ChemComm

COMMUNICATION

View Article Online View Journal | View Issue

Published on 17 February 2014. Downloaded by University of Chicago on 29/10/2014 09:16:02.

Stereospecific hydrodehalogenation of alkenyl bromides: a new approach to the synthesis of (*E*)-alkenes[†]

Giorgio Chelucci

DOI: 10.1039/c4cc00345d

Received 15th January 2014,

Accepted 17th February 2014

50 4069

Cite this: Chem. Commun., 2014,

www.rsc.org/chemcomm

The pair NaBH₄-TMEDA and catalytic PdCl₂(PPh₃)₂ in THF at room temperature is a mild and efficient system for the hydrodebromination of alkenyl bromides, providing a facile reduction procedure that allows completing the process advantageously, leading from aldehydes to (*E*)-alkenes.

To prepare geometrically pure 1,2-disubstituted alkenes, metalcatalyzed cross-coupling reactions between stereodefined 1-bromo-1-alkenes and a variety of organometallic reagents have proven to be reliable (5 to 6 and 7 to 8, Scheme 1).¹ Consequently, geometrically pure (Z)- or (E)-alkenyl halides are required. The 1,1-dibromovinyl functionality 2 is an attractive and versatile bidentate electrophile for organometallic chemistry, making their metal-catalyzed crosscouplings with a variety of organometallic reagents (2 to 3, Scheme 1) facile and selective.² Moreover, the 1,1-dibromo-1alkene moiety is a valuable source of 1-bromoalkenes (2 to 5 or 7, Scheme 1). In fact, the palladium-catalysed hydrodehalogenation of 1,1-dibromoalkenes with Bu₃SnH is a well-recognized procedure to obtain (Z)-vinyl bromides (2 to 5, Scheme 1).^{2,3} On the other hand, methodologies for the efficient synthesis of (E)-vinyl bromides from 1,1-dibromo-1-alkenes give satisfactory results only in a few favorable cases (2 to 7, Scheme 1). 2,4

Based on this background we cogitated that the successful stereospecific hydrodebromination of the (*Z*)-alkenyl bromide, formed after initial *trans*-selective monosubstitution of the 1,1-dibromovinyl group, would offer a simple and convenient way for converting aldehydes to (*E*)-1,2-disubstituted alkenes $(1 \rightarrow 2 \rightarrow 3 \rightarrow 8)$, Scheme 1).

The hydrodehalogenation of 1,2-disubstituted-1-halo-1-alkenes to the related alkenes has been pursued using catalyzed^{5,6} and non-catalyzed approaches.^{7–9} Two examples of stereoselective catalyzed methods have been described. The system *n*-Bu₃SnH and Pd(PPh₃)₄

at 25 °C afforded the related alkenes stereoselectively, but worked well only with alkenyl iodides.⁵ The second case concerns the stereospecific hydrodebromination of bromofluoroalkenes with HCOOH–n-Bu₃N and PdCl₂(PPh₃)₂ in DMF at 35–60 °C.⁶

In this communication we wish to report that the couple sodium borohydride/N,N,N',N'-tetramethylethylenediamine (NaBH₄– TMEDA) under palladium catalysis is an efficient and stereospecific system for the hydrodebromination of (Z)-1,2-disubstituted-1-bromo-1-alkenes.

To confirm previous results we initially examined the reduction of the model substrate (*Z*)-1-(2-bromo-2-phenylvinyl)-4-methoxybenzene **1a** by using *n*-Bu₃SnH/Pd(PPh₃)₄ in toluene at 25 °C⁵ (Table 1). Under these reaction conditions no conversion was observed within 48 h. It was also ineffective carry out the reaction at 50 °C or use other Pd-catalysts such as Pd(OAc)₂–PPh₃, Pd₂(dba)₃–TFP and PdCl₂(PPh₃)₂. On the other hand, when the reducing system HCOOH–*n*-Bu₃N and PdCl₂(PPh₃)₂ in DMF at 60 °C was employed,⁶ total conversion of **1a** was obtained after 16 h, affording the product **2a** in 66% yield.

This interesting result prompted us to assess other reducing systems that were effective in the hydrodehalogenation of halogenated heterocycles (Table 1).¹⁰

Dipartimento di Agraria, Università di Sassari, viale Italia 39, I-07100 Sassari, Italy. E-mail: chelucci@uniss.it; Fax: +39-079-229559; Tel: +39-079-229539

 $[\]dagger$ Electronic supplementary information (ESI) available: General experimental procedures along with copies of the 1H and ^{13}C NMR spectra of all new compounds. See DOI: 10.1039/c4cc00345d

Table 1Hydrodebromination of (Z)-1-(2-bromo-2-phenylvinyl)-4-methoxy-
benzene a

MeO	Br -	Catalyst Reducing agent	• MeO		2a	
Catalyst	Reducing agent	Solvent	Temp. (°C)	Time (h)	Conv. $(2a/1a)^b$	Yield ^c (%)
$Pd(PPh_3)_4$	<i>n</i> -Bu₃SnH	DMF	60	48	0:100	_
$PdCl_2(PPh_3)_2$	HCOOH/n-Bu ₃ N	DMF	60	16	100:0	66
$Pd(PPh_3)_4$	HCOONa	DMF	60	14	100:0	80
$PdCl_2(PPh_3)_2$	$HCOONH_4$	MeOH	60	48	33:67	nd
$Pd(PPh_3)_4$	NaOMe	DMF	60	36	100:0	33
PdCl ₂ (PPh ₃) ₂	Et ₃ SiH	MeCN	60	24	100:0	0
$Pd(OAc)_2/PPh_3$	NaBH ₄ /TMEDA	THF	25	20	100:0	88
$PdCl_2(PPh_3)_2$	$NaBH_4/TMEDA$	THF	25	20	100:0	92
^{<i>a</i>} For experimental details see ESI. ^{<i>b</i>} Determined by ¹ H NMR. ^{<i>c</i>} Isolated yields.						

Interestingly, HCOONa and Pd(PPh₃)₄ in DMF at 60 °C afforded **2a** in 80% yield, while HCOONH₄–PdCl₂(PPh₃)₂ in MeOH at 60 °C, NaOMe–Pd(PPh₃)₄ in DMF at 60 °C, and Et₃SiH–PdCl₂(PPh₃)₂ in MeCN at 60 °C provided unsatisfactory yields. Finally, when **1a** was treated with the couple NaBH₄-TMEDA as the hydride source in the presence of Pd(OAc)₂ and PPh₃ in THF at room temperature,¹¹ **2a** was obtained in 88% yield after 20 h. The proton NMR spectrum of the crude reaction mixture indicated for **2a** a coupling constant of 16.3 Hz due to the *trans* arrangement of the olefin protons, and excluded the presence of the corresponding *Z*-isomer. Gratified by this result we tried to increase the efficiency of this reducing procedure by examining other catalysts, Pd(PPh₃)₄, PdCl₂(PPh₃)₂ and PdCl₂(dppf). Among them PdCl₂(PPh₃)₂ was the best performing one, increasing the yield of **2a** up to 92% (Table 1).

The scope of the reaction was then explored by using a variety of (*Z*)-1,2-disubstituted-1-bromo-1-alkenes. The starting alkenyl bromides were obtained by C-1 homologation of the related aldehydes under standard Corey–Fuchs conditions, followed by stereoselective Suzuki–Miyaura cross-coupling of the initially formed 1,1-dibromo-1-alkenes,² with the exception of the bromo enyne **1p** that was prepared by Negishi cross-coupling.²

The reductions were carried out in THF with an excess of NaBH₄ (2.8 equiv.) and TMEDA (3.64 equiv.) in the presence of PdCl₂(PPh₃)₂ (5.0 mol%) at room temperature (Tables 2 and 3).

In the diaryl alkene series (1a-1k), the hydrodebromination of the vinyl bromide gave geometrically pure (*E*)-alkenes in good yields. Small differences in yields and reaction times were observed with alkenes having different kinds of substituents in one (1a-1g) or the other aryl rings (1h-1k). Thus, for instance, both (*Z*)-1-(2-bromo-2-phenylvinyl)-3-chlorobenzene **1d** and (*Z*)-1-(1-bromo-2-phenylvinyl)-3-chlorobenzene **1j** afforded the same reduced product, (*E*)-1-chloro-3-styrylbenzene **2d**, in 86% (20 h) and 88% yield (24 h), respectively.

A particular comment deserves the reduction of the aryl derivatives **1e** and **1f**, bearing the nitro and methyl ester moieties, respectively. When **1e** was hydrogenolyzed under the usual reaction conditions, the target product **2e** was

^{*a*} Reaction conditions: 1-bromoalkene (0.5 mmol), $PdCl_2(PPh_3)_2$ (0.025 mmol, 5.0 mol%), $NaBH_4$ (1.40 mmol, 2.8 equiv.) and TMEDA (1.82 mmol, 3.64 equiv.) in THF (10 mL) at rt. ^{*b*} Isolated yields. ^{*c*} $NaBH_4$ (0.75 mmol, 1.5 equiv.) and TMEDA (1.0 mmol, 2.0 equiv.).

obtained in only 30% yield, (*E*)-4-styrylaniline being the main product, formed by consecutive reduction of the bromovinyl and nitro groups. Fortunately, by decreasing the amounts of NaBH₄ (1.5 equiv.) and TMEDA (2.0 equiv.) and quenching the reaction with aqueous NH₄Cl, compound **2e** was formed in 86%

 Table 3
 Hydrodebromination of 1,2-disubstituted-1-bromo-1-alkenes^a

 a Reaction conditions: 1-bromoalkene (0.5 mmol), PdCl₂(PPh₃)₂ (0.025 mmol, 5.0 mol%), NaBH₄ (1.40 mmol, 2.8 equiv.) and TMEDA (1.82 mmol, 3.64 equiv.) in THF (10 mL) at rt. b Isolated yields. c Reaction carried out at 65 °C.

yield after 13 h. Analogously, the reduction of **1f** under these reaction conditions afforded the alkene **2f** in 72% yield.

To further expand the scope of our catalytic system, we next investigated the hydrodebromination of other kinds of 1,2-disubstituted-1-bromo-1-alkenes (Table 3). Good catalytic activity at 25 °C was observed in the removal of the vinyl bromide from compound **1l** derived from the aliphatic aldehyde 3-phenylpropanal. On the other hand, the bromide in **1m** originated from the more sterically hindered cyclohexane-carbaldehyde was unreactive at room temperature, but the reduction took place at 65 °C within 19 h to give the expected alkene **2l** in excellent yield (92%).

Two types of 1,3-bromodienes were examined bearing the bromo substituent in the terminal or internal positions of the conjugate double bonds (**1n** and **1o**, respectively). Both compounds were hydrodebrominated in good yields (75% and 60%, respectively). Compound **1n** was reduced more slowly, but afforded a better yield, while **1o** afforded opposite results.

Finally, the reduction of the 1,3-enyne **1p** proceeded smoothly to afford the *cis*-alkene **2n** as the sole product in 88% yield. Partial or complete stereoinversion at the Br-bearing C=C bond in Pd-catalyzed cross-coupling reactions of 2-bromo-1,3-dienes with various types of organozinc reagents has been previously

observed.² However, this predictable event was not detected by us in the reduction of the bromodienes **1n** and **1o**, which in both cases afforded only the (*E*,*E*)-diene **2m**. On the other hand, recent studies have shown that cross-coupling reactions of (*Z*)-2-bromo-1-en-3-ynes were accompanied by significant, but partial stereoisomerization,¹² while we observed complete stereoinversion in the reduction of **1p**.

In summary, the pair NaBH₄–TMEDA and catalytic PdCl₂(PPh₃)₂ in THF at 25 °C is a mild and efficient system for the hydrodebromination of alkenyl bromide derivatives. Under these conditions a variety of (*Z*)-1,2-disubstituted-1-bromo-1-alkenes are stereospecifically converted into the related (*E*)-alkenes at room temperature in good yields. Moreover, the reducing system shows high functional group tolerance, *e.g.*, halogen, ester, alkyne, alkene, nitro and nitrile substituents.

Importantly, this efficient reduction procedure allows completing the process advantageously, leading from aldehydes to (*E*)-alkenes (aldehydes \rightarrow 1,1-dibromo-1-alkenes \rightarrow (*E*)-1-bromo-1-alkenes \rightarrow (*E*)-alkenes) and providing an alternative way to carry out other olefination reactions by a judicious selection of the coupling partners and well-designed starting materials. Thus, for instance, the (*E*)-alkene 2d (Scheme 2) is formed in similar yields by reduction of both 1d and 2j, which were in turn obtained from 3-chlorobenzaldehyde and benzaldehyde, respectively.

Notes and references

- (a) D. W. Knight, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon Press, New York, 1991, vol. 3, p. 481; (b) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; (c) J. K. Stille, *Angew. Chem., Int. Ed. Engl.*, 1986, **25**, 508; (d) K. Sonogashira, in *Comprehensive Organic Synthesis*, ed. B. M. Trost and I. Fleming, Pergamon Press, New York, 1991, vol. 3, p. 521.
- 2 G. Chelucci, Chem. Rev., 2012, 112, 1344.
- 3 (a) J. Uenishi, R. Kawahama and O. Yonemitsu, *J. Org. Chem.*, 1998,
 63, 8965; (b) J. Uenishi, R. Kawahama and O. Yonemitsu, *J. Org. Chem.*, 1996, 61, 5716.
- 4 (a) H. Horibe, K. Kondo, H. Okuno and T. Aoyama, Synthesis, 2004, 986; (b) C. Kuang, H. Senboku and M. Tokuda, Tetrahedron, 2002, 58, 1491; (c) B. C. Ranu, S. Samanta and S. K. Guchhait, J. Org. Chem., 2001, 66, 4102; (d) S. Abbas, C. J. Hayes and S. Worden, Tetrahedron Lett., 2000, 41, 3215.
- 5 M. Taniguchi, Y. Takeyama, K. Fugami, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1991, 64, 2593.
- 6 (a) G. Landelle, M.-O. Turcotte-Savard, L. Angers and J.-F. Paquin, Org. Lett., 2011, 13, 1568; (b) J. Xu and D. J. Burton, Org. Lett., 2002, 4, 831.

- 7 (a) T. Wada, M. Iwasaki, A. Kondoh, H. Yorimitsu and K. Oshima, *Chem.-Eur. J.*, 2010, 16, 10671; (b) B. Dolensky and K. L. Kirk, *J. Fluorine Chem.*, 2003, 124, 105; (c) K. Sasaki, Y. Kondo and K. Maruoka, *Angew. Chem., Int. Ed.*, 2001, 40, 411; (d) K. Miura, Y. Ichinose, K. Nozaki, K. Fugami, K. Oshima and K. Utimoto, *Bull. Chem. Soc. Jpn.*, 1989, 62, 143.
 8 A. Sorg, K. Siegel and R. Brückner, *Synlett*, 2004, 321.
- 9 (a) Y. Satoh, H. Serizawa, S. Hara and A. Suzuki, J. Am. Chem. Soc., 1985, 107, 5225; (b) K. Kaneda, T. Uchiyama, Y. Fujiwara, T. Imanaka

and S. Teranishi, *J. Org. Chem.*, 1979, **44**, 55; (c) I. L. Reich, C. L. Haile and H. J. Reich, *J. Org. Chem.*, 1978, **43**, 2402.

- 10 For a recent review, see: G. Chelucci, S. Baldino, G. A. Pinna and G. Pinna, *Curr. Org. Chem.*, 2012, **16**, 2918.
- 11 (a) G. Chelucci, S. Baldino and A. Ruiu, J. Org. Chem., 2012, 77, 9921; (b) G. Chelucci, Tetrahedron Lett., 2010, 51, 1562.
- 12 For a recent example of undesirable partial *E–Z* isomerization, see: J. Shi, X. Zeng and E. Negishi, *Org. Lett.*, 2003, 5, 1825.