
Tetrahedron Letters 52 (2011) 4567–4569
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
Synthesis of three-dimensionally arranged bis-biphenol ligand on
hexaaryl benzene scaffold and its application for cross-pinacol coupling
reaction

Toru Amaya, Akihiro Miyasaka, Toshikazu Hirao ⇑
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan
a r t i c l e i n f o

Article history:
Received 6 May 2011
Revised 21 June 2011
Accepted 28 June 2011
Available online 2 July 2011

Keywords:
Dinuclear catalyst
Bimetallic catalyst
Biphenol ligand
Pinacol coupling
0040-4039/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.tetlet.2011.06.113

⇑ Corresponding author. Tel.: +81 6 6879 7413; fax
E-mail address: hirao@chem.eng.osaka-u.ac.jp (T. H
a b s t r a c t

The three-dimensionally arranged bis-biphenol ligand on a hexaaryl benzene scaffold for a dinuclear
complex was synthesized by the Diels–Alder addition–decarbonylation reaction as a key step. Its preli-
minary studies on the titanium-induced cross-pinacol coupling reaction were performed based on
step-by-step activation of two different aldehydes.
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Dual reactive sites allow to position two substrates appropri-
ately for the reaction, activate them, and induce electrically cooper-
ating effect. Well-organized dinuclear transition metal complexes
are considered to permit such a system, which is also found some-
times in active sites of enzymes to catalyze the reactions.1 So far,
many dinuclear catalysts have been developed and applied to or-
ganic reactions.2 In this context, we envisioned that the controlled
arrangement of two metals on the rigid scaffold can provide spa-
tially regulated reaction sites. Based on this concept, the rigid bis-
biphenol ligand 1 on a hexaphenyl benzene scaffold was designed
(Scheme 1). The utility of our bis-biphenols depends on such con-
formationally regulated structure although there are various re-
ports of ligands possessing two biphenol moieties.2d,3 Here, we
report the synthesis of the bis-biphenol ligand 1 and its preliminary
studies on the ligand controlled cross-pinacol coupling reaction
based on step-by-step activation of two different aldehydes.

Structural optimization of ligand 1a was carried out using MM2
force field. The obtained structure showed the three-dimensionally
controlled arrangement of biphenol ligand moieties (see Supple-
mentary data, Fig. S1).

Our synthetic strategy for ligand 1 is outlined retrosynthetically
in Scheme 1. We envisaged that 1 is constructed via the Diels–Alder
addition–decarbonylation reaction4 of tetraphenylcyclopentadie-
none (2) with the tolan 3 possessing two bis-biphenol moieties. Such
ll rights reserved.

: +81 6 6879 7415.
irao).
tolan 3 would arise from the two biphenol derivatives 4 and acety-
lene spacer through the repetitive Sonogashira coupling reaction.

Scheme 2 shows the synthesis of 1. The iodide 4 and the ethynyl
derivative 55 were coupled by the Sonogashira reaction to give 3a
and 3b in 80% and 52% yields, respectively. The thus-obtained 3a
and 3b were treated with 2 in diphenylether at 250 �C, followed
by deprotection of the methoxy group with BBr3 to give the bis-
biphenol ligand 1a and 1b as a mixture of diastereomers (two steps
63% for 1a and 57% for 1b, Scheme 2). The cis/trans ratios for 1a and
1b are 35:65 and 32:68, respectively, the assignment of which is
described in the next paragraph. Diastereomers were able to be
separated by silica-gel chromatography. The gram scale synthesis
was possible.

The structural assignment was studied by 1D ROESY experi-
ments of the trimethylsilyl derivative 6cis, which was prepared
by the reaction of 3TMS

6 with 2, followed by the separation of the
cis/trans diastereomers by preparative thin-layer chromatography
(Scheme 3). The isomer, in which ROEs were observed between
the trimethylsilyl and methoxy groups, was assigned as a cis-iso-
mer. The trimethylsilyl derivative 6cis was transformed to 1acis by
treatment with BBr3 for the deprotection of the methoxy and tri-
methylsilyl groups. In this way, the structure of 1acis was deter-
mined. Similarly, the cis/trans determination of 1bcis was carried
out by the transformation to 1acis by deiodation.

The desired cis-isomer is a minor product in the Diels–Alder
addition–decarbonylation reaction, which made us investigate
the isomerization equilibrium. The treatment of the demethylated
compound 1atrans in diphenylether at 150 �C for 12 h resulted in
the trans- and cis-isomers in 37:63 (Scheme 4). This finding
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Scheme 1. Synthetic strategy for the ligand 1.
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permits the better conversion to 1acis. On the other hand, this
isomerization did not occur in THF at reflux temperature even after
24 h to indicate the conformational rigidity.
Furthermore, the derivatization is possible by using the iodo-
substituent of 1bcis. For example, the B-alkyl Suzuki–Miyaura
cross-coupling reaction with MeB(OH)2 allowed the introduction
of the methyl group with the formation of 7 (Scheme 5).

Complexation of 1acis with TiCl4 was studied by 1H NMR (see Sup-
plementary data, Fig. S2). The integral ratio for the hydroxyl protons
in the phenoxy group decreased by half by the addition of 1 equiv
TiCl4. On further addition of 1 equiv TiCl4, the peaks disappeared,
suggesting the formation of the corresponding dinuclear complex.

With such a complex in hand, the intermolecular cross-pinacol
coupling reaction was studied using the stoichiometric amount of
1acis (Scheme 6) because the sequential activation of two different
aldehydes and subsequent cross-coupling is envisioned to be al-
lowed due to the fixed bimetallic reactive sites. Although catalytic,
diastereoselective, and/or enantioselective methods have been
developed,7,8 the intermolecular cross-pinacol coupling reaction
is still a challenging issue due to the difficulty in the discrimination
of two aldehydes in the reaction. So far, there are only few exam-
ples for the cross-pinacol-type coupling, which strongly depend on
the combination of substrates.9 First, the ligand (100 mol %) was
mixed with 200 mol % of TiCl4 for complexation in toluene under
argon at room temperature. After 1 h, the solvent was changed to
THF. Then, activated Zn (1000 mol %) was added to the mixture
to generate a reduced Ti complex.10 o-Trifluoromethyl benzalde-
hyde was added to the reaction mixture at room temperature.
One minute later, 2-thienylaldehyde was added to the reaction
mixture at the same temperature. The cross-coupling product 8
was obtained in 56% yield (syn/anti = 51:49)11, where the
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homo-coupling products 9 and 10 were also formed in 36% (dl/
meso = 71:29)12 and 43% (dl/meso = 76:24)13 yields, respectively.
Here, yield was calculated as follows: (mol of product)/(maximal
mol of producible products)�100. On the other hand, the same
reaction using 2,20-biphenol instead of 1acis gave only the homo-
coupling products 9 and 10 in 77% (dl/meso = 48:52) and 71% (dl/
meso = 55:45) yields,14 respectively, without the formation of 8.
Similarly, the same reaction without 1acis led to only the homo-
coupling products 9 and 10 in 69% (dl/meso = 53:47) and 49% (dl/
meso = 71:29) yields,14 respectively. These results indicate a steric
effect of the bis-biphenol ligand 1acis toward the cross-pinacol
reaction.

In summary, the three-dimensionally arranged bis-biphenol li-
gand on the hexaaryl scaffold for the dinuclear complex was syn-
thesized to show the conformational stability. The formation of
M M

R1 R2

Figure 1. Concept of next generation ligands.
the dinuclear titanium complex permitted preliminary investiga-
tion on the cross-pinacol coupling reaction utilizing step-by-step
activation of two different aldehydes by sterically controlled
arrangement of the biphenol ligand moieties. Further increase of
cross-selectivity is expected by the left–right asymmetric ligand
as shown in the concept in Figure 1, which can be synthesized
using the Pd-catalyzed cross-coupling reaction as demonstrated
by the synthesis of 7. Furthermore, such ligands will be applied
to other reactions that need dual activation by metals.
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