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Abstract: Phosphatidylinositol 3,4,5-trisphosphate analogs with saturated diacylglycerol substructure have been
designed, focusing on their reactivity with PIP3 5-phosphatase. Dephosphorylation of native PIP3 was competitively
inhibited in the presence of synthetic PIP3_, and PIP3 _,, respectively. © 1998 Elsevier Science Ltd. All rights reserved.

Phosphatidylinositol 3-kinase (P13-kinase)', when activated by stimulation with growth factors, phosphorylates
phosphatidylinositol 4,5-bisphosphate (PI 4,5-P2) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3),
which is subsequently dephosphorylated by PIP3 5-phosphatase to generate phosphatidylinositol 3,4-bisphosphate
(P1 3,4-P2). PIP3 and PI 3,4-P2 are thought to act as second messengers, e. g., PIP3 activates PIP3-dependent
kinase 1 and aPKC?, while PI 3,4-P2 may stimulate the activity of Akt®. These polyphosphoinositides may also
be involved in vesicle transport and rearrangement of the cytoskeleton®.

PIP3 analogs with saturated diacylglycerol substructure, such as distearoyl (C18)"® and dioctanoyl (C8)°
glycerol, have been synthesized by us and other groups. Recently, synthesis of natural PIP3 with unsaturated
arachidonic acid has been reported.'® During evaluation of the enzymatic reaction of synthetic phosphatidylinositols,
we unexpectedly found that distearoyl PIP3 (PIP3 ) could not be dephosphorylated to PI 3,4-P2 by PIP3 5-
phosphatase. Several reports have described the importance of unsaturated fatty acids at the sn-2 center, but the
structural requirement for the sn-2 fatty acid is still unclear. In attempts to develop phosphatidylinositol analogs
as biochemical probes and/or synthetic second messenger molecules, the saturated diacylglycerol substructure
should provide a feasible basis for molecular design.!! Here, we describe the design, synthesis and evaluation of
PIP3 analogs with saturated diacylglycerol substructure, focusing on their reactivity with PIP3 5-phosphatase.
Figure 1
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The basic design of the diacylglycerol substructure was as follows. The sn-1 fatty acid was fixed as stearic
acid, which is typically found in many natural phosphatidylinositols. Since most natural phosphatidylinositols
contain arachidonic acid at the sn-2 center, the spherical size of their diacylglycerol substructure might be smaller
than that of distearate diacylglycerol owing to folding of the unsaturated chain of arachidonate. Therefore, we
introduced a short saturated fatty acid at the sn-2 center in place of arachidonic acid (Figure 2).
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The diacylglycerol analogs were synthesized as shown in Schemes 1 and 2.2 The amidites 6 with two
different acyl groups were obtained from 2-0-acyl-1-O-stearoyl-sn-glycerols and benzyl N,N,N',N -
tetraisopropylphosphoramidite, which were prepared from (5)-(+)-2,2-dimethyldioxolane-4-methanol and
phosphorus trichloride, respectively.'** The appropriately protected homochiral key intermediate 8 was synthesized
according to Estevez and Prestwich’s method'? from methyl a-D-glucopyranoside (7) through 9 steps in 26%
overall yield. The coupling of the inositol derivative 8 with the amidite 6 followed by m-CPBA oxidation in one
pot gave an epimeric mixture of 9."" Removal of the p-methoxybenzyl (PMB) groups with 2,3-dichloro-5,6-
dicyano-p-benzoquinone (DDQ) in wet CH,Cl, gave the triol 10. Phosphitylation of the resulting triol with dibenzyl
N,N-diethylphosphoramidite, followed by oxidation with m-CPBA in one pot gave fully protected PIP3 (11).
Deprotection of all benzyl and benzyloxymethyl (BOM) groups of 11 was carried out by hydrogenolysis over Pd
black in 85% t-BuOH in the presence of NaHCO, **

The reactivity of synthetic PIP3 analogs with PIP3 5-phosphatase was evaluated by competitive
dephosphorylation assay with native [*?P]PIP3. Native [*?P]PIP3 was incubated with PIP3 5-phosphatase in the
2 PIP3C4’
developed on TLC' and radioactivity of the resulting PI 3,4P2 was visualized by autoradiography (Figure 3). In
the presence of PIP3, and PIP3
hand, PIP3_, and PIP3_
dephosphorylation of PIP3_, by PIP3 5-phosphatase was also examined. Production of PI 3,4-P2, was detected

presence of various concentrations of synthetic PIP3 PIP3_, and PIP3.® The reaction mixture was

dephosphorylation of native [*?PJPIP3 was evidently inhibited. On the other

C4*
did not affect the dephosphorylation even at higher concentrations. Next, direct

as an apparent spot on TLC stained by CuSO,-phosphoric acid. Therefore, it appears that PIP3 , and PIP3_, can
be substrates of PIP3 5-phosphatase.

Figure 3
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These findings indicate that synthetic PIP3 analogs with saturated diacylglycerol substructure may represent
a new approach to the design of enzyme inhibitors, biochemical probes, and synthetic second messenger molecules.

Further investigations are in progress.
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