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Enantioselective [1,2]-Stevens Rearrangement Using Sugar-Derived Alkoxides 
as Chiral Promoters
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Abstract: The first example of enantioselective base-induced [1,2]-
Stevens rearrangement was achieved by using the newly developed
D-glucose-derived lithium alkoxide as a chiral promoter. This rear-
rangement provides an a-amino ketone having a pseudoquaternary
chiral center in an enantioenriched form.
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reactions, rearrangements

[1,2]-Stevens rearrangement, which involves an 1,2-alkyl
shift from nitrogen to carbon in a quaternary ammonium
ylide system, is one of the most classical anionic rear-
rangements.1,2 This class of rearrangements has been pro-
posed to proceed via a radical dissociation–recombination
mechanism, but not in a concerted fashion (Scheme 1).

Scheme 1

Despite its long history and significant synthetic potential
as a straightforward approach to chiral amines and a-ami-
no ketones, the development of an enantioselective ver-
sion of the [1,2]-Stevens rearrangement is severely
limited, mainly due to its radical mechanism.2–6

We now disclose an efficient enantioselective approach
for the [1,2]-Stevens rearrangement, which has been
achieved by the newly developed D-glucose-derived
alkoxide protocol (Scheme 2).

One of the characteristic features of the Stevens rear-
rangement is that the reaction can be promoted by a mild
base such as aqueous alkali. Therefore, we have envisaged
that a chiral alkoxide would be a suitable chiral promoter
for this rearrangement. Our initial efforts were directed to

the exploration of appropriate chiral alkoxides in the reac-
tion involving the classical Stevens’ substrate 1a (R = H)
as a model (Scheme 3).1,7 The reactions were carried out
in a THF solution of 1a in the presence of excess of easily
available chiral alkoxides at 0 °C to room temperature.8,9

However, all the chiral alkoxides 3–6 derived from (S)-a-
phenethyl alcohol,10 (S)-(–)-1,1¢-bi-2-naphthol [(S)-
BINOL],11 (–)-borneol,12 and (–)-norephedrine-derived a-
amino alcohol13 yielded only a racemic 2a (R = H) in poor
yields (Figure 1).14 At this stage, we suspected the possi-
bility of the racemization of 2a, and changed the substrate
from 1a to 1b (R = Me, racemic), which provided 2b with
a pseudoquaternary chiral center.15,16 Not surprisingly, the
reaction of 1b with excess of 6 in THF at 0 °C afforded 2b
in an optically active form, albeit with low enantiopurity
[20% yield, 13% ee (S)].17

Scheme 3
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After several attempts using 6, no significant improve-
ment was observed, except for a slightly better result ob-
tained by changing the solvent from THF to toluene [43%
yield, 16% ee (S)]. The absolute stereochemistry of the re-
arrangement product 2b was determined as S by compar-
ing the specific rotation of its alcohol derivative 7 with
that of an authentic sample of (S)-7, which was prepared
from L-alanine-derived oxazolidinone via the Seebach
and Mutter procedure, as shown in Scheme 4.18–20

Scheme 4 Reagents and conditions: (a) LHMDS then BnBr, THF–
DMPU; (b) concd HCl; (c) SOCl2, MeOH; (d) MeI, K2CO3, acetone;
(e) PhLi, THF.

As the abovementioned results indicated the possibility of
a suitable chiral promoter yielding high enantioselectivity
in the reaction providing amino ketones with a stereogenic
pseudoquaternary center, we focused our attention on sug-
ar-derived alkoxides for the construction of an appropriate
chiral environment in this reaction due to their availability
and structural diversity.21 Accordingly, we first examined
a similar reaction of 1b using the easily available D-glu-
cose-derived lithium alkoxide 8 as a chiral promoter
(Figure 2).22 As we expected, the reaction afforded 24%
ee of (S)-2b in moderate yield (Table 1, entry 1).23,24 En-
couraged by this promising result, we next examined the
reaction using a variety of D-glucose-derived lithium
alkoxides 9–11 having two identical bulky acetal moieties
at the 1,2- and 5,6-positions.25 Among them, the alkoxide
10 with cyclohexylidene acetals greatly improved the re-
sult in terms of the reactivity and enantioselectivity (entry
3). The steric congestion due to the acetal moiety in the
chiral promoters possibly has an impact on the efficiency
of the reaction.

Next, we carried out further optimization of the alkoxide
structure by fixing the cyclohexylidene acetal moiety at
the 1,2-position. New alkoxides 12b–14b were prepared
from D-glucose in four steps, as shown in Scheme 5.

Among the differently protected D-glucose-derived lithi-
um alkoxides examined, 14b with 1,2-cyclohexylidene
and 5,6-diisopropylmethyl groups gave the best results
(91% yield, 61% ee: entry 7).26 It is noteworthy that the
chiral promoters were easily recoverable from the reac-
tion mixture almost quantitatively (>95%) and reusable.
The exact mechanism of the asymmetric induction in the
rearrangement step is unclear at present; a more detailed
study is required.

In summary, we have described the effectiveness of sug-
ar-derived alkoxides as chiral promoters for the enantiose-
lective [1,2]-Stevens rearrangement. This reaction
provides enantioenriched amines having a pseudoquater-
nary chiral center, which are otherwise difficult to obtain.
Thus, this work opens a new chapter in the classical
Stevens chemistry and demonstrates a novel facet of an
ordinary sugar-derived acetal as an efficient chiral pro-
moter. Further work is in progress to strengthen the syn-
thetic potential of asymmetric Stevens rearrangement as
well as the synthetic utility of sugar-derived alkoxides.
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Table 1 [1,2]-Stevens Rearrangement of 1b using Sugar-Derived 
Lithium Alkoxide 8–14ba

Entry Alkoxide Yield of 2b (%)b ee (%)c

1 8 57 24 (S)

2 9 60 19 (S)

3 10 77 38 (S)

4 11 46 30 (S)

5 12b 49 45 (S)

6 13b 50 4 (R)

7 14b 91 61 (S)

a All the reactions were conducted in toluene solution with alkoxide 
(10 equiv) at 0 °C, followed by warming to r.t.
b Isolated yields.
c Determined by chiral HPLC analysis using a chiral stationary col-
umn (see ref. 14).
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