESIMS m/z: 496 [M+H]⁺; HRMS (ESI): Calcd for C₃₂H₅₀NO₃ [M+H]⁺ 496.3790, found 496.3802

4.7. (2R,3R,4R)-2-Acetamidooctadecane-1,3,4-triyl triacetate 10

Compound **12** (0.2 g, 0.40 mmol) was taken in dry EtOH (5 mL) and to it 1:1 Pd/C and Pd(OH)₂ (20 mg) were added. The flask was then purged with hydrogen and hydrogenated at room temperature for 24 h. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give a syrup, which was acetylated as such with Et₃N (0.17 mL, 1.2 mmol), Ac₂O

(0.18 mL, 0.72 mmol), and DMAP (5 mg) in CH₂Cl₂ (5 mL). The reaction mixture was diluted with CH₂Cl₂ (25 mL) and washed with saturated NH₄Cl solution, brine, dried over anhydrous Na₂SO₄. and the solvent was concentrated in vacuo to give the residue, which was purified by column chromatography on silica gel by eluting with ethyl acetate:hexane (3:7) to give tetraacetate derivative 10 (0.17 g, 85%, for two steps) as a yellow syrup. $[\alpha]_{D}^{26} = +3.8$ (c 0.62, CHCl₃), {lit.¹⁸ $[\alpha]_{D}^{26} = +4.3$ (c 0.5, CHCl₃)}; IR *v_{max}*: 2924, 2854, 1741, 1659, 1543, 1370, 1221, 1044 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 5.72 (d, 1H, J = 9.4 Hz), 5.09 (m, 2H), 4.53 (m, 1H), 4.22 (dd, 1H, J = 4.7 and 11.5 Hz), 3.94 (dd, 1H, J = 3.0 and 11.5 Hz), 2.12 (s, 3H), 2.09 (s, 3H), 2.06 (s, 3H), 1.97 (s, 3H), 1.42-1.66 (m, 2H), 1.18-1.34 (m, 24H), 0.88 (t, 3H, J = 6.6 Hz; ¹³C MR (CDCl₃, 75 MHz): δ 170.8, 170.6, 170.3, 169.6, 71.9, 71.2, 63.1, 47.4, 31.9, 30.9, 29.7, 29.5, 2 × 29.4, 29.3, 25.2, 23.3, 22.7, 21.0, 20.8, 14.1; ESIMS *m*/*z*: 486 [M+H]⁺; HRMS (ESI): Calcd for C₂₆H₄₈NO₇ [M+H]⁺ 486.3420, found 486.3441.

4.8. *tert*-Butyl (2*R*,3*R*,4*R*)-1,3,4-trihydroxyoctadecan-2-ylcarbamate 20

Compound 12 (0.15 g, 0.30 mmol) was taken in dry EtOH (5 mL) and to it 1:1 Pd/C and Pd(OH)₂ (20 mg) were added. The flask was then purged with hydrogen and hydrogenated at room temperature for 24 h. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give a syrup, which was treated with $(Boc)_2O$ (0.02 mL, 0.27 mmol), Et₃N (0.13 mL, 0.90 mmol) in CH₂Cl₂ (5 mL) and stirred at 0 °C to rt for 2 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with saturated NH₄Cl solution, brine, and dried over anhydrous Na₂SO₄. The solvent was concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel by eluting with ethyl acetate:hexane (3:7) to afford the protected aminotriol 20 (0.11 g, 86%) (over two steps) as a syrup. $[\alpha]_{D}^{26} = +6.2$ (c 1.5, CHCl₃); ¹H-NMR (CDCl₃, 300 MHz): δ 5.21 (d, 1H, J = 9.0 Hz), 4.06 (d, 1H, J = 11.0 Hz), 3.76 (dd, 1H, J = 4.0 and 11.0 Hz), 3.62 (m, 1H), 3.52 (m, 1H), 3.39 (d, 1H, J = 8.0 Hz), 1.52-1.67 (m, 2H), 1.46 (s, 9H), 1.22-1.34 (m, 26H), 0.88 (t, 3H, J = 7 Hz; ¹³C NMR (CDCl₃, 75 MHz): δ 157.2, 80.4, 72.8, 69.6, 62.0, 53.5, 32.8, 31.9, 29.7, 29.6, 29.4, 28.3, 26.1, 22.7, 14.1; ESIMS m/z: 418 [M+H]⁺; HRMS (ESI): Calcd for C₂₃H₄₇NO₅ [M+H]⁺ 440.3351, found 440.3342.

4.9. *tert*-Butyl (3*R*,4*R*,5*R*)-4-hydroxy-5tetradecyltetrahydrofuran-3-ylcarbamate 21

To a solution of 20 (0.30 g, 0.58 mmol) in pyridine/CH₂Cl₂ (4 mL, 1:1 v/v) was added *p*-toluenesulfonyl chloride (0.12 g, 0.63 mmol). The mixture was stirred for 18 h at rt. Next, MeOH (0.5 mL) and EtOH (30 mL) were added to the mixture, and the solution was extensively washed with an aqueous saturated CuSO₄ solution $(3 \times 10 \text{ mL})$ and dried over anhydrous Na₂SO₄. The solvent was removed on a rotary evaporator and the resulting residue was purified by column chromatography on silica gel by eluting with ethyl acetate:hexane (1:4) to give 21 (0.2 g, 86%) as a white solid. mp 82-84 °C; $[\alpha]_D^{26} = -7.1$ (c 1.5, CHCl₃) {lit.^{13e} $[\alpha]_D = +6.8$ (c 1.0, CHCl₃) for the enantiomer}; IR v_{max}: 3363, 2919, 2849, 1686, 1543, 1251, 1171 cm $^{-1};~^{1}$ H NMR (300 MHz, CDCl_3): δ 5.05 (d, 1H, J = 4.5 Hz), 4.26 (m, 1H), 3.96–4.04 (m, 2H), 3.74 (dt, 1H, J = 3.0 Hz and 6.8 Hz), 3.52 (t, 3H, J = 8.3 Hz); 1.86 (br s, 1H), 1.53-1.61 (m, 2H), 1.44 (s, 9H), 1.21-1.36 (m, 24H), 0.88 (t, 3H, J = 7 Hz; ¹³C NMR (CDCl₃, 75 MHz): δ 155.7, 82.2, 79.9, 71.9, 70.2, 54.3, 31.9, 29.6, 29.5, 29.3, 29.0, 28.3, 26.1, 22.7, 14.1; ESIMS (*m/z*): 422 [M+Na]⁺; HRMS (ESI): Calcd for C₂₃H₄₅NO₄Na [M+Na]⁺ 422.3246, found 422.3249.

4.10. (2R,3R,4R)-4-Acetamido-2-tetradecyltetrahydrofuran-3-yl acetate 11

To an ice cooled, stirred solution of compound 21 (0.08 g, 0.2 mmol) in dry CH₂Cl₂ (2 mL), was added TFA (2 mL). The reaction was allowed to room temperature and stirred for 2 h. The volatiles were removed on a rotary evaporator to give the residue, which was then taken in dry CH₂Cl₂ (4 mL) and to it were added Et₃N (0.09 mL, 0.6 mmol), Ac₂O (0.03 mL, 0.3 mmol) and DMAP (2 mg). After the completion of addition, the reaction was allowed to return to room temperature and stirred for 4 h. The reaction mixture was diluted with CH₂Cl₂ (30 mL) and the organic layer was washed with saturated aq.NH₄Cl solution, water and brine, and dried over anhydrous Na₂SO₄. The solvent was removed on a rotary evaporator and the residue was purified by column chromatography on silica gel using ethyl acetate:hexane (1:2) as the eluent to afford the diacetate derivative of (-)-jaspine B 11 (0.08 g, 94%) as a syrup. $[\alpha]_D^{26} = +26.8$ (*c* 1.2, CHCl₃), {lit., ^{13e} $[\alpha]_D^{26} = -28.4$ (c 1.0, CHCl₃) for the enantiomer]; IR v_{max} : 3298, 2920, 2851, 1740, 1658, 1557, 1376, 1232, 1072 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 5.56 (d, 1H, l = 8.3 Hz), 5.33 (dd, 1H, l = 3.4 and 5.2 Hz), 4.75 (ddd, 1H, J=5.6, 7.8 and 8.0 Hz), 4.04 (t, 1H, *J* = 8.0 Hz), 3.87 (m, 1H), 3.53 (t, 1H, *J* = 8.2 Hz), 2.15 (s, 3H), 1.97 (s, 3H), 1.40-1.46 (m, 2H), 1.21-1.33 (m, 24H), 0.88 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 75 MHz): δ 169.8, 169.7, 81.2, 73.6, 70.0, 51.4, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 26.0, 23.1, 22.6, 20.6, 14.0; ESIMS *m*/*z*: 406 [M+H]⁺; HRMS (ESI): Calcd for C₂₂H₄₁NO₄Na [M+Na]⁺ 406.2933, found 406.2933.

Acknowledgements

G.S.R. and B.C. thank CSIR-New Delhi for research fellowship. The authors also thank Dr. J.S. Yadav and Dr. G.V.M. Sharma for their constant support and encouragement.

References

- Reviews (a) Kolter, T.; Sandhoff, K. Angew. Chem., Int. Ed. **1999**, 38, 1532; (b) Brodesser, S.; Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. **2003**, 2021; (c) Kolter, T. Conformational Restriction of Sphingolipids. In Highlights Bioorganic Chemistry: Methods and Applications; Schmuck, C., Wennemers, H., Eds.; Wiley-VCH: Weinheim, 2004. Chapter 1.4, p. 48; (d) Liao, J.; Tao, J.; Lin, G.; Liu, D. Tetrahedron **2005**, 61, 4715.
- (a) Naroti, T.; Morita, M.; Akimoto, K.; Koezuka, Y. *Tetrahedron* **1994**, *50*, 2771;
 (b) Kamitakahara, H.; Suzuki, T.; Nishigori, N.; Suzuki, Y.; Kamie, O.; Wong, C. H. *Angew. Chem., Int. Ed.* **1998**, *37*, 1524;
 (c) Kobayashi, S.; Furuta, T.; Hayashi, T.; Nishijima; Anada, K. J. Am. Chem. Soc. **1998**, *120*, 908;
 (d) Matsunaga, H.; Li, S.; Fusetani, N. *Tetrahedron* **1995**, *51*, 2273.
- (a) Carter, H. E.; Clemer, W. D.; Lands, W. M.; Muller, K. L.; Tomizawa, H. H. J. Biol. Chem. 1954, 206, 613; (b) Kawano, Y.; Higushi, R.; Isobe, R.; Komori, T. Liebigs Ann. Chem. 1988, 19; (c) Li, Y. T.; Hirabayashi, Y.; DeGasperi, R.; Yu, R. K.; Ariga, T.; Koerner, T. A. W.; Li, S. C. J. Biol. Chem. 1984, 259, 8980; (d) Oda, T. J. Pharm. Soc. Jpn. 1952, 72, 142; (e) Thorpe, S. R.; Sweeley, C. Biochemistry 1967, 6, 887; (f) Karlsson, K. A.; Samuelsson, B. E.; Steen, G. O. Acta Chem. Scand. 1968, 22, 1361; (g) Barenholz, Y.; Gatt, S. Biochem. Biophys. Res. Commun. 1967, 27, 319; (h) Takamatsu, K.; Mikami, M.; Kiguschi, K.; Nozawa, S.; Iwamori, M. Biochem. Biophys. Acta 1992, 1165, 177; (i) Okabe, K.; Keenan, R. W.; Schmidt, G. Biochem. Biophys. Res. Commun. 1968, 31, 137; (j) Wertz, P. W.; Miethke, M. C.; Long, S. A.; Stauss, J. S.; Downing, D. T. J. Invest. Dermatol. 1985, 84, 410; (k) Vance, D. E.; Sweeley, C. C. Lipid Res. 1967, 8, 621.
- For recent reviews, see (a) Liao, J.; Tao, J.; Lin, G.; Liu, D. Tetrahedron 2005, 61, 4715; (b) Howell, A. R.; Ndakala, A. J. Curr. Org. Chem. 2002, 6, 365; (c) Curfman, C.; Liotta, D. Methods Enzymol. 1999, 311, 391; (d) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075.
- (a) Dickson, R. C.; Nagiec, E. E.; Skrzypek, M.; Tillman, P.; Wells, G. B.; Lester, R. L. J. Biol. Chem. **1997**, 272, 30196; (b) Schneiter, R. Bioessays **1999**, 21, 1004.
- (a) Brodesser, S.; Sawatzki, P.; Kolter, T. Eur. J. Org. Chem. 2003, 2021; (b) Vankar, Y. D.; Schmidt, R. R. Chem. Soc. Rev. 2000, 29, 201.
- For selected publications on the synthesis of phytosphingosines, see Ref.4b (a) Ndakala, A. J.; Hashemzadeh, M.; So, R. C.; Howell, A. R. Org. Lett. 2002, 4, 1719; (b) Raghavan, S.; Rajender, A. J. Org. Chem. 2003, 68, 7094; (c) So, R. C.; Ndonye, R.; Izmirian, D. P.; Richardson, S. K.; Guerrera, R. L.; Howell, A. R. J. Org. Chem. 2004, 69, 3233; (d) Singh, O. V.; Kampf, D. J.; Han, H. Tetrahedron Lett. 2004, 45, 7239; (e) Lu, X.; Bittman, R. Tetrahedron Lett. 2005, 46, 3165; (f) Lombardo, M.; Capdevila, M. G.; Tosi, F.; Trombini, C. Org. Lett. 2006, 8, 3303; (g) Enders, D.;

Paleĉek, J.; Grondal, C. *Chem. Commun.* 2006, 655; (h) Cai, Y.; Ling, C. C.; Bundle, D. R. Org. *Biomol. Chem.* 2006, *4*, 1140; (i) Yoon, H. J.; Kim, Y. W.; Lee, B. K.; Lee, W. K.; Kim, Y.; Ha, H. J. *Chem. Commun.* 2007, 79; (j) Jeon, J.; Shin, M.; Yoo, J. W.; Oh, J. S.; Bae, J. G.; Jung, S. H.; Kim, Y. G. *Tetrahedron Lett.* 2007, *48*, 1105; (k) Chang, C. W.; Chen, Y. N.; Adak, A. K.; Lin, K. H.; Tzou, D. L. M.; Lin, C. C. *Tetrahedron* 2007, *63*, 4310; (l) Abraham, E.; Candela-Lena, J. I.; Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Roberts, P. M.; Russell, A. J.; Sanchez-Fernandez, E. M.; Smith, A. D.; Smith, J. E. *Tetrahedron: Asymmetry* 2007, *18*, 2510; (m) Jiang, H.; Elsner, P.; Jensen, K. L.; Falcicchio, A.; Marcos, V.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2009, 48, 6844; (n) Dubey, A.; Kumar, P. *Tetrahedron Lett.* 2009, *50*, 3425; (o) Pandey, G.; Tiwari, D. K. *Tetrahedron Lett.* 2009, *50*, 3296; (p) Llaveria, J.; Diaz, Y.; Matheu, M. I.; Castillon, S. Org. Lett. 2009, *11*, 205; (q) Liu, Z.; Byun, H. S.; Bittman, R. J. Org. Chem. 2010, *75*, 4356; (r) Kumar, P.; Dubey, A.; Puranik, V. G. Org. *Biomol. Chem.* 2010, *8*, 5074; (s) Rao, G. S.; Rao, B. V. *Tetrahedron Lett.* 2011, *52*, 4861.

- For other methods to synthesize *lyxo*-PHS, see (a) Lu, X.; Byun, H. S.; Bittman, R. J. Org. Chem. 2004, 69, 5433; (b) Righi, G.; Ciambrone, S.; D'Achille, C.; Leonelli, A.; Bonini, C. Tetrahedron 2006, 62, 11821; (c) Tsujimoto, T.; Itoa, Y. Tetrahedron Lett. 2007, 48, 5513; (d) Kumar, I.; Rode, C. V. Tetrahedron: Asymmetry 2007, 18, 1975; (e) Kim, S.; Lee, N.; Lee, S.; Lee, T.; Lee, Y. M. J. Org. Chem. 2008, 73, 1379; (h) Park, J.; Lee, J. H.; Li, Q.; Diaz, K.; Chang, Y. T.; Chung, S. K. Bioorg. Chem. 2008, 36, 220; (i) Rao, G. S.; Rao, B. V. Tetrahedron Lett. 2011, 52, 6076.
- Kuroda, I.; Musman, M.; Ohtani, I. I.; Ichiba, T.; Tanaka, J.; Gravalos, D. G.; Higa, T. J. Nat. Prod. 2002, 65, 1505.
- Ledroit, V.; Debitus, C.; Lavaud, C.; Massiot, G. *Tetrahedron Lett.* 2003, 44, 225.
 Canals, D.; Mormeneo, D.; Fabri_as, G.; Llebaria, A.; Casas, J.; Delgado, A. *Bioorg. Med. Chem.* 2009, 17, 235.
- (a) Chitra, C. J.; Sudhakar, N.; Kumar, A. R.; Rao, B. V.; Roy, S.; Benerjee, R. Synthesis. **2010**, 115; (b) Rao, G. S.; Sudhakar, N.; Rao, B. V. Basha SJ Tetrahedron: Asymmetry **2010**, 21, 1963.
- For previous syntheses see: ref.[71,7s,8i] and (a) Bhaket, P.; Morris, K.; Stauffer, C. S.; Datta, A. Org. Lett. 2005, 7, 875; (b) Van Den Berg, R. J. B. H. N.; Boltje, T. J.; Verhagen, C. P.; Litjens, R. E. J. N. Vander Marel GA Overkleeft HS. J. Org. Chem. 2006, 71, 836; (c) Liu, Y.; Du, J.; Linhardt, R. J. J. Org. Chem. 2006, 71, 836; (c) Liu, Y.; Du, J.; Linhardt, R. J. J. Org. Chem. 2006, 71, 1251; (d) Liu, J.; Du, Y.; Dong, X.; Meng, S.; Xiao, J.; Cheng, L. Carbohydr. Res. 2006, 341, 2653; (e) Ribes, C.; Falomir, E.; Carda, M.; Marco, J. A. Tetrahedron 2006, 62, 5421; (f) Lee, T.; Lee, S.; Kwak, Y. S.; Kim, D.; Kim, S. Org. Lett. 2007, 9, 429; (g) Reddy, L. V. R.; Reddy, P. V. Shaw AK Tetrahedron: Asymmetry 2007, 18, 542; (h) Ramana, C. V.; Giri, A. G.; Suryawanshi, S. B.; Gonnade, R. G. Tetrahedron Lett. 2007, 48, 265; (i) Prasad, K. R.; Chandrakumar, A. J. Org. Chem. 2007, 72, 6312; (j) Yakura, T.; Sato, S.; Yoshimoto, Y. Chem. Pharm. Bull. 2007, 55, 1284; (k)

Passiniemi, M.: Koskinen, A. M. P. Tetrahedron Lett. 2008, 49, 980: (1) Abraham. E.; Brock, E. A.; Candela-Lena, J. I.; Davies, S. G.; Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell, A. J.; Sanchez-Fernandez, E. M.; Scott, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 1665; (m) Venkatesan, K.; Srinivasan, K. V. Tetrahedron: Asymmetry 2008, 19, 209; (n) Enders, D.; Terteryan, V.; Palecek, J. Synthesis 2008, 2278; (o) Ichikawa, Y.; Matsunaga, K.; Masuda, T.; Kotsuki, H.; Nakano, K. Tetrahedron 2008, 64, 11313; (p) Reddipalli, G. S.; Venkataiah, M.; Mishra, M. K.; Fadnavis, N. W. Tetrahedron: Asymmetry 2009, 20, 1802; (q) Inuki, S.; Yoshimitsu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2009, 11, 4478; (r) Inuki, S.; Yoshimitsu, Y.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2010, 75, 3831; (s) Yoshimitsu, Y.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2010, 75, 3843; (t) Urano, H.; Enomoto, M.; Kuwahara, S. Biosci., Biotechnol., Biochem. 2010, 74, 152; (u) Salma, Y.; Ballereau, S.; Maaliki, C.; Ladeira, S.; Andrieu-Abadie, N.; Genison, Y. Org. Biomol. Chem. 2010, 8, 3227; (v) Passiniemi, M.; Koskinen, A. M. P. Org. Biomol. Chem. 2011, 9, 1774; (w) Llaveria, J.; Díaz, Y.; Matheu, M. I.; Castillon, S. Eur. J. Org. Chem. 2011, 1514; (x) Eleuterio, A. S.; Quintero, L.; Piscil, F. S. J. Org. Chem. 2011, 76, 5466; For a review, see (y) Abraham, E.; Davies, S. G.; Roberts, P. M.; Russell, A. J.; Thomson, JE Tetrahedron: Asymmetry 2008, 19, 1027.

- (a) Chandrasekhar S, Tiwari B, Prakash SJ. ARKIVOC 2006; 155.; (b) Genisson, Y.; Lamande, L.; Salma, Y.; Andrieu-Abadie, N.; Andre, C.; Baltas, M. *Tetrahedron: Asymmetry* 2007, *18*, 857; (c) Vichare, P.; Chattopadhyay, A. *Tetrahedron: Asymmetry* 2010, *21*, 1983; (d) Salma, Y.; Ballereau, S.; Ladeira, S.; Lepetit, C.; Chauvin, R.; Andrieu-Abadie, N.; Genisson, Y. *Tetrahedron* 2011, 67, 4253; (e) Ballereau, S.; Andrieu-Abadie, N.; Saffon, N.; Genisson, Y. *Tetrahedron* 2011, 67, 2570; (f) Prasad, K. R.; Penchalaiah, K. *Tetrahedron: Asymmetry* 2011, *22*, 1400; (g) Cruz-Gregorio, S.; Espinoza-Rojas, C.; Quintero, K.; Sartillo-Piscil, F. *Tetrahedron Lett.* 2011, *52*, 6370; (h) Zhao, M. L.; Zhang, E.; Gao, J.; Zhang, Z.; Zhao, Y. T.; Qu, W.; Liu, H. M. *Carbohydr. Res.* 2012, *351*, 126.
- Sudhakar, N.; Kumar, A. R.; Prabhakar, A.; Jagadeesh, B.; Rao, B. V. Tetrahedron Lett. 2005, 46, 325.
- (a) Madhan, A.; Rao, B. V. Tetrahedron Lett. 2003, 44, 5641; (b) Chandrasekhar, B.; Madhan, A.; Rao, B. V. Tetrahedron 2007, 63, 8746; (c) Chandrasekhar, B.; Rao, B. V. Tetrahedron: Asymmetry 2009, 20, 1217; (d) Jagadeesh, Y.; Chandrasekhar, B. Rao BV. Tetrahedron: Asymmetry 2010, 21, 2314.
- (a) Rao, J. P.; Rao, B. V.; Swarnalatha, J. L. Tetrahedron Lett. 2010, 51, 3083; (b) Rajendar, A.; Rao, J. P.; Rao, B. V. Tetrahedron: Asymmetry 2011, 22, 1306; (c) Rao, M. V.; Chandrasekar, B.; Rao, B. V. Tetrahedron: Asymmetry 2011, 22, 1342.
- Martin, C.; Prünck, W.; Bortolussi, M.; Bloch, R. Tetrahedron: Asymmetry 2000, 11, 1585.