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Synthesis of an unusual branched-chain sugar,
5-C-methyl-LL-idopyranose for SAR studies of pyranmycins:

implication for the future design of aminoglycoside antibiotics
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Abstract—The syntheses of a challenging branched-chain sugar and several LL-sugars have been accomplished. Their application in
studies of the antibacterial activity of pyranmycins is reported, which could provide new strategies for the future design of amino-
glycoside antibiotics.
� 2004 Elsevier Ltd. All rights reserved.
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Figure 1. Strategy for the design of branched-chain sugar.
Due to their broad spectrum antibacterial activity, ami-
noglycoside antibiotics have been revived as a focus for
the development of new antibacterial agents to counter-
act the growing problem of drug-resistant infectious
diseases.1,2 Previously, we have reported the structure–
activity relationship (SAR) of a novel class of aminogly-
coside antibiotics, pyranmycins, which has been synthe-
sized via a glycodiversification approach developed in
our laboratory.3 From the SAR results, we noticed that
the presence of 6-deoxy-DD-glucopyranose as ring III of
pyranmycins is essential for antibacterial activity. On
the other hand, the presence of a 6-amino-6-deoxy-LL-
idopyranose as ring III also manifested significant activ-
ity. Thus, we are interested in a design that combines
both structural features, hypothesizing that such a struc-
ture should lead to improved antibacterial activity (Fig.
1).

In order to examine our hypothesis, we targeted the syn-
thesis of six pyranose donors that will be used as ring III
of pyranmycins (Fig. 2). Compound 1 is designed to
ensure that the steric hindrance and the quaternary car-
bon at C-5 will not hamper the antibacterial activity.
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Compounds 2, 3, and 4 are designed to demonstrate
the importance of the hydroxymethyl group in LL-idopyr-
anose. Compounds 5 and 6 are branched-chain sugars
that combine the desired structural components outlined
above. The synthesis of 2, 3, and 4 began from the
known compounds4 7, 9, and 11 via acid-catalyzed
hydrolysis of the isopropylidene groups, acetylation,
and phenylthiol substitution (Scheme 1).
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Figure 2. Proposed donors of pyranoses. Compound 6 was proposed

initially. However, we were unable to synthesize it.
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(b) PhSH, BF3–OEt2, CH2Cl2; (c) (1) Tf2O, py., (2) NaN3, DMF.
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Although the synthesis of the precursor of 5, 5-C-
methyl-LL-idopyranose, has been reported, the synthetic
route is difficult to be amended for large-scale produc-
tion as well as glycosylation of 5.5 Therefore, we decided
to develop an alternative approach using compound 136

as the starting material. Treatment of 13 with Ac2O and
H2SO4 afforded 14, which was converted into the corre-
sponding glycosyl trichloroacetimidate 1 (Scheme 2).
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DMF, (2) CCl3CN, DBU, CH2Cl2; (c) (1) TsCl, py., (2) LiAlH4, THF.
Ditosylation of 13 followed by LiAlH4 reduction fur-
nished 15 with the deoxygenation at the desired posi-
tion. The 6-O-tosyl group (based on the nomenclature
of DD-glucopyranose) of 13 is accessible toward hydride
attack at C-6, resulting in deoxygenation. However,
the tosyl group on the 5-C-hydroxylmethyl group is ster-
ically blocked by the anomeric methoxyl group. In this
case, the hydride attack occurs at the sulfur of the tosyl
group, which results in regeneration of the free hydroxyl
group. Regioselectivity of the deoxygenation was con-
firmed by 2D NOE experiment.

The reactions using Ac2O and acid catalysts for convert-
ing 15 into peracetylated glycoside were unsuccessful. A
1,6-anhydro idopyranose, 16, was often obtained
(Scheme 3). Attempts at employing TMSSPh/TMSOTf7

provided the desired phenylthio glycoside with unsatis-
factory yield. Nevertheless, compound 16 was finally
transformed into 17 by a recently reported method8

using Sc(OTf)3 and Ac2O following hydrogenation.
Treatment of 17 with PhSH and BF3–OEt2 gave the de-
sired glycosyl donor, 5. However, all attempts failed to
generate 6.9

Glycosylation of the 3 0,4 0,6-tri-O-benzyltetraazidoneam-
ine acceptor2e using glycosyl trichloriacetamidate and
AcO
OC(NH)CCl3
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phenylthio glycosides was carried out via BF3–OEt2 and
NIS/TfOH activation (Scheme 4). In an effort to prepare
one of the designed branched-sugar-containing pyran-
mycins, compound 18e was converted into 19 via
hydrolysis and perbenzylation (Scheme 5). The O-600

benzyl group on 20 was selectively deprotected. How-
ever, all the attempts to make 21 were unsuccessful.10

Synthesis of final products from compounds 18a–e was
performed using reported procedures (Scheme 6).3

The synthesized new members of the pyranmycin family
were assayed against Escherichia coli (ATCC 25922),
and Staphylococcus aureus (ATCC 25923) using neomy-
cin B as the control to generate the minimum inhibitory
a
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TC029 CH2OH CH2OH 39
TC036 H CH2OH 69
TC037 H CH3 64
TC054 CH3 CH2OH 50
TC020 CH3 H Ref. 3a
TC010 H CH2NH3

+ 62

Scheme 6. Reagents: (a) (1) K2CO3, MeOH, rt; (2) PMe3, THF, 0.1M

NaOH, (3) H2, Pd/C, HOAc–H2O (1/1), (4) Dowex 1X8 (Cl-form).

Table 1. MIC13 and binding scores12 of the synthesized pyranmycins

Compounds E. coli S. aureusa Binding scoreb

Neomycin B 2 0.3 �474.30

TC029 22 7 �314.90

TC036 11 3 �320.00

TC037 91 15 �320.40

TC054 87 27 �317.60

TC020 19 13 �314.50

TC010 9 2 �394.00

a Unit: lM.
b The tendency in binding: the lower the number, the better the bind-

ing.
concentration (MIC) (Table 1).11 Despite not having 5-
C-methyl-6-aminoidopyransoe available, we have re-
ported the synthesis and antibacterial activity of
TC020.3 When combining TC020 and TC036, we can
still evaluate the effect of branched-chain sugar as in
the case of TC054. Compound TC029 is active against
both strains of the tested bacteria. The antibacterial
activity of TC036 is much better than the deoxygenated
member, TC037, which is consistent with our previous
finding: a C-600 aminomethyl (or hydroxylmethyl) group
is important for the activity of pyranmycins with ring III
LL-sugar (Table 1). However, to our surprise, TC054,
which has a design from combining two structural fea-
tures with superior antibacterial activity, individually,
manifested only low activity. To provide the possible
solution for this unexpected result, we evaluated the
binding of TC054 and TC036 toward the target rRNA
fragment using molecular modeling (Fig. 3).12 From
the molecular modeling structures, we did not find sig-
nificant structural perturbation due to the introduction
Figure 3. Binding of TC036 and TC054 toward the A-site of 16S

rRNA (TC036: blue, TC054: pink). The hydrogen atoms are omitted

for clarity except for those attached to the C-600 of TC054 (highlighted

in red).
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of the 5-C methyl group on TC054. The binding score of
TC054 also cannot explain the unexpected decreased in
antibacterial activity (Table 1).

In light of the finding in the activity of the newly synthe-
sized pyranmycins, we have learned valuable lessons.
First, a traditional strategy for drug development in-
volves identifying lead structural components (pharma-
cophores). Then, by combining these components on
the same scaffold, it is expected that an additional effect
from these components may lead to improved activity.14

Our results demonstrate that such an addition effect may
not always occur. As a result, synthetic methodologies
that can furnish compounds with more structural as-
pects for identifying leads are essential.

Second, as indicated in our molecular modeling results,
the binding (or fitting) of TC054, which has a ring III
branched-chain sugar, toward the rRNA target, is al-
most identical to that of the TC036. Therefore, there
must be other factors that could cause the dramatic de-
crease in antibacterial activity of TC054. Since amino-
glycosides exert their antimicrobial activity by binding
toward a cytosolic target (decoding region at A-site of
the 16S rRNA), understanding the process of how ami-
noglycosides are recruited by bacteria is essential. Addi-
tionally, from our experience3,15 and structures of other
unusual sugars in naturally occurring antibiotics,16–18

there are prevalent examples for the existence of methyl,
methoxy, methylamino, or dimethylamino groups,
which play key roles in the activity of these antibiotics.
As compared to hydroxyl and amino groups, the pres-
ence of a methyl group in the forms of methoxy, methyl-
amino, or dimethylamino groups will reduce the
solvation effect that may otherwise prevent the antibiot-
ics from entering the targeted sites. Perhaps, solvation is
another factor that deserves more investigation.

In conclusion, we have overcome synthetic challenges by
achieving a much more convenient synthesis of a
branched-chain sugar. The syntheses of three LL-sugars
are reported. We have also demonstrated the practical
use of these unusual sugars.19 From our antibacterial re-
sults, new directions for the development of aminoglyco-
side antibiotics have also been suggested.
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