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Graphic Abstract 

 

Abstract: The merger of photoredox-initiated enamine-imine tautomerization and nucleophilic 

addition processes to access -substituted pyrroles from pyrrolidines has been achieved. The 

significant advantage of this method is suppressing the Friedel-Crafts reaction, which usually 

occurs between N-aryl pyrrolidines and the highly electrophilic ketoesters. The good functional 

group tolerance, high atom-economy and high regioselectivity as well as easy handling conditions 

make it appealing alternative to synthesize -substituted pyrroles. 

INTRODUCTION 

The pyrrole ring represents not only an essential motif of natural products and biologically 

important molecules,1 but also one kind of significant precursors for synthesis of pharmaceutical 

molecules and functional materials.2 Meanwhile, the introduction of trifluoromethyl group into 

pharmaceutical molecules would significantly improve their bio-receptor selectivity.3 As a 

consequence, the synthesis of pyrrole derivatives containing trifluoromethyl group would open an 
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access to the new drug discovery.  

The electrophilic substitution reaction provides the classic method towards various pyrrole 

derivatives.4 However, due to the intrinsic α-reactivity of the five-membered heterocycles, the 

electrophilic CH functionalization of pyrroles preferentially occurs at α-position, leading to 

α-substituted pyrroles (Scheme 1a).5 On account of this, the development of novel strategies to 

access -substituted pyrroles, which usually display special biological activities,6 has received 

significant attention.7 

In recent years, visible-light promoted transformations has attracted special interest from 

chemists.8 Among them, visible-light photoredox catalysis has emerged as a powerful tool for 

functionalization of cyclic amines with high efficiency.9 Nevertheless, much attention has been 

focused on the α-functionalization of cyclic amines via Mannich-type reaction of iminium, using 

various nucleophiles as coupling partners (Scheme 1b).10 In sharp contrast, only one example was 

reported to construct -substituted pyrroles via photoredox -functionalization of cyclic amines 

(Scheme 1b).11 Mechanistically, the single electron oxidation rendered the in situ generation of 

enamine intermediate, which was engaged in the subsequent radical addition and dehydrogenative 

aromatization to furnish -substituted sulfonyl pyrroles. However, up to till now, there is no work 

merging the photoredox catalysis with enamine-involved ionic reaction to synthesize -substituted 

pyrroles. Theoretically, the -position of enamine could serve as a competent nucleophilic site in 

ionic reaction.12 Inspired by our recent success on the redox-neutral CH functionalization of 

cyclic amines,13 now we report the visible-light-promoted -CH functionalization and 

aromatization of pyrrolidines with fluorinated ketoesters. This protocol provides a rapid access to 

a variety of -substituted pyrroles with trifluoromethyl group from readily available pyrrolidine 

precursors (Scheme 1b). 

 

Scheme 1. Approaches towards Substituted Pyrrole Derivatives. 
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RESULTS AND DISCUSSION 

We first explored this protocol using the challenging N-aryl pyrrolidine 1a as the starting 

material, which might undergo Friedel-Crafts reactions with electrophiles.14 Ethyl 

trifluoropyruvate 2a was employed as an alkylating reagent and a range of photocatalysts (PC) 

were evaluated at ambient temperature (see the Supporting Information). To our delight, with 

Ir(ppy)2(dtbbpy)PF6 as a photocatalyst (PC) and DMSO as a solvent, the desired product 3a was 

produced in 53% yield without any Friedel-Crafts product 3a detected (Table 1, entry 1). In sharp 

contrast, only Friedel-Crafts product 3a was observed in 66% yield in the absence of 

photocatalyst, indicating the essential of photoredox initiation in this transformation (Table 1, 

entry 2). Unfortunately, the other solvents didn’t lead to a superior result and CH3CN afforded 3a 

as the major product (Table 1, entries 3-7). In order to improve the yield, various bases were 

introduced as additives to facilitate the enamine-imine tautomerization15 (Table 1, entries 8-12). To 

our delight, when NaH2PO4 was added as an additive, the desired product was furnished in 72% 

yield (Table 1, entry 10). And the yield could be improved to 78% after screening the dosages of 

the base and 2a (Table 1, entries 13-16). Unfortunately, the next decreasing or increasing the 

amount of 2a did not improve the yield (Table 1, entries 15-16). Consequently, the optimal 

reaction condition was indicated as entry 14. 

Table 1. Optimization of the Reaction Conditionsa 
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entry base solvent 
yield of 3a 

(%)b 

yield of 3a 

(%)b 

1 - DMSO 53 trace 

2c - DMSO trace 66 

3 - DMF 48 trace 

4 - 1,4-dioxane 44 trace 

5 - THF 38 trace 

6 - DME 27 trace 

7 - CH3CN <10 37 

8 KH
2
PO

4
 DMSO 59 12 

9 K
2
HPO

4
 DMSO 31 21 

10 NaH
2
PO

4
 DMSO 72 <10 

11 Na
2
HPO

4
 DMSO 63 <10 

12 NaHCO
3
 DMSO 38 19 

13d NaH
2
PO

4
 DMSO 75 <10 

14e NaH
2
PO

4
 DMSO 78 12 

 15e, f NaH
2
PO

4
  DMSO 58 12 

 16e, g NaH
2
PO

4
 DMSO 78  12 

aReaction conditions: a solution of 1a (0.1 mmol), 2a (0.25 mmol), base (0.1 mmol) and Ir(ppy)2(dtbbpy)PF6 

(0.001 mmol) was irradiated by blue LED strips in the solvent (1.0 mL)  for 24 h under an air atmosphere. bThe 

yield was determined by crude 1H NMR using dibromomethane as the internal standard. cWithout 

Ir(ppy)2(dtbbpy)PF6. d1.5 equiv (0.15 mmol) NaH2PO4. e2.0 equiv (0.20 mmol) NaH2PO4. f2.0 equiv (0.20 mmol) 

2a. g3.5 equiv (0.35 mmol) 2a. 

With the optimized reaction conditions in hand, the synthetic potential with respect to the N-aryl 

pyrrolidines was firstly evaluated (Table 2). Gratifyingly, either electron-donating or -withdrawing 

substituents on the aryl ring were fully tolerable in this transformation, furnishing the desired 

products in good yields. For instance, the alkyl (3b, 3c), phenyl (3d), halides (3e-g), 

trifluoromethyl (3h), cyano (3i) and acetyl (3j) substituted substrates were all good reaction 

partners to afford the corresponding products in 52-78% yields. Besides, the success of bulky 

2,4,6-trimethylphenyl group (3k) indicated that the steric hindrance of the substituent did not 

influence the productivity. Remarkably, this reaction exhibited excellent functional group 

tolerance and a variety of functional groups survived, such as cyano (3i), acetyl (3j), formyl (3m) 
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and double bond (3n) moieties, yielding the products in good yields. Particularly, both the acetyl 

(3j) and formyl (3m) groups containing electrophilic sites were tolerable in this nucleophilic 

addition process. These appealing results demonstrate the great practicability of this new protocol 

and hold great potential for further application. Changing the chlorine from 4-position (3e) to 

3-position (3l) showed positive influence on the reaction productivity, leading to product 3l in 84% 

yield. Notably, when 2-methylpyrrolidine was subjected to the reaction, 2,4-disubstituted pyrrole 

3p could also be obtained in 82% yield. A lower yield (64%) of 3a was obtained under the 

catalysis of 2 mol % Ir-catalyst in 1.0 mmol scale. 

Table 2. Substrate Scope for the Synthesis of 3 a 

 

aReaction conditions: a solution of 1 (0.2 mmol), 2a (0.5 mmol), NaH2PO4 (0.4 mmol) and Ir(ppy)2(dtbbpy)PF6 

(0.002 mmol) in DMSO (2.0 mL) was irradiated by blue LED strips under an air atmosphere. The yields are 

isolated yields after purification. bThe reaction was performed on a 1.0 mmol scale. cThe amount of 2a was 3.5 

equiv (0.7 mmol). 

To further explore the substrate scope, diethyl 2-oxomalonate 2b was also tested under the 

standard reaction conditions (Table 3). Generally, an array of N-aryl pyrrolidines could engage in 

this cascade -functionalization/aromatization with 2b as an alkylating agent. As expected, either 

electron-donating or -withdrawing substituents, such as alkyl (4b), phenyl (4c), methoxy (4d), 

halides (4e, 4f), trifluoromethyl (4g) groups on para-position of the N-phenyl moiety, could 

tolerate in this reaction with good efficiencies (45-84% yield). The sterically hindered pyrrolidine 
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with two methyl groups at the ortho-position delivered the corresponding product 4i in 66% yield. 

Same as the above observations, substrate modified with ketone (4h), double bond (4k), ester (4l) 

fragment still exhibited appealing efficiency in this transformation. Identically, 

2-methylpyrrolidine afforded the pyrrole 4m in 80% yield. Interestingly, for reactions with diethyl 

2-oxomalonate 2b, alcohol 5 was observed as a by-product, implying that the reduction of 

ketoester occurred in this reaction. As a comparison, the failure of detecting alcohol of ethyl 

trifluoropyruvate 2a might be ascribed to the lower boiling point of ethyl 

3,3,3-trifluoro-2-hydroxypropanoate.16 

Table 3. Substrate Scope for the Synthesis of 4 a 

 

aReaction conditions: a solution of 1 (0.2 mmol), 2b (0.7 mmol), NaH2PO4 (0.4 mmol) and Ir(ppy)2(dtbbpy)PF6 

(0.002 mmol) in the DMSO (2.0 mL) was irradiated by blue LED strips under an air atmosphere. The yields are 

isolated yields after purification. 

To get a deep insight into this transformation, the mechanistic study was conducted using 

diethyl 2-oxomalonate 2b as a reaction partner (Scheme 2a). When TEMPO was added to the 

reaction system, this reaction failed to produce the desired product, pointing toward a radical 

mechanism. In addition, the control experiments indicated that the iridium (III) complex 

photocatalyst was essential for the initiation of this radical reaction (Table 1, entry 2). Therefore, 

our previously reported hydride transfer pathway was excluded in this transformation.13b The 

detection of by-product 5 suggested that ketoester 2b served as an oxidant in the dehydrogenation 

of pyrrolidine,17 which also gave an explanation on the necessity of excess amount (2.5 - 3.5 eq) 
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of ketoesters. This assumption was further supported by the production of 4a in 88% yield under 

N2 atmosphere. However, this reaction could be quenched under a pure oxygen atmosphere. 

Besides, treatment of 1-phenylpyrrolidine with 2a under the standard conditions failed to give the 

Friedel-Crafts product (Scheme 2b). Therefore, the direct Friedel-Crafts alkylation of pyrrole was 

excluded in the mechanism. 

Based on the above control experiments and our precedent work,13a a plausible mechanism is 

proposed as shown in Scheme 2c. Visible-light excitation of the Ir(III) leads to an excited-state 

species Ir(III)*, which oxidizes the redox-active amine I via single-electron transfer. The resultant 

Ir(II) complex would subsequently reduce the ketoester to an anion radical intermediate III,18 

which would trap a hydrogen atom from amine cation radical II to produce an iminium 

intermediate V. Followed by the enamine-imine tautomerization/nucleophilic 

addition/enamine-imine tautomerization sequence, the -substituted -unsaturated amine VIII 

was furnished. Eventually, the atmospheric oxidation delivers the -substituted pyrroles, which 

was supported by the mechanistic study (see the Supporting Information). Alternatively, the 

aromatization could also be achieved by the photoredox dehydrogenation. 

Scheme 2. Mechanistic Study 
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CONCLUSION 

In conclusion, we have developed an efficient method for the synthesis of -substituted pyrroles 

from pyrrolidines in one step through single electron oxidation/hydrogen atom 

transfer/enamine-imine tautomerization/nucleophilic addition sequence. This work merges 

photoredox catalysis-initated enamine-imine tautomerization and nucleophilic addition, and it 

does not require strong oxidants and high temperature. Remarkably, the Friedel-Crafts reaction is 

suppressed, which usually occurs between N-aryl pyrrolidines and highly electrophilic ketoesters. 

Moreover, the good functional group tolerance, high regioselectivity and atom-economy as well as 

easy handling conditions make it a more appealing alternative to construct -substituted pyrroles. 

The resultant -substituted pyrroles containing trifluoromethyl group will find wide application in 

medicinal chemistry community.  

EXPERIMENTAL SECTION 

All commercially available reagents, unless otherwise indicated, were used without further 

purification. All solvents were purified and dried according to standard methods prior to use. 

Molecular sieves were activated at 550 °C for 6 h before use. Reactions were monitored by thin 

layer chromatography (TLC) with 0.2 mm silica gel-coated HSGF 254 plates, visualized by UV 

light at 254 or 365 nm. Products were isolated and purified by column chromatography on 

200-300 mesh silica gel. 1H, 13C and 19F NMR spectra were recorded on a Bruker AMX 500 (500 

MHz for 1H, 126 MHz for 13C and 471 MHz for 19F NMR) spectrometer at room temperature. The 

chemical shifts (δ) were reported in ppm with respect to an internal standard, tetramethylsilane (0 

ppm), and the solvent (CDCl3, 1H: δ = 7.26 ppm, 13C: δ = 77.16 ppm). Coupling constants (J) are 

given in Hertz. Splitting patterns of apparent multiplets associated with an averaged coupling 

constants were designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd 

(doublet of doublets) and br (broadened). All 13C spectra were recorded with broadband proton 

decoupling. HRMS were performed on a Waters XEVO QTOF mass spectrometer. Starting 
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material pyrrolidines 1 were synthesized according to the literature.12b 

General Procedure: Synthesis of -Substituted Pyrroles. 

A 20-mL reaction tube was equipped with a rubber stopper and magnetic stir bar and was 

charged with 1 (0.2 mmol), NaH2PO4 (0.4 mmol), and Ir(ppy)2(dtbbpy)PF6 (0.002 mmol). DMSO 

(2.0 mL) and ketoesters 2 were then added with syringe. The mixture was then irradiated by blue 

LED strips under an air atmosphere. After the reaction was completed (as judged by TLC 

analysis), the mixture was poured into a separatory funnel containing 20 mL of saturated NaCl and 

20 mL of EtOAc. The organic layers were dried over Na2SO4 and concentrated under reduced 

pressure after filtration. The crude product was purified by flash chromatography on silica gel to 

afford the desired product. 

Scale-up Experiment. 

An 50-mL sealed tube equipped with and magnetic stir bar was charged with 1a (1 mmol), 

NaH2PO4 (2.0 mmol), and Ir(ppy)2(dtbbpy)PF6 (0.02 mmol). DMSO (10.0 mL) and ketoester 2a 

(2.5 mmol) were then added with syringe. The mixture was then irradiated by blue LED strips 

under an air atmosphere. After the reaction was completed (as judged by TLC analysis), the 

mixture was poured into a separatory funnel containing 50 mL of saturated NaCl and 50 mL of 

EtOAc. The organic layers were dried over Na2SO4 and concentrated under reduced pressure after 

filtration. The residue was directly purified by flash column chromatography on silica gel (eluent: 

ethyl acetate/petroleum ether = 1:30) to afford 3a with 64% yield (198.9 mg). 

ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-phenyl-1H-pyrrol-3-yl)propanoate (3a): yellow oil, 48.7 mg, 

78% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 MHz, CDCl3) δ 7.36 

(dd, J = 8.5, 7.2 Hz, 2H), 7.32 – 7.29 (m, 2H), 7.24 (t, J = 2.1 Hz, 1H), 7.22 – 7.19 (m, 1H), 6.97 
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(t, J = 2.7 Hz, 1H), 6.45 (dt, J = 2.1, 1.0 Hz, 1H), 4.41 – 4.28 (m, 3H), 4.19 (s, 1H), 1.32 (t, J = 7.2 

Hz, 4H). 19F NMR (376 MHz, CDCl3) δ -78.05. 13C{1H} NMR (126 MHz, CDCl3) δ 169.4, 140.2, 

129.6, 126.2, 123.1 (q, J = 285.6 Hz), 120.7, 119.9, 119.0, 118.7, 109.7, 75.8 (q, J = 31.7 Hz), 

64.0, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C15H15F3NO3: 314.0999; found: 314.0997. 

ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-(4-isopropylphenyl)-1H-pyrrol-3-yl)propanoate (3b): yellow 

oil, 54.6 mg, 77% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 MHz, 

CDCl3) δ 7.30-7.25 (m, 1H), 7.00 (t, J = 2.7 Hz, 1H), 6.50 (t, J = 2.2 Hz, 1H), 4.49 – 4.33 (m, 2H), 

4.27 (s, 1H), 2.97-2.89 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H), 1.26 (d, J = 7.0 Hz, 6H). 19F NMR (471 

MHz, CDCl3) δ -78.03. 13C{1H} NMR (126 MHz, CDCl3) δ 169.5, 147.0, 138.2, 127.5, 124.3 (q, 

J = 285.5 Hz), 120.8, 119.9, 119.1, 118.3, 109.3, 75.8 (q, J = 31.3 Hz), 64.0, 33.6, 24.0, 13.9. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C18H21F3NO3: 356.1468; found: 356.1467. 

ethyl 2-(1-(4-(tert-butyl)phenyl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3c): 

yellow oil, 57.5 mg, 78%, purification on silica gel (EtOAc : hexane = 1:30). 1H NMR (500 MHz, 

CDCl3) δ 7.35 (d, J = 8.6 Hz, 2H), 7.25 – 7.18 (m, 3H), 6.92 (t, J = 2.7 Hz, 1H), 6.42 (t, J = 2.1 

Hz, 1H), 4.42 – 4.26 (m, 2H), 4.19 (s, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.26 (s, 9H). 19F NMR (471 

MHz, CDCl3) δ -78.01. 13C{1H} NMR (126 MHz, CDCl3) δ 169.5, 149.4, 137.8, 126.5, 123.2 (q, 

J = 285.5 Hz), 120.4, 119.9, 119.1, 118.4, 109.4, 75.8 (q, J = 31.2 Hz), 64.0, 34.5, 31.4, 14.0. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C19H23F3NO3: 370.1625; found: 370.1624.  

ethyl 2-(1-([1,1'-biphenyl]-4-yl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3d): 

yellow oil, 45.2 mg, 58% yield， purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 

MHz, CDCl3) δ 7.65 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 7.4 Hz, 2H), 7.49 – 7.42 (m, 4H), 7.40 – 

7.32 (m, 2H), 7.08 (t, J = 2.8 Hz, 1H), 6.55 (t, J = 2.2 Hz, 1H), 4.49 – 4.36 (m, 2H), 4.28 (s, 1H), 
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1.40 (t, J = 7.1 Hz, 3H). 19F NMR (471 MHz, CDCl3) δ -78.03. 13C{1H} NMR (126 MHz, CDCl3) 

δ 169.4, 140.0, 139.4, 139.2, 128.9, 128.3, 127.5, 126.7, 123.2 (q, J = 285.5 Hz), 120.9, 119.8, 

119.0, 118.8, 109.8, 75.8 (q, J = 31.1 Hz), 64.1, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for 

C21H19F3NO3: 390.1312; found: 390.1310. 

ethyl 2-(1-(4-chlorophenyl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3e): yellow 

oil, 41.3 mg, 60% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 MHz, 

CDCl3) δ 7.40 (d, J = 8.7 Hz, 2H), 7.31 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 3.3 Hz, 1H), 6.99 (t, J = 

2.8 Hz, 1H), 6.53 (t, J = 2.2 Hz, 1H), 4.53 – 4.33 (m, 2H), 4.27 (s, 1H), 1.38 (t, J = 7.1 Hz, 3H). 

19F NMR (471 MHz, CDCl3) δ -78.09. 13C{1H} NMR (126 MHz, CDCl3) δ 169.3, 138.8, 131.8, 

129.7, 123.1 (q, J = 285.3 Hz), 121.8, 119.8, 119.1, 119.0, 110.1, 75.7 (q, J = 31.4 Hz), 64.1, 14.0. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C15H14ClF3NO3: 348.0609; found: 348.0610. 

ethyl 2-(1-(4-bromophenyl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3f): yellow oil, 

47.3 mg, 60% yield, purification on silica gel (EtOAc : hexane = 1:25). 1H NMR (500 MHz, 

CDCl3) δ 7.54 (d, J = 8.8 Hz, 2H), 7.28-7.25 (m, 3H), 6.99 (t, J = 2.7 Hz, 1H), 6.53 (t, J = 2.2 Hz, 

1H), 4.53 – 4.33 (m, 2H), 4.29 (s, 1H), 1.38 (t, J = 7.1 Hz, 3H). 19F NMR (471 MHz, CDCl3) δ 

-78.07. 13C{1H} NMR (126 MHz, CDCl3) δ 169.3, 139.2, 132.7, 123.1 (q, J = 285.3 Hz), 122.1, 

119.8, 119.4, 119.2, 118.9, 110.1, 75.7 (q, J = 31.2 Hz), 64.2, 14.0. HRMS (ESI-TOF) m/z: 

[M+H]+ Calcd. for C15H14BrF3NO3: 392.0104; found: 392.0109. 

ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-(4-iodophenyl)-1H-pyrrol-3-yl)propanoate (3g): yellow oil, 

53.2 mg, 61% yield, purification on silica gel (EtOAc : hexane = 1:30). 1H NMR (500 MHz, 

CDCl3) δ 7.73 (d, J = 8.7 Hz, 2H), 7.27 (t, J = 2.1 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 6.99 (t, J = 

2.7 Hz, 1H), 6.53 (t, J = 2.2 Hz, 1H), 4.50 – 4.33 (m, 2H), 4.29 (s, 1H), 1.38 (t, J = 7.1 Hz, 3H). 
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19F NMR (471 MHz, CDCl3) δ -78.05. 13C{1H} NMR (126 MHz, CDCl3) δ 169.3, 139.9, 138.6, 

123.1 (q, J = 285.3 Hz), 122.3, 119.7, 119.2, 118.8, 110.2, 90.2, 75.7 (q, J = 31.3 Hz), 64.2, 14.0. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C15H14F3INO3: 439.9965; found: 439.9967.  

ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-(4-(trifluoromethyl)phenyl)-1H-pyrrol-3-yl)propanoate (3h): 

yellow oil, 42.8 mg, 56% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 

MHz, CDCl3) δ 7.69 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.36 (t, J = 2.1 Hz, 1H), 7.09 (t, 

J = 2.8 Hz, 1H), 6.58 (t, J = 2.2 Hz, 1H), 4.48 – 4.37 (m, 2H), 4.32 (d, J = 6.6 Hz, 1H), 1.39 (t, J = 

7.1 Hz, 3H). 19F NMR (471 MHz, CDCl3) δ -62.32, -78.07. 13C{1H} NMR (126 MHz, CDCl3) δ 

169.2, 142.7, 128.2 (q, J = 33.0 Hz), 127.0 (q, J = 3.7 Hz), 123.9 (q, J = 277.2 Hz), 123.1 (q, J = 

285.3 Hz), 120.3, 119.8, 119.7, 118.9, 110.7, 75.7 (q, J = 31.3 Hz), 64.2, 14.0. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd. for C16H14F6NO3: 382.0872; found: 382.0876. 

ethyl 2-(1-(4-cyanophenyl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3i): yellow oil, 

41.7 mg, 62% yield, purification on silica gel (EtOAc : hexane = 1:15). 1H NMR (500 MHz, 

CDCl3) δ 7.73 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.38 (s, 1H), 7.10 (t, J = 2.8 Hz, 1H), 

6.59 (s, 1H), 4.50 – 4.36 (m, 2H), 4.32 (s, 1H), 1.39 (t, J = 7.2 Hz, 3H). 19F NMR (471 MHz, 

CDCl3) δ -78.10. 13C{1H} NMR (126 MHz, CDCl3) δ 169.0, 143.1, 133.9, 123.0 (q, J = 285.6 Hz), 

120.4, 120.3, 119.5, 118.7, 118.3, 111.3, 109.5, 75.6 (q, J = 31.4 Hz), 64.3, 14.0. HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd. for C16H14F3N2O3: 339.0951; found: 339.0954. 

ethyl 2-(1-(4-acetylphenyl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3j): yellow oil, 

36.7 mg, 52% yield, purification on silica gel (EtOAc : hexane = 1:10). 1H NMR (500 MHz, 

CDCl3) δ 8.04 (d, J = 8.7 Hz, 1H), 7.46 (d, J = 8.7 Hz, 1H), 7.40 (s, 1H), 7.13 (s, 1H), 6.59 (s, 1H), 

4.51 – 4.36 (m, 2H), 4.33 (s, 1H), 2.62 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). 19F NMR (471 MHz, 
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CDCl3) δ -78.07. 13C{1H} NMR (126 MHz, CDCl3) δ 196.7, 169.2, 143.5, 134.6, 130.2, 123.1 (q, 

J = 285.7 Hz), 119.9, 119.6, 118.8, 110.8, 75.7 (q, J = 31.1 Hz), 64.2, 26.6, 14.0. HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd. for C17H17F3NO4: 356.1104; found: 356.1109. 

ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-mesityl-1H-pyrrol-3-yl)propanoate (3k): yellow oil, 48.9 mg, 

68% yield, purification on silica gel (EtOAc : hexane = 1:30). 1H NMR (500 MHz, CDCl3) δ 6.93 

(s, 2H), 6.81 (t, J = 2.0 Hz, 1H), 6.54 (t, J = 2.6 Hz, 1H), 6.48 (t, J = 2.2 Hz, 1H), 4.48 – 4.35 (m, 

2H), 4.22 (s, 1H), 2.32 (s, 3H), 1.97 (d, J = 3.7 Hz, 6H), 1.35 (t, J = 7.1 Hz, 3H). 19F NMR (471 

MHz, CDCl3) δ -78.29. 13C{1H} NMR (126 MHz, CDCl3) δ 169.7, 138.1, 136.9, 135.7, 135.7, 

128.7, 123.3 (q, J = 285.6 Hz), 122.0, 121.2, 116.9, 107.9, 75.9 (q, J = 31.1 Hz), 63.8, 21.0, 17.2, 

17.2, 13.9. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C18H21F3NO3: 356.1468; found: 356.1465. 

ethyl 2-(1-(3-chlorophenyl)-1H-pyrrol-3-yl)-3,3,3-trifluoro-2-hydroxypropanoate (3l): yellow oil, 

58.0 mg, 84% yield, purification on silica gel (EtOAc : hexane = 1:15). 1H NMR (500 MHz, 

CDCl3) δ 7.41 – 7.37 (m, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.30 – 7.24 (m, 3H), 7.02 (t, J = 2.8 Hz, 

1H), 6.54 (t, J = 2.2 Hz, 1H), 4.48 – 4.36 (m, 2H), 4.29 (s, 1H), 1.39 (t, J = 7.1 Hz, 3H). 19F NMR 

(471 MHz, CDCl3) δ -78.08. 13C{1H} NMR (126 MHz, CDCl3) δ 169.3, 141.2, 135.3, 130.7, 

126.3, 123.1 (d, J = 285.5 Hz), 120.8, 119.8, 119.3, 118.9, 118.6, 110.2, 75.7 (q, J = 31.5 Hz), 

64.2, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C15H14ClF3NO3: 348.0609; found: 

348.0613. 

ethyl 3,3,3-trifluoro-2-(1-(2-formylphenyl)-1H-pyrrol-3-yl)-2-hydroxypropanoate (3m): yellow 

oil, 64.8 mg, 80% yield, purification on silica gel (EtOAc : hexane = 1:25). 1H NMR (500 MHz, 

CDCl3) δ 9.80 (d, J = 0.8 Hz, 1H), 8.01 (dd, J = 7.8, 1.6 Hz, 1H), 7.71 – 7.66 (m, 1H), 7.55 – 7.49 

(m, 1H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.17 (t, J = 2.0 Hz, 1H), 6.89 (t, J = 2.7 Hz, 1H), 6.59 (t, J 
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= 2.2 Hz, 1H), 4.53 – 4.34 (m, 2H), 4.29 (s, 1H), 1.39 (t, J = 7.1 Hz, 3H). 19F NMR (471 MHz, 

CDCl3) δ -78.19. 13C{1H} NMR (126 MHz, CDCl3) δ 189.5, 169.3, 143.2, 134.8, 130.8, 128.4, 

128.2, 126.6, 124.1, 123.1 (q, J = 285.3 Hz), 123.1, 119.1, 109.9, 75.6 (q, J = 31.3 Hz), 64.2, 14.0. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C16H15F3NO4: 342.0948; found: 342.0949. 

ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-(2-vinylphenyl)-1H-pyrrol-3-yl)propanoate (3n): yellow oil, 

41.4 mg, 61% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 MHz, 

CDCl3) δ 7.64 (dd, J = 7.6, 1.7 Hz, 1H), 7.35 (dtd, J = 17.9, 7.4, 1.6 Hz, 2H), 7.28-7.25 (m, 1H), 

7.03 (t, J = 2.1 Hz, 1H), 6.77 (t, J = 2.6 Hz, 1H), 6.54 – 6.43 (m, 2H), 5.71 (dd, J = 17.5, 1.1 Hz, 

1H), 5.28 (dd, J = 11.0, 1.1 Hz, 1H), 4.50 – 4.34 (m, 2H), 4.23 (s, 1H), 1.38 (t, J = 7.1 Hz, 3H). 

19F NMR (471 MHz, CDCl3) δ -78.11. 13C{1H} NMR (126 MHz, CDCl3) δ 169.5, 138.5, 133.5, 

132.2, 128.4, 127.9, 126.5, 126.4, 123.2 (q, J = 285.3 Hz), 123.1, 122.2, 117.5, 116.5, 108.4, 75.6 

(q, J = 31.3 Hz), 64.0, 13.9. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C17H17F3NO3: 340.1155; 

found: 340.1158. 

ethyl 

2-chloro-4-(3-(3-ethoxy-1,1,1-trifluoro-2-hydroxy-3-oxopropan-2-yl)-1H-pyrrol-1-yl)benzoate 

(3o): yellow oil, 59.0 mg, 80% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR 

(500 MHz, CDCl3) δ 7.90 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 2.3 Hz, 1H), 7.28 (t, J = 2.0 Hz, 1H), 

7.26 (dd, J = 8.5, 2.3 Hz, 1H), 7.01 (t, J = 2.8 Hz, 1H), 6.51 (t, J = 2.3 Hz, 1H), 4.41 – 4.33 (m, 

2H), 4.23 (s, 1H), 3.88 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). 19F NMR (471 MHz, CDCl3) δ -78.10. 

13C{1H} NMR (126 MHz, CDCl3) δ 169.1, 165.2, 143.0, 135.7, 133.3, 126.7, 123.1 (q, J = 285.3 

Hz), 122.2, 120.3, 119.6, 118.7, 117.6, 111.1, 75.6 (q, J = 31.1 Hz), 64.3, 52.5, 14.0. HRMS 

(ESI-TOF) m/z: [M+Na]+ Calcd. for C18H17ClF3NNaO5: 442.0640; found: 442.0634. 
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ethyl 3,3,3-trifluoro-2-hydroxy-2-(5-methyl-1-phenyl-1H-pyrrol-3-yl)propanoate (3p): yellow oil, 

53.8 mg, 82% yield, purification on silica gel (EtOAc : hexane = 1:25). 1H NMR (500 MHz, 

CDCl3) δ 7.46-7.41 (m, 2H), 7.38 – 7.33 (m, 1H), 7.30 – 7.26 (m, 2H), 6.96 (d, J = 2.0 Hz, 1H), 

6.21 (s, 1H), 4.48-4.32 (m, 2H), 4.20 (s, 1H), 2.17 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). 19F NMR (471 

MHz, CDCl3) δ -77.87. 13C{1H} NMR (126 MHz, CDCl3) δ 169.6, 139.8, 129.7, 129.1, 127.3, 

125.8, 123.3 (q, J = 285.4 Hz), 120.8, 116.3, 107.3, 75.8 (q, J = 31.2 Hz), 63.9, 14.0, 12.9. HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd. for C16H17F3NO3: 328.1155; found: 328.1161. 

diethyl 2-hydroxy-2-(1-phenyl-1H-pyrrol-3-yl)malonate (4a): yellow oil, 53.3 mg, 84% yield, 

purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 MHz, CDCl3) δ 7.44 – 7.35 (m, 

5H), 7.31 (t, J = 2.1 Hz, 1H), 7.24 (t, J = 7.2 Hz, 1H), 7.04 (t, J = 2.7 Hz, 1H), 6.49 (t, J = 2.3 Hz, 

1H), 4.39 – 4.26 (m, 5H), 4.18 (s, 1H), 1.32 (t, J = 7.1 Hz, 7H). 13C{1H} NMR (126 MHz, CDCl3) 

δ 170.1, 140.5, 129.5, 125.9, 121.8, 120.5, 119.5, 118.4, 110.0, 90.0, 62.8, 14.0. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd. for C17H20NO5: 318.1336; found: 318.1339. 

diethyl 2-hydroxy-2-(1-(4-isopropylphenyl)-1H-pyrrol-3-yl)malonate (4b): yellow oil, 45.2 mg, 

63% yield, purification on silica gel (EtOAc : hexane = 1:20). 1H NMR (500 MHz, CDCl3) δ 7.29 

(d, J = 8.6 Hz, 2H), 7.28 – 7.23 (m, 3H), 7.00 (t, J = 2.7 Hz, 1H), 6.47 (dd, J = 3.0, 1.7 Hz, 1H), 

4.36 – 4.27 (m, 4H), 4.18 (s, 1H), 2.93 (p, J = 6.9 Hz, 1H), 1.32 (t, J = 7.1 Hz, 6H), 1.26 (d, J = 

7.0 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ 170.2, 146.6, 138.4, 127.4, 121.4, 120.6, 119.5, 

118.5, 109.7, 90.0, 62.8, 33.6, 24.0, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C20H26NO5: 

360.1805; found: 360.1809. 

diethyl 2-(1-([1,1'-biphenyl]-4-yl)-1H-pyrrol-3-yl)-2-hydroxymalonate (4c): yellow oil, 63.2 mg, 

80% yield, purification on silica gel (DCM). 1H NMR (500 MHz, CDCl3) δ 7.65 – 7.61 (m, 2H), 
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7.61 – 7.57 (m, 2H), 7.48 – 7.42 (m, 4H), 7.38 – 7.33 (m, 2H), 7.08 (t, J = 2.7 Hz, 1H), 6.52 (dd, J 

= 3.0, 1.7 Hz, 1H), 4.39 – 4.26 (m, 4H), 4.21 (s, 1H), 1.33 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 

MHz, CDCl3) δ 170.1, 140.1, 139.6, 138.8, 128.9, 128.2, 127.4, 126.9, 121.9, 120.7, 119.4, 118.3, 

110.2, 62.8, 14.1. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C23H24NO5: 394.1649; found: 

394.1653. 

diethyl 2-hydroxy-2-(1-(4-methoxyphenyl)-1H-pyrrol-3-yl)malonate (4d): yellow oil, 37.4 mg, 

55% yield, purification on silica gel (DCM). 1H NMR (500 MHz, CDCl3) δ 7.31 – 7.27 (m, 2H), 

7.21 (dd, J = 2.4, 1.7 Hz, 1H), 6.96 – 6.90 (m, 3H), 6.46 (dd, J = 2.9, 1.7 Hz, 1H), 4.41 – 4.21 (m, 

4H), 4.16 (s, 1H), 3.83 (s, 3H), 1.32 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ 170.2, 

157.8, 134.2, 122.2, 121.2, 119.8, 118.7, 114.6, 109.5, 62.8, 55.6, 14.0. HRMS (ESI-TOF) m/z: 

[M+H]+ Calcd. for C18H22NO6: 348.1442; found: 348.1442. 

diethyl 2-(1-(4-fluorophenyl)-1H-pyrrol-3-yl)-2-hydroxymalonate (4e): yellow oil, 57.0 mg, 84% 

yield, purification on silica gel (EtOAc : hexane = 1:15). 1H NMR (500 MHz, CDCl3) δ 7.36 – 

7.30 (m, 2H), 7.24 (t, J = 2.1 Hz, 1H), 7.10 (t, J = 8.5 Hz, 2H), 6.96 (t, J = 2.7 Hz, 1H), 6.52 – 

6.46 (m, 1H), 4.39 – 4.27 (m, 4H), 4.20 (s, 1H), 1.32 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 170.1, 160.7 (d, J = 245.1 Hz), 136.8 (d, J = 2.9 Hz), 122.3 (d, J = 8.2 Hz), 121.9, 119.7, 

118.6, 116.3 (d, J = 23.0 Hz), 110.1, 62.8, 14.0. HRMS (ESI-TOF) m/z: [M+Na]+ Calcd. for 

C17H18FNNaO5: 358.1061; found: 358.1061. 

diethyl 2-hydroxy-2-(1-(4-iodophenyl)-1H-pyrrol-3-yl)malonate (4f): yellow oil, 40.0 mg, 45% 

yield, purification on silica gel (DCM : hexane = 1:1). 1H NMR (500 MHz, CDCl3) δ 7.71 (d, J = 

8.4 Hz, 2H), 7.27 (t, J = 2.0 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 7.00 (t, J = 2.7 Hz, 1H), 6.50 (s, 

2H), 4.45 – 4.25 (m, 4H), 4.19 (s, 1H), 1.32 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3) 
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δ 170.0, 140.1, 138.5, 122.3, 122.1, 119.2, 118.1, 110.6, 89.7, 62.9, 14.0. HRMS (ESI-TOF) m/z: 

[M+H]+ Calcd. for C17H19INO5: 444.0302; found: 444.0308. 

diethyl 2-hydroxy-2-(1-(4-(trifluoromethyl)phenyl)-1H-pyrrol-3-yl)malonate (4g): yellow oil, 

49.6 mg, 64% yield, purification on silica gel (DCM). 1H NMR (500 MHz, CDCl3) δ 7.68 (d, J = 

8.1 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 2.4 Hz, 1H), 7.09 (t, J = 3.0, 1H), 6.55 (dd, J = 

3.1, 1.7 Hz, 1H), 4.41 – 4.26 (m, 4H), 4.21 (s, 1H), 1.33 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 

MHz, CDCl3) δ 169.9, 142.9, 127.7 (q, J = 32.8 Hz), 126.9 (q, J = 3.9 Hz), 123.9 (q, J = 270.8 Hz), 

122.9, 120.0, 119.3, 118.1, 111.1, 62.9, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for 

C18H19F3NO5: 386.1210; found: 386.1216. 

diethyl 2-(1-(4-acetylphenyl)-1H-pyrrol-3-yl)-2-hydroxymalonate (4h): yellow oil, 36.3 mg, 51% 

yield, purification on silica gel (EtOAc : hexane = 1:5). 1H NMR (500 MHz, CDCl3) δ 8.02 (d, J = 

8.7 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.40 (t, J = 2.4, 1H), 7.12 (t, J = 3.1 Hz, 1H), 6.55 (dd, J = 

3.1, 1.7 Hz, 1H), 4.39 – 4.27 (m, 4H), 4.21 (s, 1H), 2.61 (s, 3H), 1.33 (t, J = 7.1 Hz, 6H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 196.8, 169.9, 143.7, 134.2, 130.2, 123.0, 119.4, 119.2, 118.0, 111.2, 

62.9, 26.6, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C19H22NO6: 360.1442; found: 

360.1447. 

diethyl 2-hydroxy-2-(1-mesityl-1H-pyrrol-3-yl)malonate (4i): yellow oil, 47.8 mg, 66% yield, 

purification on silica gel (DCM). 1H NMR (500 MHz, CDCl3) δ 6.85 (s, 2H), 6.72 (t, J = 2.0 Hz, 

1H), 6.45 (t, J = 2.5 Hz, 1H), 6.37 (dd, J = 2.8, 1.7 Hz, 1H), 4.23 (q, J = 7.1 Hz, 4H), 4.05 (s, 1H), 

2.25 (s, 3H), 1.92 (s, 6H), 1.22 (t, J = 7.1 Hz, 7H). 13C{1H} NMR (126 MHz, CDCl3) δ 170.4, 

137.9, 137.1, 135.8, 128.6, 121.6, 120.8, 120.0, 107.9, 62.5, 21.0, 17.3, 14.0. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd. for C20H26NO5: 360.1805; found: 360.1808. 
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diethyl 2-(1-(3-chlorophenyl)-1H-pyrrol-3-yl)-2-hydroxymalonate (4j): yellow oil, 49.7 mg, 71% 

yield, purification on silica gel (DCM) 1H NMR (500 MHz, CDCl3) δ 7.38 (t, J = 2.1 Hz, 1H), 

7.34 (t, J = 8.0 Hz, 1H), 7.30 (t, J = 2.0 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.24 – 7.19 (m, 1H), 7.02 (t, 

J = 2.8 Hz, 1H), 6.51 (s, 1H), 4.40 – 4.25 (m, 4H), 4.19 (s, 1H), 1.32 (t, J = 7.1 Hz, 6H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 169.9, 141.4, 135.2, 130.6, 125.8, 122.4, 120.6, 119.3, 118.4, 118.2, 

110.6, 62.9, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C17H19ClNO5: 352.0946; found: 

352.0946. 

diethyl 2-hydroxy-2-(1-(2-vinylphenyl)-1H-pyrrol-3-yl)malonate (4k): yellow oil, 44.0 mg, 65% 

yield, purification on silica gel (DCM). 1H NMR (500 MHz, CDCl3) δ 7.63 (dd, J = 7.3, 1.9 Hz, 

1H), 7.37 – 7.29 (m, 2H), 7.29 – 7.27 (m, 1H), 7.03 (t, J = 2.3, 1H), 6.76 (t, J = 2.9, 1H), 6.55 (dd, 

J = 17.5, 11.0 Hz, 1H), 6.46 (dd, J = 2.9, 1.7 Hz, 1H), 5.70 (dd, J = 17.6, 1.2 Hz, 1H), 5.27 (dd, J 

= 11.0, 1.2 Hz, 1H), 4.41 – 4.25 (m, 4H), 4.15 (s, 1H), 1.32 (t, J = 7.1 Hz, 6H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 170.2, 138.8, 133.4, 132.5, 128.3, 127.6, 126.5, 126.4, 122.8, 121.7, 120.6, 

116.2, 108.6, 62.7, 14.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C19H22NO5: 344.1492; found: 

344.1497. 

diethyl 2-(1-(3-chloro-4-(ethoxycarbonyl)phenyl)-1H-pyrrol-3-yl)-2-hydroxymalonate (4l): 

yellow oil, 52.0 mg, 64% yield, purification on silica gel (DCM). 1H NMR (500 MHz, CDCl3) δ 

7.95 (d, J = 8.6 Hz, 1H), 7.48 (d, J = 2.3 Hz, 1H), 7.36 (dd, J = 2.4, 1.7 Hz, 1H), 7.32 (dd, J = 8.6, 

2.3 Hz, 1H), 7.08 (t, J = 3.1, 1H), 6.55 (dd, J = 3.1, 1.7 Hz, 1H), 4.40 – 4.24 (m, 4H), 4.21 (s, 1H), 

3.94 (s, 3H), 1.32 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 MHz, CDCl3) δ 169.8, 165.2, 143.2, 

135.7, 133.2, 126.2, 123.3, 121.9, 119.1, 118.0, 117.4, 111.6, 63.0, 52.5, 14.0. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd. for C20H22ClNNaO7: 446.0977; found: 446.0981. 
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diethyl 2-hydroxy-2-(5-methyl-1-phenyl-1H-pyrrol-3-yl)malonate (4m): yellow oil, 52.8 mg, 80% 

yield, purification on silica gel (DCM). 1H NMR (500 MHz, Chloroform-d) δ 7.44-7.40 (m, 2H), 

7.35 – 7.31 (m, 1H), 7.31 – 7.28 (m, 2H), 6.95 (d, J = 2.0 Hz, 1H), 6.18 (dd, J = 2.0, 1.0 Hz, 1H), 

4.40 – 4.25 (m, 4H), 4.10 (s, 1H), 2.18 (d, J = 1.0 Hz, 3H), 1.37 – 1.25 (m, 6H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 170.2, 140.0, 129.0, 127.0, 125.7, 120.3, 119.4, 107.7, 62.7, 14.1, 13.0. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C18H22NO5: 332.1492; found: 332.1494. 

ethyl 3,3,3-trifluoro-2-hydroxy-2-(4-(pyrrolidin-1-yl)phenyl)propanoate (3a’): 1H NMR (500 

MHz, CDCl3) δ 7.58 (d, J = 8.3 Hz, 2H), 6.59 – 6.52 (m, 2H), 4.46 – 4.32 (m, 2H), 4.19 (d, J = 2.0 

Hz, 1H), 3.28 (q, J = 4.2 Hz, 4H), 2.06 – 1.90 (m, 4H), 1.40 – 1.33 (m, 3H). 13C{1H} NMR (126 

MHz, CDCl3) δ 169.5, 148.4, 123.4 (q, J = 285.5 Hz), 118.9, 111.2, 77.7 (d, J = 30.1 Hz), 64.0, 

47.6, 25.5, 13.9.  

diethyl 2-hydroxymalonate (5):19 1H NMR (500 MHz, CDCl3) δ 4.62 (d, J = 8.3 Hz, 1H), 

4.27-4.19 (m, 4H), 3.33 (d, J = 8.3 Hz, 1H), 1.25 (t, J = 7.1 Hz, 6H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 168.5, 71.5, 62.6, 14.0. 

Supporting Information 

Structural proofs and NMR spectra of products. This material is available free of charge via the 

Internet at http://pubs.acs.org. 
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