Accepted Manuscript

Title: Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: comparison between in fluidized and packed bed reactors

Author: André S.G. Lorenzoni Luiza F. Aydos Manuela P. Klein Marco A.Z. Ayub Rafael C. Rodrigues Plinho F. Hertz

PII:	S1381-1177(14)00293-8
DOI:	http://dx.doi.org/doi:10.1016/j.molcatb.2014.11.002
Reference:	MOLCAB 3056
To appear in:	Journal of Molecular Catalysis B: Enzymatic
Received date:	14-7-2014
Revised date:	6-11-2014
Accepted date:	6-11-2014

Please cite this article as: A.S.G. Lorenzoni, P.F. Hertz, Continuous production of fructooligosaccharides and invert sugar by chitosan immobilized enzymes: comparison between in fluidized and packed bed reactors, *Journal of Molecular Catalysis B: Enzymatic* (2014), http://dx.doi.org/10.1016/j.molcatb.2014.11.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1

1 Highlights:

- 2 β-fructofuranosidase and β-fructosyltransferase were immobilized on chitosan
 3 spheres.
- 4 FOS and invert sugar were produced continuously on enzymatic reactors.
- 5 Packed bed reactors presented better yelds than fluidized bed reactors.
- 6 Packed bed reactor produced FOS continuously for 40 days without loss of
- 7 activity.
- 8 FOS composition can be modulated by the flow rate.
- 9

2

9	Continuous production	of fructooligosaccharide	s and invert sugar by chitosan
	1	3	

10 immobilized enzymes: comparison between in fluidized and packed bed reactors

11

- 12 André S. G. Lorenzoni^a, Luiza F. Aydos^a, Manuela P. Klein^a, Marco A. Z. Ayub^a,
- 13 Rafael C. Rodrigues^{*a}, Plinho F. Hertz^{*a}

14

- 15 Biotechnology, Bioprocess and Biocatalysis Group, Institute of Food Science and
- 16 Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O.
- 17 Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil

18

- 19 * Co-corresponding authors:
- 20 Tel.: +55 51 3308 7094; fax: +55 51 3308 7048
- 21 E-mail addresses: plinho@ufrgs.br (P. F. Hertz); rafaelcrodrigues@ufrgs.br (R. C.

22 Rodrigues);

- 23 andreglock@gmail.com (A. S. G. Lorenzoni); aydoslf@gmail.com (L. F. Aydos);
- 24 manupklein@gmail.com (M. P. Klein); mazayub@ufrgs.br (M. A. Z. Ayub);
- 25 Website: www.ufrgs.br/bbb

3

26 Abstract

27	In this work, β -fructofuranosidase and β -fructosyltransferase were covalently
28	immobilized on chitosan spheres, using glutaraldehyde as a coupling agent, in order to
29	produce invert sugar and fructooligosaccharides (FOS). Maxinvert L was used to make
30	β -fructofuranosidase biocatalyst yielding 7000 HU/g. A partial purified β -
31	fructosyltransferase from Viscozyme L was used to prepare the other biocatalyst
32	yielding 2100 TU/g. The production of invert sugar and FOS was evaluated using
33	different continuous enzymatic reactors: two packed bed reactors (PBR) and two
34	fluidized bed reactors (FBR). The invert sugar production achieved a yield of 98 %
35	(grams of product per grams of initial sucrose) in the PBR and 94 % in the FBR,
36	whereas FOS production achieved a yield of 59 % in the PBR and 54 % in the FBR. It
37	was also observed in both cases that varying the flow rate it is possible to modulate the
38	FOS composition in terms of nystose and kestose concentrations. The operational
39	stability of FOS produced in the PBR was evaluated for 40 days showing no reductions
40	in yields.
41	
42	Key words: Invert Sugar; Fructooligosaccharides; Packed bed enzyme reactor;
43	Fluidized bed enzyme reactor; Chitosan; Enzyme Immobilization.
44	
45	
46	
47	
48	
49	
50	

4

51 **1. Introduction**

52	The commercial viability of industrial biotransformations is heavily dependent on
53	the cost of the enzyme. Industrial applications of enzymes are often hampered by the
54	lack of long-term operational stability, difficult recovery and reuse of the enzyme.
55	These drawbacks can be overcome by immobilization of the enzyme [1, 2].
56	Notwithstanding all these advantages compared to the free enzymes, immobilized
57	enzymes usually have their activities reduced, producing unfavorable effects on their
58	overall catalytic performances. This alteration can result from mass transfer limitations,
59	which may be reduced by applying appropriate reactor designs and immobilization
60	techniques [3, 4]. Among immobilization techniques, the use of chitosan [$(1\rightarrow 4)$ -2-
61	amino-2-deoxy- β -D-glucan] as a support for covalent attachment is widely used for a
62	multiplicity of purposes, mostly in industrial applications. This fact is due to several
63	qualities of chitosan, such as the presence of reactive functional groups for direct
64	reactions and for chemical modifications resulting in high affinity to proteins,
65	hydrophilicity, good biocompatibility, non-toxicity, improved resistance to chemical
66	degradation and ease of preparation in a variety of physical forms [3, 5]. Recently,
67	several works reported the development of packed bed or fluidized bed reactors filled
68	with chitosan biocatalysts for industrial purposes [6-9].
69	Packed bed reactors (PBR) consist of an immobile stack of particles within a
70	column, through which a reactant solution is pumped. These reactors are preferred over
71	other reactor types because of simpler technology, high bed volume, ease of operation,
72	and scaling up [10, 11]. Fluidized bed reactors (FBR) consist of particles within a
73	column, which are kept in movement (fluidization), by the liquid flow. The particles are
74	retained by a hydrodynamic balance between gravity and drag forces promoted by the
75	upflow substrate stream [12, 13].

76	Both types of reactors enable continuous production without the need of a prior
77	separation of the enzyme resulting in lower process costs [7, 12]. In comparison to PBR,
78	FBR are less susceptible to column clogging, formation of preferential flow paths and
79	compression due to bed weigh [11, 14]. FBR also present higher axial dispersions than
80	PBR. On the other hand, PBR present lower shear stress on immobilized enzymes,
81	generally leading to long-term enzyme stability [11].
82	Invertase (or β -fructofuranosidase, E.C. 3.2.1.26) is a suitable enzyme for carriyng
83	out studies concerning enzymatic processes due to its stability, no need for any
84	cofactors and its commercial significance [15, 16]. This enzyme is used for sucrose (β -
85	D-fructofuranosyl($2\rightarrow 1$) β -D-glucopyranoside) hydrolysis, resulting in an equimolar
86	mixture of glucose (α -D-glucose) and fructose (β -D-fructose) known as invert sugar.
87	This product is widely used in food and beverage industries due to its higher sweetness
88	and lower susceptibility to crystallization [17]. However, the application of immobilized
89	invertase in enzyme reactors for sucrose hydrolysis, on the industrial scale, is still in the
90	development phase [18].
91	β -fructosyltransferase (E.C.2.4.1.9) is another suitable enzyme for studying the
92	reactor design in enzymatic processes. This enzyme is used for short chain
93	fructooligosaccharides (FOS) synthesis from sucrose. FOS are prebiotic food
94	ingredients [19], and short chain FOS present sweet taste and may be used as a
95	sweetener by diabetics [20]. Although the enzymatic synthesis of FOS also requires
96	sucrose as substrate, the concentration of sucrose required is higher than for sucrose
97	hydrolysis. This solution is more viscous, and the use of a highly viscous liquid in PBR
98	may lead to the fatal problem of column clogging [11], therefore this effect must be
99	evaluated.

100	In this context, the aim of this work is to evaluate the best reactor design to be used
101	for invert sugar and FOS production catalyzed by immobilized invertase and β -
102	fructosyltransferase, respectively. Both enzymes have been recently immobilized in
103	chitosan particles yielding stable biocatalysts [21, 22]. Packed-bed and Fluidized-bed
104	reactors were compared for sucrose hydrolysis and FOS synthesis. Furthermore, it was
105	evaluated the influence of operational conditions on the FOS composition.
106	
107	2. Experimental
108	2.1. Materials
109	Invertase from Saccharomyces cerevisiae (Maxinvert L 10000) was kindly donated
110	by DSM Food Specialties (The Netherlands). Commercial enzyme preparation from
111	Aspergillus aculeatus with β -fructosyltransferase activity (Viscozyme L), produced by
112	Novozymes, was kindly donated by LNF Latino Americana (Brazil). Chitosan from
113	shrimp shells (>75% deacetylated) was purchased from Sigma-Aldrich (USA). Sucrose
114	and glutaraldehyde 25 % were purchased from Vetec Química Fina Ltda (Brazil).
115	Enzymatic glucose (D-glucose) determination kit was purchased from In Vitro
116	Diagnóstica Ltda (Brazil). All other chemicals were analytical or HPLC grade obtained
117	from readily available commercial sources.
118	
119	2.2. Enzymatic activities
120	Maxinvert L (invertase) hydrolytic activity was evaluated using a substrate solution
121	of 100 g/L of sucrose in 50 mM sodium acetate buffer (pH 4.5) at 50 °C. Samples were

- 122 taken at regular intervals and the reaction was stopped by the addition of 0.1 M sodium
- 123 carbonate buffer, pH 10.0. Glucose released was measured with the enzymatic glucose

124	determination kit. One hydrolytic unit of enzymatic activity (HU) was defined as the
125	amount of enzyme that produces 1 µmol of glucose per minute at test conditions.
126	Viscozyme L (β -fructosyltransferase) transfructosylation activity was carried out
127	at 50 °C using a solution of sucrose 600 g/L in 50 mM sodium acetate buffer pH 5.5.
128	Fifty chitosan particles (17.1 mg) were incubated in 2 mL of sucrose solution. Samples
129	were taken after 15 min and the concentration of saccharides (sucrose, glucose, fructose,
130	kestose and nystose) were measured on HPLC. On unit of transfructosylation activity
131	(TU) was defined as the amount of enzyme that produces 1 µmol of kestose or nystose
132	from sucrose per minute [22].
133	All the activities of immobilized enzymes were carried out under agitation. Protein
134	content of the enzyme solutions was determined by the Lowry assay.
135	
136	2.3. Chitosan spheres synthesis
137	The chitosan particles were prepared adding dropwise a chitosan solution into an
138	alkaline coagulation solution, previously described by Klein et al. [23]. The prepared
139	particles had a spherical shape with a diameter of approximately 2 mm and a dry weight
140	of 0.343 mg \pm 0.008 mg per sphere.
141	Activation of chitosan particles was carried out incubating the chitosan particles
142	with glutaraldehyde solution as it was previously described in Lorenzoni et al. [22].
143	
144	2.4. Enzyme Immobilization
145	Invertase immobilization was carried out incubating the particles with a solution of
146	enzyme diluted in activity buffer (50 mM sodium acetate, pH 4.5) at room temperature
147	under gentle shaking for 3 h, in an orbital shaker at 120 rpm with 25 mm of orbital
148	diameter. The amount of enzyme applied to the support was 50 mg per gram of support,

8

150 Erlenmeyer flasks. The amount of support in an immobilization batch varied from 50 to

151 1400 chitosan spheres, *i.e.*, 17.1 mg to 480 mg, with the same results.

152 β -fructosyltransferase, was partially purified and immobilized as previously

described by Lorenzoni *et al.* [22]. The amount of enzyme applied to the support was

- 154 180 mg per gram of support.
- 155 After immobilization, both biocatalysts were washed with buffer NaCl (1.0 M) and
- 156 ethylene glycol (30%, volume fraction) in order to eliminate non-covalently bonded

157 enzymes. The immobilization yield (IY) and immobilization efficiency (IE) were

158 calculated by the equations 1 and 2, respectively, previously described in Valerio *et al.*

(1)

(2)

159 [21], and Sheldon and Van Pelt [1]:

160 IY
$$= \frac{\text{immobilized activity}}{\text{starting activity}}$$

161 IE = $\frac{\text{observed activity}}{\text{immobilized activity}}$

162 Immobilized activity is the difference between the activity applied to the support 163 and the activity measured in the washing fractions. Starting activity is the activity of the 164 enzyme added to the support. Observed activity is the activity on the chitosan beads 165 after immobilization.

166

167 **2.5. Reactors setup**

168 The reactors consisted of a water-jacketed glass column, each filled with 930 units

169 of chitosan spheres (280 mg of dry weight). Both enzymatic preparations were

170 evaluated in packed bed and fluidized bed reactors. The reactors were flow rate

171 controlled with adjustable peristaltic pumps.

172 The packed bed column (height, 85 mm; inner diameter, 10 mm; volume, 6.67 mL)

173 has an entrance at the bottom and an exit at the top, which were fitted with a sintered

9

174	glass disc to	retain the pa	articles with	in the column.	The fluidized	bed column	(height,
-----	---------------	---------------	---------------	----------------	---------------	------------	----------

175 230 mm; inner diameter, 10 mm; volume, 18.0 mL) was equipped with one additional

176 exit at the top and one additional entrance at the bottom for external liquid recirculation,

also fitted with sintered glass disc. This design enables fluidization of the biocatalysts

178 independently of the residence time. The bed height was kept constant at 230 mm.

179 Schematics of reactors configurations are illustrated in Figure 1.

180

181 **2.5.1. Invert sugar production**

182 Production of invert sugar was carried using a solution of sucrose 150 g/L diluted

in 50 mM sodium acetate buffer pH 4.5. The solution was pumped at flow rates of (0.5,

184 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.7) mL/min in both fluidized and packed bed reactors.

185 Four bed volumes of solution were passed through the column before taking the sample

186 to achieve stationary state. These experiments were carried out in duplicate, changing

187 the column bed at each experiment.

188

189 2.5.2. Fructooligosaccharides production

190 Production of fructooligosaccharides was carried using a solution of sucrose 600

191 g/L diluted in 20 mM sodium acetate buffer pH 5.5. The solution was pumped at flow

192 rates of (0.052, 0.082, 0.11, 0.17, 0.23, 0.29, 0.44) mL/min in both fluidized and packed

193 bed reactors. Four bed volumes of solution were passed through the column before

taking the sample to achieve stationary state and the experiments were carried out in

195 duplicate, changing the column bed at each experiment.

196

197 **2.5.3. HPLC analysis**

10

198	All the samples collected	d in the reactors were	e analyzed in HPLC system
-----	---------------------------	------------------------	---------------------------

- 199 (Shimadzu, Tokyo, Japan) equipped with refractor index and Aminex HPX-87C (300
- 200 mm x 7.8 mm) column. Ultra-pure water was used as eluting solvent at a flow rate of
- 201 0.6 mL/min, at 85 °C.
- 202 The concentration of saccharides (sucrose, glucose and fructose) was determined in
- 203 invert sugar samples by interpolation using external standards. In the
- 204 fructooligosaccharides samples, kestose (β -D-fructofuranosyl($2 \rightarrow 1$) β -D-
- 205 fructofuranosyl($2 \rightarrow 1$) α -D-glucopyranoside) and nystose (β -D-fructofuranosyl($2 \rightarrow 1$) β -
- 206 D-fructofuranosyl($2\rightarrow 1$) β -D-fructofuranosyl($2\rightarrow 1$) α -D-glucopyranoside)
- 207 concentrations were also determined.
- 208

209 **3. Results and Discussion**

210 **3.1. Enzymatic activity**

211 Maxinvert L contains a specific hydrolytic activity of 3000 HU/mg at 50 °C and pH

4.5. The enzymatic solution obtained from partial purification of Viscozyme L,

213 contained specific hydrolytic activity of 25.3 HU/mg, at 50 °C and pH 5.5. It is

214 important to note that the specific activity of the enzyme solution used in this work,

after partially purification is much lower compared to Maxinvert L. This difference is

216 due to the fact that Maxinvert L is a commercial enzyme preparation specific for

217 sucrose hydrolysis, whereas Viscozyme L is marketed as endo-β-glucanase that

218 hydrolyzes $(1\rightarrow 3)$ - or $(1\rightarrow 4)$ - linkages in β -D-glucans, and the secondary activity

- 219 recovered in this preparation is more specific for β -fructosyltransferase activity. Is
- 220 important to note, despite its high hydrolytic activity, Maxinvert L contains little β-
- fructosyltransferase activity and therefore is not suitable for FOS synthesis [24, 25]. In
- the supplementary material, it is presented the HPLC chromatograms of the activity

11

each enzyme (S.1). For these reasons, Maxinvert L was used for sucrose hydrolysis and
its activity measured in HU units, while Viscozyme L was used for FOS synthesis and
its activity measured in TU units.

226

227 **3.2. Enzyme Immobilization**

Maxinvert L immobilization resulted in a biocatalyst with 2.4 HU per sphere (7000 228 229 HU per gram of dry support), immobilization yield of 42 % and an immobilization 230 efficiency of 12 %. β-fructosyltransferase immobilization resulted in a biocatalyst with 231 0.73 TU per sphere (2100 TU per gram of dry support), immobilization yield of 82 % 232 and an immobilization efficiency of 42 %. A higher immobilization yield was observed 233 for β -fructosyltransferase than for Maxinvert L, despite the higher protein load applied, 234 but several other factors may cause this result. Different immobilization pH may change 235 immobilization yields when using glutaraldehyde as a coupling agent [26, 27]. In this 236 case, the optimal pH of each enzyme was used for immobilization to avoid protein 237 inactivation during this step. The difference between the enzymes structures can also 238 interfere in enzyme immobilization; Maxinvert L is a highly glycosylated octameric 239 protein with 428 kDa [28], while β -fructosyltransferase from A. aculeatus is a dimeric 240 glycoprotein with 135 kDa [29]. However, both enzymes are not completely purified 241 and is not possible to assert something without knowing all other proteins in the 242 mixture. 243 A β -fructosyltransferase biocatalyst with a better activity than in a previous work 244 was obtained [22]. This fact can be attributed to the smaller size of spheres used in this

work, since smaller particles have a greater superficial area and therefore can carry a

higher protein load [23]. A remarkable achievement since that biocatalyst was among

the highest active found in literature so far [22].

248	
249	3.3. Invert sugar and Fructooligosaccharides production
250	Results of yields of invert sugar production (grams of invert sugar per grams of
251	initial sucrose) and FOS production (grams of FOS per grams of initial sucrose) for
252	different flow rates are shown in Figure 2 and 3, respectively.
253	Packed bed reactors showed higher yields than fluidized bed in both reactions. For
254	invert sugar production, the highest yields were observed at the lowest flow rates due to
255	higher residence times inside the reactor.
256	For FOS production in PBR, the best yield was 59 %, at 0.08 mL/min, and at 0.05
257	mL/min the yield decreased to 57 %. In addition, a higher nystose concentration 240
258	$g/L \pm 2$ g/L and a lower kestose concentration 101 g/L ± 2 g/L were detected in the
259	samples collected at 0.05 mL/min. At 0.08 mL/min, the nystose and kestose
260	concentrations were 218 g/L \pm 2 g/L and 133 g/L \pm 1 g/L respectively. The maximum
261	concentration of kestose was 198 g/L \pm 1 g/L, obtained at 0.29 mL/min. Kestose
262	concentration decreased for higher residence times because kestose serve as a donor for
263	fructosyl moieties to form nystose [30]. Kestose and nystose molar concentrations for
264	the flow rates evaluated are shown in Table 1. In the supplementary material (S.2), it
265	can be seen the HPLC chromatograms that show the variation of nystose and kestose
266	concentrations with the flow rate.
267	It is possible to observe in Table 1 that fructosyl units transferred from sucrose
268	increased continuously as the residence time increased, mainly because at the lower
269	flow rates, nystose concentration was higher than kestose. However, total FOS
270	concentration in molar units reach a maximum, and remained almost constant at lower
271	flow rates. This fact can be observed when sucrose concentration is close to its chemical
272	equilibrium and only nystose formation from kestose can be observed. These results are

273	interesting because they indicate that by varying the flow rate it is possible to change
274	the FOS composition in terms of nystose and kestose concentration. This is important
275	because those carbohydrates have different prebiotic and technological properties.
276	Suzuki et al. [31] suggested that kestose has higher and more selective stimulating
277	activity on bifidobacteria when compared to nystose. On the other hand, Stewart et al.
278	[32] pointed out that the long-chain FOS were more readily fermented, which indicates
279	that fermentation would occur over a longer portion of the colon. Additionally, kestose
280	present higher sweetening power than nystose, which could be important in diet
281	products.
282	Because in packed bed reactor the amount of fructosyl units transferred is higher
283	than in the fluidized bed reactor, it is possible to conclude that this reactor configuration
284	is more efficient for FOS production, and presents potential for scaling up.
285	Reactors filled with immobilized enzyme systems can be considered as being two-
286	phase systems, thus they present some mass transfer limitations. This limitations may
287	lead to unfavorable effects on their overall catalytic performances [3]. Furthermore,
288	transport phenomena of substrates and products must be addressed by process
289	engineering, optimizing geometry in order to produce a biocatalyst possessing both high
290	activities and stabilities [4]. Because fluidized bed reactors present better axial
291	dispersion rates, it is reasonable to predict that they will result in better yields in
292	comparison to packed bed reactors. However, in this work, the packed bed reactor was
293	kinetically favorable resulting in better yields for both reactions evaluated. A possible
294	reason is the fact that in both reactions glucose is produced, which, in turn, causes
295	product inhibition [30, 33]. In the fluidized bed reactor, part of the product solution is
296	recycled to the entrance of the reactor to allow the bed fluidization. This system leads to
297	higher glucose concentrations in the bottom. Therefore, glucose concentration in the

14

298	bottom of the fluidized bed is higher than in packed bed, inhibiting enzymatic activity.
299	This fact would not be noted on a non-recirculating fluidized bed, but in such case, a
300	higher flow rate would be needed for particles suspension leading to lower residence
301	times and lower yields.
302	Although presenting higher yields, packed bed reactors can have some drawbacks
303	in comparison to fluidized bed, such as column clogging, creation of preferential flow
304	paths and particle compression [14]. These drawbacks occur after some operation time,
305	thus to evaluate them we measured the operational stability of the packed bed reactor
306	for FOS production. The FOS production medium is also much more viscous than
307	invert sugar production medium as well as the susceptibility to clogging. Operational
308	stability was evaluated for 40 days operating at the flow rate of 0.15 mL/min and no
309	yields reduction were observed, as shown in Figure 4. In the present and in past works
310	[7, 8, 22, 23], we did not observe any kind of breaking or changing in the particles
311	during their uses, which can be indicated by the high operational stability. Nevertheless,
312	the mechanical strength of the particles should be studied, because it is not possible to
313	discard some compressing problems in a scale up process. Although the total FOS
314	concentration remained constant along the operational test, the FOS profile changed
315	over time. In the supplementary material (S.3), it was presented the HPLC
316	chromatograms for the first and last day of the tested operational stability, where it is
317	possible to note that kestose concentration decreased, whereas kestose concentration
318	increased, which could be indicating a loss of activity, because the residence time would
319	not be a sufficient cause to convert kestose in nystose, nor some conformational change
320	in the enzyme structure, which could have affected its activity.

15

322 **4.** Conclusions

323	Packed-bed and fluidized-bed reactors were compared for sucrose hydrolysis and
324	FOS synthesis. It was observed that it is possible to modulate the FOS composition by
325	varying the flow rates in both cases. However, the evaluation of reactor design for
326	enzymatic production of invert sugar and FOS suggested that packed bed reactors are
327	the best choice for the synthesis of those products. Packed bed reactors are not only
328	kinetically favorable but also present a simpler technology and requires smaller
329	volumes. A high operational stability was observed, no column clogging or preferential
330	flows were detected on the packed bed reactor after 40 days of operation for FOS
331	production. The packed bed reactors made in this work presents great potential for
332	industrial production of either fructooligosaccharides or invert sugar from sucrose.
333	
334	Acknowledgments:
335	The authors thank Conselho Nacional de Desenvolvimento Cientifico e
336	Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

337 (FAPERGS), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

338 (CAPES) of the Brazilian government for the financial support of this work.

339

Ś

16

References:

- 341 [1] R.A. Sheldon, S. Van Pelt, Chem. Soc. Rev., 42 (2013) 6223-6235.
- 342 [2] C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues,
- 343 Adv. Synth. Catal., 353 (2011) 2885-2904.
- 344 [3] B. Krajewska, Enzyme Microb. Technol., 35 (2004) 126-139.
- 345 [4] A. Liese, L. Hilterhaus, Chem. Soc. Rev., 42 (2013) 6236-6249.
- 346 [5] M.N.V. Ravi Kumar, React. Funct. Polym. 46 (2000) 1-27.
- 347 [6] T. Yewale, R.S. Singhal, A.A. Vaidya, Biocatal. Agric. Biotechnol., 2 (2013) 96-
- 348 101.
- 349 [7] M.P. Klein, L.P. Fallavena, J.d.N. Schöffer, M.A.Z. Ayub, R.C. Rodrigues, J.L.
- 350 Ninow, P.F. Hertz, Carbohydr. Polym., 95 (2013) 465-470.
- 351 [8] J.d.N. Schöffer, M.P. Klein, R.C. Rodrigues, P.F. Hertz, Carbohydr. Polym., 98
- 352 (2013) 1311-1316.
- 353 [9] G.-x. Zhou, G.-y. Chen, B.-b. Yan, Biotechnol. Lett., 36 (2014) 63-68.
- 354 [10] H. Jakobsen, Fluidized Bed Reactors, in: Chemical Reactor Modeling, Springer
- 355 Berlin Heidelberg, 2008, pp. 867-952.
- 356 [11] S. Hama, S. Tamalampudi, A. Yoshida, N. Tamadani, N. Kuratani, H. Noda, H.
- 357 Fukuda, A. Kondo, Biochem. Eng. J., 55 (2011) 66-71.
- 358 [12] E. van Zessen, J. Tramper, A. Rinzema, H.H. Beeftink, Chem. Eng. J., 115 (2005)
 359 103-111.
- [13] A. Illanes, C. Altamirano, Enzyme Reactors, in: Enzyme Biocatalysis, Springer
 Netherlands, 2008, pp. 205-251.
- 362 [14] F. Gòdia, C. Solà, Biotechnol. Progr., 11 (1995) 479--497.
- 363 [15] T. Danisman, S. Tan, Y. Kacar, A. Ergene, Food Chem., 85 (2004) 461-466.
- 364 [16] A. Milovanović, N. Božić, Z. Vujčić, Food Chem., 104 (2007) 81-86.
- 365 [17] S.M. Kotwal, V. Shankar, Biotechnol. Adv., 27 (2009) 311-322.
- 366 [18] U. Andjelković, S. Pićurić, Z. Vujčić, Food Chem., 120 (2010) 799-804.
- 367 [19] M. Roberfroid, J. Nutr., 137 (2007) 830S-837S.
- 368 [20] M.J. Mabel, P.T. Sangeetha, K. Platel, K. Srinivasan, S.G. Prapulla, Carbohydr.
- 369 Res., 343 (2008) 56-66.
- 370 [21] S.G. Valerio, J.S. Alves, M.P. Klein, R.C. Rodrigues, P.F. Hertz, Carbohydr.
- 371 Polym., 92 (2013) 462-468.
- 372 [22] A.S.G. Lorenzoni, L.F. Aydos, M.P. Klein, R.C. Rodrigues, P.F. Hertz, Carbohydr.
- 373 Polym., 103 (2014) 193-197.
- 374 [23] M.P. Klein, M.R. Nunes, R.C. Rodrigues, E.V. Benvenutti, T.M.H. Costa, P.F.
- 375 Hertz, J.L. Ninow, Biomacromolecules, 13 (2012) 2456-2464.
- 376 [24] R.J. Vega-Paulino, M.E. Zúniga-Hansen, J. Mol. Catal. B: Enzym., 76 (2012) 44 51.
- 378 [25] S. Farine, C. Versluis, P.J. Bonnici, A. Heck, C. L'Homme, A. Puigserver, A.
- 379 Biagini, Appl. Microbiol. Biotechnol., 55 (2001) 55-60.
- 380 [26] P. Monsan, J. Mol. Catal., 3 (1978) 371-384.
- 381 [27] O. Barbosa, C. Ortiz, A. Berenguer-Murcia, R. Torres, R.C. Rodrigues, R.
- 382 Fernandez-Lafuente, R. Soc. Chem. Adv., 4 (2014) 1583-1600.
- 383 [28] M.A. Sainz-Polo, M. Ramirez-Escudero, A. Lafraya, B. Gonzalez, J. Marin-
- 384 Navarro, J. Polaina, J. Sanz-Aparicio, J. Biol. Chem., 288 (2013) 9755-9766.
- 385 [29] I. Ghazi, L. Fernandez-Arrojo, H. Garcia-Arellano, M. Ferrer, A. Ballesteros, F.J.
- 386 Plou, J. Biotechnol., 128 (2007) 204-211.
- 387 [30] R. Vega, M.E. Zuniga-Hansen, Biochem. Eng. J., 82 (2014) 158-165.

- 388 [31] N. Suzuki, Y. Aiba, H. Takeda, Y. Fukumori, Y. Koga, Biosci. Microflora, 25
- 389 (2006) 109-116.
- 390 [32] M.L. Stewart, D.A. Timm, J.L. Slavin, Nutr. Res., 28 (2008) 329-334.
- 391 [33] L. Michaelis, M.L. Menten, Biochem. Z., 49 (1913) 333-369.
- 392 393

18

Figure Legends:

- 394 Figure 1 Schematics of reactors configurations.
- Figure 2 Yields of invert sugar production on packed bed (\blacksquare) and fluidized bed (\Box) at
- 396 pH 4.5, 50 °C and 150 g/L of sucrose.
- 397 Figure 3 Yields of FOS production on packed bed (\blacksquare) and fluidized bed (\Box) at pH 5.5,
- 398 50 °C and 600 g/L of sucrose.
- 399 Figure 4 Yields of FOS production (\blacksquare), nystose (\Box), and kestose (Δ) concentrations in
- 400 the packed bed reactor operated continuously for 40 days at 50 °C, pH 5.5 and 600 g/L
- 401 of sucrose.

Table 1: Results of FOS synthesis in continuous reactors

	Flow Rate (mL/min)	Nystose concentration (mM)	Kestose Concentration (mM)	Total FOS (mM)	Fructosyl Units Transferred (mM)	
	0.05	359 ± 4	201 ± 2	560 ± 6	920 ± 10	
	0.08	327 ± 3	264 ± 2	592 ± 5	919 ± 7	
Fixed	0.11	291 ± 1	310 ± 1	601 ± 3	892 ± 4	
bed	0.17	243 ± 6	355 ± 3	598 ± 9	841 ± 15	
Ueu	0.23	199 ± 1	382 ± 1	581 ± 1	780 ± 2	
	0.29	174 ± 10	393 ± 2	568 ± 12	742 ± 21	
	0.44	118 ± 1	374 ± 1	492 ± 2	610 ± 3	
	0.05	304 ± 1	242 ± 0	547 ± 1	851 ± 2	
	0.08	278 ± 0	272 ± 0	550 ± 0	828 ± 0	
Fluidingd	0.11	248 ± 1	296 ± 0	544 ± 1	793 ± 2	
Fluidized	0.17	209 ± 0	321 ± 1	531 ± 1	740 ± 1	
Deu	0.23	175 ± 1	331 ± 1	505 ± 1	680 ± 2	
	0.29	151 ± 2	324 ± 1	475 ± 3	626 ± 5	
	0.44	121 ± 1	316 ± 1	438 ± 2	559 ± 2	

