

PII: S0040-4039(97)01484-6

New Route to 3-Deoxy-2-Ulosonic Acids; Total Syntheses of KDO and KDN

Hirokazu Tsukamoto and Takashi Takahashi*

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152, Japan

Abstract: Syntheses of KDO and KDN by alkylation of 2-alkoxy-2-cyanoacetate anion, an acyl anion equivalent of alkyl glyoxylate, with a sugar-derived iodide and triflate are described. © 1997 Elsevier Science Ltd.

3-Deoxy-D-manno-2-octulosonic acid (KDO; 1)¹) and 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN; 6)²) possess a common synthetically challenging structure characterized by the presence of pyruvic acid moiety. KDO is found in the lipopolysaccharide region of the cell surface of all Gram-negative bacteria and is an essential component for their replication. KDN occurs in the nonreducing termini in polysialoglycoproteins (PSGP) and protects oligopolysialyl chains from exosialidase. These important findings have stimulated significant effort toward the syntheses of various 3-deoxy-2-ulosonic acid derivatives.³) One of the problems in the syntheses of such molecules is the introduction of the α -ketoacid system. Among the reported enzymatic and chemical syntheses of 3-deoxy-2-ulosonic acids, the aldol reaction between C3 and C4 using pyruvic acid derivatives and sugar-derived aldehydes is the most simple and versatile.⁴) This approach, however, leads to the formation of diastereomers at C4. To overcome this problem, synthesis of KDO via alkylation of dithioacetal of methyl glyoxylate with a sugar-derived triflate has been reported.^{3d}) Here we describe a new route to KDO 1 and KDN 6 based on alkylation of the protected cyanohydrin 3, an acyl anion equivalent of alkyl glyoxylate⁵) with the sugar-derived iodide 4 and triflate 5.

The ketoacid moiety in 1 and 6 exists in a 6-membered cyclic acetal with the axial anomeric alcohol and the equatorial carboxylic acid (see Figure 1). Therefore the protected cyanohydrins 2 and 7 could serve as the advanced intermediates to the hemiacetals 1 and 6, since the cyanohydrin ether in the alkylated products can be readily converted to the corresponding ketone.

Our synthesis of KDO 1 begins with the known 1,2:3,4:5,6-triisopropylidene derivative 8, prepared from the C₂-symmetric D-mannitol⁶) (Scheme1). Partial hydrolysis of the triacetonide 8 with conc. HCl in EtOH at 40 °C gave the 3,4:5,6-diisopropylidene compound 9 in 57% yield based on 56% conversion. Selective tosylation of the primary alcohol of 9, protection of the secondary alcohol with *t*-butyldimethylsilyl chloride and iodination of the resulting tosylate gave the iodide 4 in 57% overall yield for the three steps. Alkylation of 4 with the protected cyanohydrin 3 using NaH in the presence of a catalytic amount of EtOH in DMF at 90 °C for 2 h gave the alkylated product 10 in 63% yield. The starting iodide 4 was also recovered in 20% yield. Acid treatment of 10 with 80% aq. trifluoroacetic acid in MeOH at room temperature for 3 days provided the free cyanohydrin, which was treated with 0.1 M aq. NH4OH to afford the α -ketoacid 11 and spontaneous acetalization of the δ -hydroxy ketone moiety provided hemiacetal 12 as its ammonium salt. For further identification, the synthetic 12 was converted to the pentaacetylated methyl ester 13 according to Unger's procedure⁷) in 36% overall yield from 10. Physical constants of 13 (mp 154-155 °C, [α]_D +91° (c 0.5, MeOH); lit.⁸⁾ mp 155 °C, [α]_D +101° (c 1, MeOH)) were identical with those reported.⁹⁾

a) conc. HCl/60% aq. EtOH: 32% (recovery 44%) b) 1) TsCl/Py. 2) TBSCl/Imidazole 3) Nal/NaHCO₃; 3 steps 57% c) NaH/cat. EtOH/DMF at 90 °C for 2 h: 63% (recovery 20%) d) 1) 80% aq. TFA/MeOH at r.t. for 3 days 2) 0.1 M NH₄OH e) 1) Ac₂O/Py./cat. DMAP 2) CH₂N₂/MeOH: 4 steps 36%

Scheme 1

The synthesis of KDN 6 starts with the commercially available D-gylcero-D-guloheptose-1,4-lactone (14) (Scheme 2). The selective 6,7-O-isopropylidenation of 14 (99% yield) with acetone in the presence of CuSO₄, the 2,3-diacetylation of the resulting triol and SmI₂-promoted deacetoxylation of the resulting diacetate using Inanaga's procedure¹⁰) provided the α , β -unsaturated lactone 15 in 30% overall yield over two steps. Protection of the secondary alcohol in 15 with chloromethyl methyl ether and reduction of the lactone in two steps (DIBAL, LiAlH₄) gave diol 16 in 67% overall yield from 15. Selective protection of the primary alcohol in 15 with t-butyldiphenylsilyl chloride, stereoselective epoxidation of the Z-olefin using *m*-chloroperbenzoic

acid (83% overall yield for two steps) and protection of the C4-alcohol with phenyl isocyanate gave carbamate 17 in 89% yield. Regio- and stereoselective epoxide opening of 17 by a treatment with diethylaluminium chloride¹¹) followed by 1 M aq. H₂SO₄ afforded the more stable 2,3-cyclic carbonate 19 via the 3,4-cyclic carbonate 18 in 48% yield. Protection of the C4-hydroxy group in 19 with chloromethyl methyl ether, removal of the cyclic carbonate with NaH in ethylene glycol/THF (1/20) (78% yield over two steps), reprotection of the 2,3-diol as its acetonide and desilylation with tetrabutylammonium fluoride yielded the primary alcohol in 78% overall yield over two steps. Sulfonation of the primary alcohol with trifluoromethanesulfonic anhydride, followed by alkylation of the resulting triflate 5 with the protected cyanohydrin 3 with NaH in DMF at 0 °C for 2 h provided the protected cyanohydrin 20 in 71% yield for the two steps. Transformation of the alkylated product 20 to the target molecule were carried out essentially as same as above to provide the hemiacetal 22 as its ammonium salt. For further identification, the synthetic 22 was converted to the hexa-acetylated benzyl ester 23 in 31% overall yield from 20. Physical constants of 23 ([α]_D -14.7° (c 1.1, CHCl₃); lit.¹²) [α]_D -17.4° (c 1.0, CHCl₃)) were identical with those reported.¹³)

a) 1) CuSO₄/acetone; 99% 2) AcCl/2,6-Lutidine/CH₂Cl₂ at -10 °C 3) Sml₂/AcOH/THF; 2 steps 30% b) 1) MOMCl/PhNEt₂ 2) DIBAL/CH₂Cl₂ 3) LIAlH₄/Et₂O; 3 steps 67% c) 1) TBDPSCl/Et₃N/cat.DMAP 2) mCPBA/Na₂HPO₄·2H₂O ; 2 steps 83% 3) PhNCO/Py./cat. DMAP; 89% d) Et₂AlCl/Et₂O and then 1 M H₂SO₄; 48% e) 1) MOMCl/¹Pr₂EtN 2) NaH/ THF-ethylene glycol (20:1): 2 steps 78% 3) Me₂C(OMe)₂/PPTS 4) ⁿBu₄NF: 2 steps 78% 5) Tf₂O/2,6-Lutidine **f**) NaH/DMF at 0 °C for 2 h; 2 steps 71% **g**) 1) 80% aq.TFA/ MeOH at r.t. for 3 days 2) 0.6 M NH₄OH **h**) 1) BnBr/Cs₂CO₃/Drierite 2) Ac₂O/Py./cat. DMAP for 4 steps 31% Scheme 2

Thus alkylation using the protected cyanohydrin and sugar-derived iodide or triflate is useful for constructing the α -ketoacid moiety in KDO and KDN. We also found that the protected cyanohydrin at C2 in the alkylated products, (i.e. 2 and 7), undergoes ketalization via mild acid and base treatment. Further studies

on the synthesis of N-acetyl-5-amino-3,5-dideoxy-D-glycero-D-galacto-2-nonulosonic acid (N-acetyl-neuraminic acid) and its conjugates using the protected cyanohydrin alkylation are underway in our laboratory.

References and Notes

- 1) a) Levin, D. H.; Racker, E. J. Biol. Chem. 1959, 234, 2532-2539. b) Unger, F. M. Adv. Carbohydr. Chem. Biochem. 1981, 38, 323-388.
- Nadano, D.; Iwasaki, M.; Endo, S.; Kitajima, K.; Inoue, S.; Inoue, Y. J. Biol. Chem. 1986, 261, 11550-11557.
- Sato, K.; Miyata, T.; Tanai, I.; Yonezawa, Y. Chem. Lett. 1994, 129-132. for KDO see a) 3) Kochetkov, N. K.; Dmitriev, B. A.; Backinowsky, L. V. Carbohydr. Res. 1969, 11, 193-197. b) Collins, P. M.; Overend, W. G.; Shing, T. J. Chem. Soc. Chem. Commun. 1981, 1139-1140. c) Danishefsky, S. J.; Pearson, W. H.; Segmuller, B. E. J. Am. Chem. Soc. 1985, 107, 1280-1285. d) Imoto, M.; Kusumoto, S.; Shiba, T. Tetrahedron Lett. 1987, 28, 6235-6238. e) Itoh, H.; Kaneko, T.; Tanami, K.; Yoda, K. Bull. Chem. Soc. Jpn. 1988, 61, 3356-3358. f) Danishefsky, S. J.; DeNinno, M. P.; Chen, S. J. Am. Chem. Soc. 1988, 110, 3929-3940. g) Esswein, A.; Betz, R.; Schmidt, R. R. Helv. Chim. Acta 1989, 72, 213-223. h) Enhsen, A. Schmidt, R. R. Liebigs Ann. Chem. 1989, 69-74. i) Horito, S.; Amano, M.; Hashimoto, H. J. Carbohydr. Chem. 1989, 8, 681-684. j) Branchaud, B. P.; Meier, M. S. J. Org. Chem. 1989, 54, 1320-1326. k) Frick, W.; Krülle, T.; Schmidt, R. R. Liebigs Ann. Chem. 1991, 435-438. 1) Boons, G. J. P. H.; van der Klein, P. A. M.; van der Marel, G. A.; van Boom, J. H. Recl. Trav. Chim. Pays-Bas 1990, 109, 273-276. m) Smith, D. B.; Wang, Z.; Schreiber, S. L. Tetrahedron 1990, 46, 4793-4808. n) Dondoni, A.; Merino, P. J. Org. Chem. 1991, 56, 5294-5301. o) Martin, S. F.; Zinke, P. W. J. Org. Chem. 1991, 56, 6600-6606. p) Ramage, R.; MacLeod, A. M.; Rose, G. W. Tetrahedron 1991, 47, 5625-5636. q) Giese, B. Linker, T. Synthesis 1992, 46-48. r) Lubineau, A. L.; Augé, J.; Lubin, N. Tetrahedron 1993, 49, 4639-4650. s) Coutrot, Ph.; Grison, C.; Tabyaoui, M. Tetrahedron Lett. 1993, 34, 5089. t) Gao, J.; Harter, R.; Gordon, D. M.; Whitesides, G. M. J. Org. Chem. 1994, 59, 3714-3715. for KDN see a) Shirai, R.; Nakamura, M.; Hara, S.; Takayanagi, H.; Ogura, H. Tetrahedron Lett. 1988, 35, 4449-4452. b) Chan, T.-H.; Li, C.-J. J. Org. Chem. 1995, 60, 4228-4232. c) Dondoni, A.; Marra, A.; Merino, P. J. Am. Chem. Soc. 1994, 116, 3324-3336.
- a) Shirai, R.; Ogura, H. Tetrahedron Lett. 1989, 30, 2263-2264. b) Augé, C.; Gautheron, C.; David, S. Tetrahedron 1990, 46, 201-214. c) Sugai, T.; Shen, G.-J.; Ichikawa, Y.; Wong, C.-H. J. Am. Chem. Soc. 1993, 115, 413-421. for KDN see a) Nakamura, M.; Furuhata, K.; Ogura, H. Chem. Pharm. Bull. 1988, 36, 4807-4813. b) Sugai, T.; Kuboki, A.; Hiramatsu, S.; Okazaki, H.; Ohta, H. Bull. Chem. Soc. Jpn. 1995, 68, 3581.
- 5) Takahashi, T.; Okano, T.; Harada, T.; Imamura, K.; Yamada, H. Synlett 1994, 121-122.
- 6) Fischer, E. Ber. 1895, 28, 1167-1170.
- 7) Unger, F. M.; Stix, D.; Schultz, G. Carbohydr. Res. 1980, 80, 191-195.
- 8) Charon, D.; Szabó, L. J. Chem. Soc. Perkin 1 1979, 2369-2374.
- 9) NMR data of 13: ¹H NMR (270MHz, CDCl₃) δ 1.99, 2.00, 2.05, 2.11, 2.14 (5s, 15H, Ac), 2.19 (dd, 1H, J=10.8, 13.5Hz), 2.24 (dd, 1H, J=6.3, 13.5Hz), 3.81 (s, 3H, OMe), 4.12 (dd, 1H, J=3.8, 12.5Hz), 4.18 (dd, 1H, J=1.2, 9.8Hz), 4.48 (dd, 1H, J=2.4, 12.5Hz), 5.22 (ddd, 1H, J=2.4, 3.8, 9.8Hz), 5.32 (ddd, 1H, J=2.9, 6.3, 10.8Hz), 5.39 (dd, 1H, J=1.2, 2.9Hz). ¹³C NMR (67.8MHz, CDCl₃) δ 20.7x5, 31.0, 53.3, 62.2, 64.1, 66.0, 67.4, 69.9, 97.6, 166.7, 168.0, 169.6, 170.0, 170.3, 170.5.
- 10) Inanaga, J.; Katsuki, J.; Yamaguchi, M. Chem. Lett. 1991, 1025-1026.
- 11) Roush, W. R.; Brown, R. J.; DiMare, M. J. Org. Chem. 1983, 48, 5083-5093.
- 12) Nakamura, M.; Furuhata, K.; Ogura, H. Chem. Pharm. Bull. 1988, 36, 4807-4813.
- 13) NMR data of 23: ¹H NMR (270MHz, CDCl₃) δ 2.00, 2.01, 2.02x2, 2.10, 2.11 (6s, 18H, Ac), 2.02-2.10 (m, 1H), 2.62 (dd, 1H, J=5.4, 13.5Hz), 4.15 (dd, 1H, J=5.9, 12.5Hz), 4.19 (dd, 1H, J=2.2, 10.1Hz), 4.41 (dd, 1H, J=2.3, 12.5Hz), 4.97 (dd, 1H, J=9.9, 10.1Hz), 5.13-5.18 (m, 1H), 5.16 (d, 1H, J=12.4Hz, OBn), 5.23 (d, 1H, J=12.4Hz, OBn), 5.21-5.31 (m, 1H), 5.39 (dd, 1H, J=2.2, 6.4Hz), 7.35-7.36 (m, 5H, OBn). ¹³C NMR (67.8MHz, CDCl₃) δ 20.6x2, 20.7x2, 20.8x2, 35.4, 61.8, 66.9, 67.5, 68.0, 68.7, 70.2, 71.6, 97.5, 128.3, 128.5, 128.6, 134.9, 165.3, 168.2, 169.6, 169.7, 170.0, 170.1, 170.5.

(Received in Japan 11 June 1997; revised 17 July 1997; accepted 18 July 1997)