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Abstract: Development of a tandem ‘click–click’ approach to the
formation of successive 1,4-disubstituted 1,2,3-triazole linkages
and ‘click chemistry’ on sugar-derived alkynes are described.
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The C-glycosides are an important class of glycosides
with a sizeable number of natural products belonging to
this category. They differ from the usual O-glycosides and
N-glycosides in having a C–C bond attached to the ano-
meric carbon.1 Due to this key change in the nature of this
bond, C-glycosides appear to show significant resistance
to hydrolytic and enzymatic cleavage and are generally
considered as potential drug candidates. In view of the in-
teresting behavior of C-glycosides, several synthetic ap-
proaches have been developed to synthesize a variety of
C-glycosides and to study their properties.2 Several C-gly-
cosides have been synthesized and their utility as probes
and inhibitors for biological processes have been stud-
ied.1,3 Furthermore, the intriguing biological profiles of
triazole-based molecules, such as their anti-HIV4 and anti-
microbial5 activity, have drawn interest from various
quarters in preparing a library of triazole-based C-glyco-
sides. In the field of bioconjugation chemistry,6 the bio-
compatible nature and the inertness of the triazole ring to
metabolic transformations7 has made it a good linker for
joining two biomolecules in a covalent manner. This ap-
proach uses Cu(I)-catalyzed Hüisgen 1,3-dipolar
cycloaddition8 (‘click’) reactions, discovered indepen-
dently by the groups of Sharpless and Meldal.9 

In light of its salient features, such as selectivity and func-
tional group tolerance, the emerging10 ‘click’ reaction has
found tremendous applications in the fields of drug dis-
covery and material science, etc., in addition to bioconju-
gation.6,11 For instance, in sugar chemistry, linking of a
carbohydrate with another unit or with a non-carbohy-
drate system has been accomplished through a 1,2,3-tria-
zole ring using the ‘click’ reaction of alkynes and azides.12

Later, Dondoni and co-workers reported an iterative
Cu(I)-catalyzed synthesis of triazole-linked oligoman-
noses from orthogonally protected mannose-derived
alkynes and azides.13 Also, there are a few reports on us-

ing iterative ‘click’ chemistry to generate triazole-linked
oligomers, albeit not on carbohydrates.14

Nevertheless, there has been a quest to develop a one-pot
approach to the successive linking of carbohydrates
through triazole rings. There are a few reports in the liter-
ature where multiple triazole rings are formed in one pot
by ‘click’ reactions between one component having one or
more alkyne moieties with a second component having
one or more azide moieties.11,15 While Hotha et al. report-
ed intramolecular ‘click’ reactions of azido-alkynes for
the synthesis of triazole-fused tetracyclic compounds,
Chandrasekhar et al. achieved the synthesis of furanotria-
zole macrocycles by inter and intramolecular ‘click’ reac-
tions of azido-alkynes.16 

Figure 1 Designed azido-alkynes

However, there has been no report on the formation of
multiple triazole rings in one pot by intermolecular ‘click’
reaction between an azido-alkyne, an alkyne and an azide.
This stimulated us to develop a tandem ‘click’ approach
especially for the synthesis of triazole-linked sugar oligo-
mers. During the course of our investigation on this issue,
Leigh and Aucagne reported a one-pot ‘click–click’ pro-
cedure for the successive copper- and copper-and-silver-
mediated chemoselective formation of two distinct triaz-
ole linkages from amino acid derived alkynes and azides,
using the trimethylsilyl group as a temporary masking
group for one of the alkyne moieties.17 This prompted us
to disclose our initial results on developing a tandem
‘click’ approach to the formation triazole linkages succes-

Scheme 1 Tandem click approach to the synthesis of bistriazoles
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sively in one pot (Scheme 1) using sugar-derived azido-
alkynes (Figure 1). 

Before realizing this tandem ‘click’ chemistry, our initial
task was to identify the best reaction conditions for this
approach. To this end, we carried out ‘click’ reactions be-

Table 1 ‘Click’ Chemistry between Sugar-Derived Alkynes and Azidesa

Alkynes/azides

1 2 3 4
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10 (80) 11 (86) 12 (85) 13 (82)
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14 (81)
15 (83)

16 (84)
17 (82)
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18 (82)
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21 (87)

8

22 (75)
23 (85) 24 (86)

25 (83)

9
26 (83)

27 (84) 28 (98)
29 (86)

a Yield given in parentheses.
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tween simple sugar-derived alkynes and azides
(Scheme 2). Although CuSO4/sodium ascorbate-based
‘click’ protocol has proven to be the most benign, for our
substrates, this method took a long time (more than 15 h)

for the reaction to go to completion. This observation led
us to follow another well-established ‘click’ protocol us-
ing copper(I) iodide, acetonitrile, and diisopropylethyl-
amine (DIPEA).9b As expected, the copper(I)-catalyzed
Hüisgen 1,3-dipolar cycloaddition reaction between
known alkynes18 and azides19 proceeded smoothly to af-
ford the corresponding 1,4-disubstituted 1,2,3-triazoles in
excellent yield. The reaction went to completion within
15–20 min (Table 1).20

Having succeeded in synthesizing 1,2,3-triazoles derived
from sugars, we turned to our main goal of devising a tan-
dem ‘click’ approach using the same reaction conditions.

Scheme 2 ‘Click’ reaction between sugar-derived alkynes and azides
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Table 2 Synthesis of Bistriazoles by a Tandem ‘Click–Click’ Approach Using Azido-alkyne 31, Methyl Propiolate 32 and Azides 5–9a

Azide Product By-product

5

33 (23)

34 (33)

6

35 (46)
36 (50)

7

37 (38)
38 (36)

8

39 (33) 40 (39)

9
41 (45)

42 (48)

a Yield given in parentheses.
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As shown in Scheme 1, we presumed that successive ad-
dition of CuI, DIPEA and an azido-alkyne to a solution of
an alkyne in acetonitrile, would result in a ‘click’ reaction
to form the first triazole linkage. Subsequent addition of a
second azide to this reaction mixture would lead to the
formation of the second triazole. This process could per-
haps be repeated several times in order to access triazole
oligomers in one pot by sequential addition of the azido-
alkyne prior to the addition of the azide; the progress of
the reaction could be monitored by thin layer chromatog-
raphy from the consumption of the azido-alkyne at each
stage of the sequence. We chose azido-alkyne 31 as our
substrate for this sequence, which was easily prepared
from the known alkynol21 in two steps. Tosylation of pri-
mary alcohol 30 followed by an SN2 displacement with
sodium azide in N,N-dimethylformamide, afforded the
azido-alkyne 31 in good yield (Scheme 3). Then, as
shown in Scheme 1, copper(I) iodide and DIPEA were
added to a solution of methyl propiolate 32 in acetonitrile.
After stirring for a few minutes, the reaction mixture was
treated with azido-alkyne 31 and the mixture was stirred
for 15 minutes; the consumption of the azido-alkyne was
monitored by thin layer chromatography. Addition of ben-
zylazide 5 followed by stirring for another 15 minutes re-
sulted in the formation of bistriazole 33 (23% yield), but
along with the formation of the simple cycloadduct 34
(33%) as a by-product produced by a ‘click’ reaction be-
tween methyl propiolate and benzylazide. However, the
yield of the desired reaction was improved to 46% by in-
creasing the stirring time to one hour prior to the addition
of the azide. In this case, the azido-alkyne was purified
prior to use by rapid filtration through a short silica gel
column. 

Scheme 3 Synthesis of azido-alkyne 31

The azido-alkyne 31 was found to decompose, both on
storage and during the reaction, to give unidentified prod-
ucts. Consequently, the yield of the desired product be-
came poor, leaving the other two partners to react and give
the by-product 34. Under the above reaction conditions,
other bistriazoles 35, 37, 39 and 41 were also synthesized
as shown in Table 2.22

In summary, we have explored the ‘click’ chemistry of
sugar-derived alkynes and developed a tandem ‘click–
click’ approach to the synthesis of 1,4-disubstituted 1,2,3-
bistriazoles. Efforts are in progress to optimize the reac-
tion conditions and improve the yield with different cyclic
sugar-derived azido-alkynes (Figure 1) and also extend
this strategy for the synthesis of triazole-linked sugar oli-
gomers.
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