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We have identified naphthol derivatives as inhibitors of the vanilloid receptor TRPV1 by high throughput
screening. The initial lead showed high clearance in rats and has been optimized by enhancing the acidity
of the phenol group. Compound 6b has reduced clearance, improved potency and is active in rat cystom-
etry models of urinary incontinence after intravenous administration.

� 2011 Elsevier Ltd. All rights reserved.
TRPV1 (Transient receptor potential vanilloid 1, vanilloid recep-
tor 1 or VR1) is an ion channel that gates after a variety of stimuli
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Figure 2. Synthesis of TRPV1 inhibitors. Reactions and conditions: (a) ArNCO,
dioxane, reflux, 3 h, 20–95%. (a’) 1,1’-carbonyldi-(1,2,4 triazole) (1 equiv) THF, rt
1 h, then ArNH2, 50 �C, 15 h, (40–80%). (b) Pyridine (2 equiv), (CF3CO)2O (1.5 equiv),
THF, rt, 1.5 h 30%; (2) MeI (1.2 equiv), K2CO3 (5 equiv), Bu4NI, acetone, rt, 2.5 h
(63%). (3): NaBH4 (0.95 equiv) EtOH, rt, 87%. (c) (1) NaNO2 (1.1 equiv), KI
(1.1 equiv), THF/3 N HCl (1:2), 1 h, 0 �C, 26%; (2). Bu3SnCHCH2 (1.2 equiv), Pd(PPh3)4

(0.2 equiv), toluene, 90 �C, 16 h, 100%; (3) Imidazole (1.5 equiv), (iPr)3SiCl
(1.1 equiv), DMF, 50 �C, 16 h, 63%; (4) 9-BBN (1.1 equiv), THF, rt, 5 h, then aq NaOH
(3 N), aq H2O2 (30%), rt 6 h, 56%. (5) HIO4 (1 equiv), CrO3 (1 equiv) CH3CN/H2O (3:1),
0 �C, 30 min, 24%. (d) (1) DMAP (0.2 equiv), 1-(3-diethylaminopropyl)3-ethylcar-
bodiimide (1.2 equiv), CH2Cl2, rt, 16 h, 89%; (2) Bu4NF (3 equiv), THF, rt, 30 min,
65%. (e) (EtS)2NCN (2 equiv), (nBu)2O, reflux, 3 h, then 4Cl-3CF3ArNH2 (3 equiv)
reflux, 12 h, 30%. (f) 3-F-C6H4CH2COOH, DMAP (0.2 equiv), 1-(3-diethylamino-
propyl)3-ethylcarbodiimide (1.2 equiv), CH2Cl2, rt, 16 h, 62%. (g) (1) PhCHO
(1.1 equiv), Na2SO4 (5 equiv), THF, reflux, 12 h, 98%. (2) MeI (2 equiv), NaOH
(2 equiv), acetone, rt, 2 h, then 2 N HCl/THF (2:1), rt 2 h, 93%. (h) NCS (1 equiv), THF,
rt, 16 h, 69%. (i) NCS (2.2 equiv), THF, rt 16 h, 70%. (j) NBS (1 equiv), THF, rt, 16 h,
41%. k) NBS (2 equiv), THF, rt, 16 h, 21%. (l) (1) NH2OHHCl (3 equiv), K2CO3

(4 equiv), MeOH, reflux, 16 h, quant. (2) Pd/C (10%), AcOH (cat.), H2 (1 atm), MeOH,
rt, 16 h, quant. (3) BBr3 (1.3 equiv), CH2Cl2, 0 �C, 98%. (4) 4-Cl-3-CF3-C6H3NHCOPh,
DMSO, 90 �C, 16 h, 60%.

Table 1
Structure–activity relationship of naphthol-based TRPV-1 antagonists Variation of the
anilino substitution R

NH N
H

O

OH

R

Compd R r-IC50 [nM] h-IC50 [nM] c Log P

3a H 53 29 4.1
3b 2-CF3 64 87 4.1
3c 3-CF3 4.5 3.5 4.9
3d 4-CF3 4.9 5.4 4.9
3e 2-Cl 38 52 4.0
3f 3-Cl 3.2 6.1 4.5
3g 4-Cl 11 12 4.5
3h 3-Me 19 11 4.0
3i 3-F 21 14 4.0
3j 3-OMe 8.6 8.0 3.6
3k 3-NO2 14 7.5 3.9
3l 3-COMe 39 28 3.5
3m 3-Br 8.0 5.7 4.7
3n 3-COOEt 1.6 1.7 4.6
3o 3-CH2OH 520 >1000 2.5
3p 3-CH(CH3)OH 670 >1000 2.8
3q 3-COOH 270 520 3.6
3r 3-SMe 7.1 3.9 4.1
3s 2,6-Cl2 >1000 >1000 4.2
3t 2,5-Cl2 30 24 4.8
3u 2,4-Cl2 16 12 4.8
3v 3,4-Cl2 4.5 4.9 5.2
3w 3,5-Cl2 12 12 5.3
3x 2-CF3, 4-Cl 19 31 4.9
3y 5-CF3, 2-Cl 12 13 5.2
3z 3-CF3, 4-Cl 1.9 2.2 5.5

IC50 values are medians of three dose–response curves.

Table 2
Structure–activity relationship of naphthol-based TRPV-1 antagonists Variation of the
urea portion R

A
B

OH

R
C

Compd A B C R h-IC50 [nM]

4a NMe O NH 3-CF3, 4-Cl 44
4b CH2 O NH 3-CF3, 4-Cl 34
4c NH NCN NH 3-CF3, 4-Cl 340
4d NH O CH2 3-F >1000

IC50 values are medians of three dose–response curves.
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provide potential treatments for pain, cough or urinary inconti-
nence. First TRPV1 antagonists have now reached clinical trials
with promising results for nociception, however, most compounds
exhibit mechanism-based hyperthermia as a side effect. Strategies
aimed at widening the therapeutic window include co-administra-
tion of anti-pyretics, shortening the compounds’ half life or
addressing alternate indications, such as urinary incontinence
(UI).1

UI is characterized by involuntary leakage of urine and can have
profound and distressing impact on the quality of life for affected
individuals. The current treatment of UI involves muscarinic
antagonists and is associated with mechanism-based side effects
such as dry mouth symptoms.2
Using a Ca-flux primary assay system, we performed a high
throughput screen and identified 3a as a lead with selectivity
against the P2X1 ion channel.3 This compound is a nanomolar
inhibitor of both rat and human TRPV1. Whilst its phenol moiety
is structurally related to the agonists 1a and 1b, its bicyclic struc-
ture is reminiscent to the known antagonist Capsazepine (2) and
offers ample opportunity for structural modification (Fig. 1). Inter-
estingly, other groups have identified related HTS-hits, but fol-
lowed optimization strategies different to ours, indicating the
versatility of the lead.4

The majority of compounds were prepared from naphthol I by
alkylation or halogenation to furnish intermediates IIa–b and
IIIa–d. Ureas were synthesized from these intermediates or I by
coupling directly with the corresponding aryl isocyanate.



Table 4
Cystometry evaluation in the capsaicin-induced overactive bladder (OAB) model

Compd Capsaicin-induced OAB

3 mg kg�1 10 mg kg�1

6b n.d. 55%
6c 88% n.d.
6d 11% 65%

Compounds 6b–d were given intravenously to rats. Inhibition of micturition fre-
quency is expressed in percent as compared to control.7

Figure 3. Cystometry evaluation in the cyclophosphamide (CYP)-induced cystitis
model. Compound 6b dose-dependently inhibits voiding frequency and bladder
capacity after intravenous administration to female rats.

Table 3
Structure–activity relationship of naphthol-based TRPV-1 antagonists Variation of the
naphthalene system
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Compd X Y r-IC50 [nM] h-IC50 [nM] AUC [ng h ml-1]

5a — — nd 260 nd
5b — — >1000 >1000 nd
5c — — 19 32 114
6a Cl H 4.5 3.4 3
6b Cl Cl 2.1 5.9 84
6c Cl Br 4.9 6.8 477
6d Br Br 16 7.5 596

The area under the curve (AUC) is obtained after oral administration to rats and
relates to a 1 mg kg�1 dose.
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Compounds 3n–q display sensitive functional groups and therefore
we used the CDT coupling method5,6 (Fig. 2). Compound 5b is com-
mercially available.7

We explored the substitution pattern of 3a’s aniline fragment
with compounds 3b–g and the 3-position appeared to contribute
most strongly to TRPV1 activity (Table 1): 3c and 3f offered by
an order of magnitude better potency than 3a. Therefore, we inves-
tigated the 3-position with further substituents (3h–r). Not sur-
prisingly, TRPV1 activity correlated well with c log P for all
derivatives 3a–z, indicating the lipophilic nature of the binding
site. The 2,6-disubstituted 3s was inactive, probably indicating
the importance of an in-plane urea/aniline conformation for activ-
ity. Comparing the di-substituted derivatives 3s–z, we concluded
that the 4-Cl, 3-CF3 substitution pattern in 3z was most potent, al-
beit most lipophilic. Our compounds showed no notable differ-
ences between rat and human TRPV1.

We also explored the lead’s urea moiety (Table 2). 3c’s proximal
urea NH (A) seemed to be involved in a H-bond as methylation (4a)
or isoelectronic replacement (4b) resulted in drop of activity by an
order of magnitude.

The carbonyl group (B) appeared to be even more critically in-
volved in binding as the corresponding cyano-guanidine 4c was
100-fold less active. Comparison of 4d with 3i highlighted the
importance of the distal urea NH (C) for molecular recognition.

We also undertook first variations of the naphthalene system
(Table 3). Compared to 3z, the tetrahydro-naphthalene 5a showed
a 100-fold drop in activity. Similarly, eliminating the ring alto-
gether reduced activity markedly (5b vs 3i).

Whilst 3z was the most potent compound of the series, we
didn’t consider it for in vivo investigations. This naphthol was
highly cleared in rats (23 l h�1 kg�1), probably as a result of phase
II metabolism. Simple alkylation of the hydroxyl group reduced
clearance 10-fold (5c: 2.0 l h�1 kg�1) and furnished detectable
AUC’s after oral administration. Unfortunately, 5c’s TRPV1 activity
was also reduced indicating the importance of the hydroxyl group
for the pharmacophore.

We were speculating that enhancing the naphthol’s acidity by
introducing electron withdrawing substituents would reduce
clearance and enhance oral exposure, whilst leaving the pharma-
cologically important hydroxyl group intact. Whereas potency
was maintained, 6a–d showed a good correlation of naphthol
acidity with oral AUC and 6b–d reduced capsaicin-induced
micturition frequency in female rats (Table 4).8 Due to its low
clearance (0.16 l h�1 kg�1), 6b was selected for further character-
isation in the cyclophosphamide-induced cystitis model and
favourably altered voiding frequency as well as bladder capacity
at intravenous doses above 0.05 mg kg�1 (Fig. 3).9 Whilst useful
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as a pharmacological tool for intravenous studies, 6b’s oral
bioavailability was still low (3%). This was probably due to 6b’s
limited solubility (0.03 mg l�1), a feature not uncommon for
urea-based leads.

Starting from an HTS lead, we have identified single-digit nano-
molar TRPV1 antagonists. In preparing more acidic compounds, we
have reduced rat clearance by two orders of magnitude. Compound
6b showed intravenous activity in two rat cystometry models,
highlighting the potential of TRPV1 antagonists for the treatment
of UI. Further modifications of this lead towards orally active
compounds will be reported shortly.
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