

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 3889-3892

Synthesis and biological activity of 22-oxa CD-ring modified analogues of 1\alpha,25-dihydroxyvitamin D₃: spiro[5.5]undecane CF-ring analogues

Wim Schepens,^a Dirk Van Haver,^a Maurits Vandewalle,^a Pierre J. De Clercq,^{a,*} Roger Bouillon^b and Annemieke Verstuyf^b

^aDepartment of Organic Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Gent, Belgium ^bLaboratory of Experimental Medicine and Endocrinology, Catholic University of Leuven, Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium

> Received 6 April 2004; accepted 25 May 2004 Available online 17 June 2004

Abstract—The synthesis and biological activity of novel CD-ring modified analogues of 22-oxa- 1α , 25-dihydroxyvitamin D₃, lacking the D-ring and featuring a connection between C-18 and C-21 (spiro[5.5]undecane CF-ring analogues), is described. The central ring system is conveniently synthesised from an achiral intermediate. The analogues have marginal binding affinity for the nVDR and possess low to moderate genomic activity.

© 2004 Elsevier Ltd. All rights reserved.

Over the last decade there has been a continuous interest in the development of analogues of 1α , 25(OH)₂D₃ (2; calcitriol), the hormonally active metabolite of vitamin D_3 (1; cholecalciferol), with the purpose of separating calcemic and prodifferentiating and/or antiproliferative activities.¹ In this context we wish to report here on the synthesis and biological activity of spirocyclic analogues such as 3 and 4. Among the various structural modifications that have been introduced in the parent compound,² a few are of special interest in view of the present work. The 22-oxa modification in the side chain led to the first analogue (5, OCT) that showed dissociation in activities.³ Epimerisation at C-20 (cf. 6, MC1288) often generates derivatives with enhanced biological activity.⁴ And removal of C-19 is usually accompanied by a reduction in calcemic activity. Whereas the above modifications are located in the flexible parts of the molecule, that is the side chain or Aring, our laboratories have rather focused on structural changes within the central CD-ring skeleton of the molecule,⁶ the part that is, from a synthetic point of view, the least accessible one.⁷ In this context several series of analogues have been developed that show the

desired separation of activities, including ones characterised by ring deletions.⁸

In the accompanying paper bicyclic CE-ring analogues of 1α ,25(OH)₂D₃ (2) are described. In this work the central ring system consists of a spiro[5.5]undecane

^{*} Corresponding author. Tel.: +32-9-2644463; fax: +32-9-2644998; e-mail: pierre.declercq@UGent.be

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.05.058

bicyclic moiety, featuring the deletion of C-15 and of C-16, and a connection between C-18 and C-21 (CF-ring system).⁹ The choice of a six-membered F-ring with a 22-oxa side chain at C-20 allows for a synthetic scheme with the epimeric alcohols **11a** and **11b** as achiral intermediates, so that the enantioselectivity of the synthesis of the CF-ring system is not an issue.

The synthesis of 11a and 11b is shown in Scheme 1. Their spirocyclic skeleton results from the known cationic π cyclisation of allylic alcohol *rac*-7 in formic acid leading to formate *rac*-8 in 92% yield.¹⁰ The precursor alcohol is readily obtained from 3-ethoxy-2-cyclohexen-1-one via a sequence involving: (i) addition of the Grignard derivative of 5-bromo-1-pentene; (ii) acid hydrolysis to 3-(4-pentenyl)-2-cyclohexen-1-one (85%) yield); (iii) reduction with lithium aluminum hydride (99% yield).¹⁰ The further conversion of formate *rac*-8 to enone rac-10 involves the reductive removal of the formate ester group with lithium aluminum hydride (95%) yield), followed by Swern oxidation of the resulting alcohols to rac-9 (93% yield). After protection of the carbonyl group as ethylene ketal (96% yield), allylic oxidation with pyridinium dichromate and tert-butylhydroperoxide leads to *rac*-10 (64% yield). The catalytic hydrogenation of rac-10 (Pd/C in MeOH) affords a mixture of the achiral alcohols 11a and 11b, which is separated by chromatography (52% and 45% isolated yield, respectively). The stereochemical assignment of both isomers follows from ¹H NMR COSY and NOE measurements that were performed on the corresponding ketones 12a and 12b, obtained by acid hydrolysis (Fig. 1). The final transformation of 11a and 11b into the corresponding stereoisomeric analogues 3a, 4a and 3b, 4b involves the consecutive introduction of the flexible parts of the molecule, that is the side chain and the *seco*-B,A-ring portion (Scheme 2). Alkylation of the

Scheme 1. Reagents and conditions: (a) HCOOH, rt (92%); (b) LiAlH₄, THF, 0 °C (95%); (c) (COCl)₂, Et₃N, DMSO, CH₂Cl₂, -60 °C (93%); (d) HO(CH₂)₂OH, TsOH, toluene, reflux (96%); (e) PDC, *t*-BuOOH, Celite, PhH, rt (64%); (f) H₂, Pd/C, MeOH, rt (**a**: 52%; **b**: 45%).

Figure 1. ¹H NMR NOE measurements of 12a and 12b.

alkoxides derived from **11** (NaH) with 4-bromo-2methyl-2-butene in the presence of tetrabutylammonium iodide (DMF, 25 °C), followed by mercuric acetate assisted water addition and treatment with sodium borohydride (NaOH), led after acid hydrolysis to ketones **13** (overall yield: **a**: 61%; **b**: 53%).

In view of the expected problems related to vitaminprevitamin equilibration (see accompanying paper), it was decided to first synthesise the 19-nor analogues **3a** and **3b**. The appendage of the A-ring was achieved using the reliable Wittig-Horner based procedure developed

Scheme 2. Reagents and conditions: (a) (i) NaH, DMF, rt; (ii) $Me_2C=CHCH_2Br$, *n*-Bu₄NI, rt (a: 83%; b: 71%); (b) (i) Hg(OAc)₂, THF-H₂O, rt; (ii) NaBH₄, NaOH, rt (a: 86%; b: 90%); (c) TsOH, Me₂CO, H₂O, rt (a: 85%; b: 83%); (d) 14, *n*-BuLi, THF, -78 °C (a: 47%; b: 72%); (e) 15, *n*-BuLi, THF, -78 °C (59%); (f) TBAF, THF, rt (80–86%).

Figure 2. ¹H NMR COSY (left) and NOE studies (right) of 3a and 3b.

by Lythgoe and co-workers.¹¹ Attachment of the 19-nor A-ring to ketone 13a was realised using the known derivative 14.¹² After fluoride-induced silyl ether deprotection, a mixture of dienes 3a and 16a (ratio 8:2) was obtained, which could not be separated by chromatography. The identification of the major isomer as the (*E*)-derivative 3a rests on ¹H NMR COSY and NOE measurements of the mixture (Fig. 2). When the same sequence was applied to the epimeric ketone 13b, again a mixture of dienes 3b and 16b (ratio 8:2) was obtained from which now, however, analogue 3b could be isolated in pure form by HPLC. The (*E*)-stereochemistry of 3b was also confirmed by ¹H NMR analysis (Fig. 2).

Given the Z-contaminant in the 19-nor a series, the Wittig-Horner reaction was as yet carried out using the natural A-ring in order to obtain analogue 4a. The sequence was performed on ketone 13a using the known phosphine oxide 15,13 which after removal of the protective groups (tetrabutylammonium TBDMS fluoride) led to a separable mixture of isomeric (E)- and (Z)-trienes 4a and 17a, in favour of the desired (E)derivative 4a (ratio 85:15). Somewhat unexpected (see accompanying paper) 4a was found to be rather stable with regard to the equilibration towards the previtamin form 18a (Scheme 2).¹⁴ The stereochemical assignment of the (*E*)-7,8-double bond in 4a follows from ¹H NMR NOE difference experiments that were performed on the mixture of the TBDMS protected derivatives (Fig. 3). Analytical and spectral data consistent with the depicted structures were obtained for all compounds.¹⁵

The results of the biological evaluation of **3a** (contaminated with **16a**), **3b**, **16b** and **4a** are given in Table 1. Inspection of the table learns that: (i) the binding affinity for the VDR of all derivatives is very low, (ii) Z-isomer **16b** is inactive, so that the moderate activity of impure **3a** probably originates from the major *E*-isomer, (iii) all derivatives possess low calcemic activity, (iv) impure **3a** shows the aimed at separation of calcemic and genomic

Figure 3. ¹H NMR NOE measurements of TBDMS protected 4a.

Table 1. Biological activity of CF-ring 22-oxa-1 α ,25(OH)₂D₃ analogues^a

e				
	VDR ^b (pig)	HL-60 ^c	MCF-7 ^d	Ca serum ^e (mice)
2	100	100	100	100
3a ^f	< 0.1	8	60	< 0.25
3b	< 0.1	6	7	< 0.25
16b	< 0.1	<1	0	< 0.25
4 a	0.5		10	< 0.25

^a The activities are presented as relative values, the reference value of 1α ,25(OH)₂D₃ (2) being defined as 100.

^b Binding affinity for the nuclear vitamin D receptor.

^c Prodifferentiating activity on human leukemia HL-60 cells.

^d Antiproliferative activity on human breast cancer MCF-7 cells.

^e Effect on Ca level in blood serum.

^fContaminated with 20% of **16a**.

effects. The lack of affinity for the VDR is presumably due to the rigidity of the central hydrophobic part of the molecule. Future work will be directed towards establishing more flexible spirocyclic systems in which at least one of the central rings will consist of a five-membered ring.

Acknowledgements

Financial assistance of the FWO-Vlaanderen (projects G.0150.02 and G.0036.00) is gratefully acknowledged. W.S. thanks the IWT and the FWO-Vlaanderen for a scholarship.

References and notes

- (a) Vitamin D; Feldman, D., Glorieux, F. H., Eds.; Academic Press: San Diego, USA, 1997; 1285 pp; (b) Proceedings of the Eleventh Workshop on Vitamin D; Norman, A. W., Bouillon, R., Thomasset, M., Eds.; University of California: Riverside, USA, 2000; pp 1–992, and the previous 10 volumes in this series.
- Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocr. Rev. 1995, 16, 200–257.
- (a) Murayama, E.; Miyamoto, K.; Kubodera, M.; Mori, T.; Matsunaga, I. *Chem. Pharm. Bull. (Tokyo)* **1986**, *34*, 4410–4413; (b) Abe, J.; Morikawa, M.; Miyamoto, K.; Kaiko, S.; Fukushima, M.; Miyaura, C.; Abe, E.; Suda, T.; Nishii, Y. *FEBS Lett.* **1987**, *226*, 58–62; (c) Nishii, Y.; Okano, T. *Steroids* **2001**, *66*, 137–146.
- 4. Binderup, L.; Latini, S.; Binderup, E.; Bretting, C.; Calverley, M.; Hansen, K. *Biochem. Pharmacol.* **1991**, 42, 1569–1575.
- Perlman, K. L.; Sicinski, R. R.; Schnoes, H. K.; DeLuca, H. F. Tetrahedron Lett. 1990, 31, 1823–1824.
- Bouillon R.; De Clercq P.; Pirson P.; Vandewalle M. Novel Structural Analogues of Vitamin D, Patent PCT/EP 93,202037,3, 1993; Chem. Abstr. 1996, 122, 314933m.
- (a) Zhu, G.-D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877–1952; (b) Posner, G. H.; Kahraman, M. Eur. J. Org. Chem. 2000, 3889–3895.
- (a) Sabbe, K.; D'Halleweyn, C.; De Clercq, P.; Vandewalle, M.; Bouillon, R.; Verstuyf, A. *Bioorg. Med. Chem. Lett.* 1996, 6, 1697–1702; (b) Chen, Y.-J.; Gao, L. J.;

Murad, I.; Verstuyf, A.; Verlinden, L.; Verboven, C.; Bouillon, R.; Viterbo, D.; Milanesio, M.; Van Haver, D.; Vandewalle, M.; De Clercq, P. J. *Org. Biomol. Chem.* **2003**, *1*, 257–267, and references cited therein.

- For bridged 1α,25(OH)₂D₃ analogues with an intact Dring, but a connection between positions 18 and 20, see: (a) Cornella, I.; Pérez Sestelo, J.; Mouriño, A.; Sarandeses, L. A. J. Org. Chem. 2002, 67, 4707–4714; (b) Varela, C.; Nilsson, K.; Torneiro, M.; Mouriño, A. Helv. Chim. Acta 2002, 85, 3251–3261.
- 10. Harding, K. E.; Cooper, J. L.; Puckett, P. M. J. Org. Chem. 1979, 44, 2834–2838.
- 11. Kociensky, P. J.; Lythgoe, B.; Waterhouse, I. J. Chem. Soc., Perkin Trans. 1 1980, 1045–1050.
- Perlman, K. L.; Swenson, R. E.; Paaren, H. E.; Schnoes, H. K.; DeLuca, H. F. *Tetrahedron Lett.* **1991**, *32*, 7663– 7666.
- Baggiolini, E. G.; Iacobelli, J. A.; Hennesy, B. M.; Uskokovic, M. R. J. Am. Chem. Soc. 1982, 104, 2945– 2948.
- 14. The vitamin-previtamin equilibrium 4a-18a (Scheme 2) was investigated (CDCl₃, rt). Starting from the vitamin as well as the previtamin the same equilibrium composition was reached and was found to be in favour of previtamin 18a (25:75), but the equilibration was very slow (about 90 days starting from 4a).
- 15. Spectral data, for rac-9: ¹H NMR (500 MHz, CDCl₃) δ 5.64 (dt, J = 10.1, 3.7 Hz, 1H), 5.42 (br d, J = 10.1 Hz, 1H), 2.32–2.26 (m, 2H), 2.21 (AB, J = 13.9 Hz, 2H), 1.95– 1.82 (m, 4H), 1.72 (m, 1H), 1.63–1.52 (m, 3H), 1.51–1.40 (m, 2H) ppm. For rac-10: ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, J = 10.3 Hz, 1H), 5.86 (d, J = 10.3 Hz, 1H), 3.95– 3.87 (m, 4H), 2.42 (t, J = 6.8 Hz, 2H), 2.01 (dt, J = 13.4,6.6 Hz, 1H), 1.89 (dt, J = 13.5, 6.9 Hz, 1H), 1.77–1.57 (m, 7H), 1.44 (m, 1H) ppm. For 11a: ¹H NMR (500 MHz, CDCl₃) δ 3.88 (s, 4H), 3.59 (m, 1H), 1.72–1.67 (m, 5H), 1.56-1.55 (m, 4H), 1.43-1.37 (m, 6H), 1.19 (m, 2H) ppm. For 11b: ¹H NMR (500 MHz, CDCl₃) δ 3.95–3.89 (m, 4H), 3.63 (m, 1H), 1.80–1.73 (m, 4H), 1.63–1.56 (m, 6H), 1.47–1.40 (m, 3H), 1.26 (m, 2H), 1.14 (m, 2H) ppm. For **13a**: ¹H NMR (500 MHz, CDCl₃) δ 3.69 (t, J = 5.8 Hz, 2H), 3.62 (s, 1H), 3.33 (tt, J = 7.9, 3.9 Hz, 1H), 2.29 (t, J = 6.8 Hz, 2H), 2.17 (s, 2H), 1.84 (m, 2H), 1.75 (t, J = 5.6 Hz, 2H), 1.74 (m, 2H), 1.68 (dd, J = 6.1, 6.1 Hz, 2H), 1.58 (s, 1H), 1.58–1.49 (m, 4H), 1.24 (s, 6H), 1.22 (m, 2H) ppm. For **13b**: ¹H NMR (500 MHz, CDCl₃) δ 3.68 (t, J = 5.8 Hz, 2H), 3.30 (tt, J = 8.2, 4.0 Hz, 1H), 3.60 (s, 1H), 2.29 (t, J = 6.8 Hz, 2H), 2.26 (s, 2H), 1.86 (m, 2H), 1.76 (m, 2H), 1.75 (t, J = 5.8 Hz, 2H), 1.61 (dd, J = 6.1, 6.1 Hz, 2H), 1.55 (m, 2H), 1.49 (m, 2H), 1.24 (m, 2H), 1.23

(s, 6H) ppm. For *E*/*Z*-mixture 3a/16a (ratio 8:2): ¹H NMR (500 MHz, CD_2Cl_2) δ 6.22 (AB, J = 11.3 Hz, 1H of Eisomer), 6.20 (AB, J = 11.3 Hz, 1H of Z-isomer), 6.10 (AB, J = 11.3 Hz, 1H of Z-isomer), 5.95 (AB, J = 11.3 Hz, 1H of *E*-isomer), 4.03 (br s, 2H), 3.68 (t, J = 5.8 Hz, 2H), 3.54 (s, 1H), 3.30 (tt, J = 8.3, 4.1 Hz, 1H), 2.60 (dd, J = 13.3, 3.8 Hz, 1H), 2.45 (dd, J = 13.3, 3.6 Hz, 1H), 2.29–2.21 (m, 2H), 2.17–2.12 (m, 2H), 1.96 (s, 2H), 1.87-1.70 (m, 4H), 1.71 (t, J = 5.8 Hz, 2H), 1.61 (br s, 2H), 1.55-1.40 (m, 8H), 1.19 (s, 6H), 1.15-1.10 (m, 2H) ppm. For **3b**: ¹H NMR (500 MHz, CDCl₃) δ 6.24 (AB, J = 11.3 Hz, 1H), 5.94 (AB, J = 11.3 Hz, 1H), 4.12-4.07 (m, 2H), 3.79 (br s, 1H), 3.72 (t, J = 5.7 Hz, 2H), 3.27 (tt, J = 8.9, 3.9 Hz, 1H), 2.63 (dd, J = 13.4, 3.6 Hz, 1H), 2.49 (dd, J = 13.2, 3.6 Hz, 1H), 2.32-2.16 (m, 4H), 2.06 (AB, J = 13.3 Hz, 1H), 2.02 (AB, J = 13.3 Hz, 1H), 1.92-1.82 (m, 2H), 1.76 (t, J = 5.7 Hz, 2H), 1.75-1.72 (m, 10H),1.58-1.42 (m, 2H), 1.25 (s, 6H), 1.11-1.07 (m, 2H) ppm. For 16b: ¹H NMR (500 MHz, CD_2Cl_2) δ 6.23 (AB, J = 11.2 Hz, 1H), 6.11 (AB, J = 11.2 Hz, 1H), 4.05–4.01 (m, 2H), 3.70 (t, J = 5.8 Hz, 2H), 3.60 (br s, 1H), 3.26 (tt, J = 9.1, 4.1 Hz, 1H), 2.59 (dd, J = 13.3, 3.8 Hz, 1H), 2.46 (dd, J = 13.1, 3.6 Hz, 1H), 2.26 (dd, J = 13.3, 7.4 Hz, 1H),2.23 (AB, J = 13.2 Hz, 1H), 2.18 (AB, J = 13.2 Hz, 1H), 2.16 (dd, J = 13.2, 7.1 Hz, 1H), 2.14–2.11 (m, 2H), 1.86– 1.73 (m, 4H), 1.73 (t, J = 5.8 Hz, 2H), 1.58–1.54 (m, 5H), 1.50-1.42 (m, 3H), 1.40-1.38 (m, 2H), 1.21 (s, 6H), 1.16-1.09 (m, 2H) ppm. For 4a: ¹H NMR (500 MHz, CDCl₃) δ 6.31 (*A*B, J = 11.2 Hz, 1H), 6.05 (*A*B, J = 11.2 Hz, 1H), 5.32 (s, 1H), 4.98 (s, 1H), 4.43 (br s, 1H), 4.23-4.19 (br m, 1H), 3.80 (br s, 1H), 3.69 (t, J = 5.7 Hz, 2H), 3.29 (tt, J = 7.9, 3.9 Hz, 1H), 2.60 (dd, J = 13.1, 3.6 Hz, 1H), 2.31– 2.22 (m, 3H), 1.96 (t, J = 5.6 Hz, 2H), 1.91 (s, 2H), 1.74 (t, J = 5.7 Hz, 2H), 1.71–1.69 (m, 2H), 1.59 (br s, 2H), 1.54– 1.43 (m, 8H), 1.24 (s, 6H), 1.13-1.08 (m, 2H) ppm. For **17a**: ¹H NMR (500 MHz, CDCl₃) δ 6.27 (*A*B, *J* = 11.3 Hz, 1H), 6.19 (AB, J = 11.3 Hz, 1H), 5.32 (s, 1H), 5.00 (s, 1H), 4.42 (br s, 1H), 4.21 (br m, 1H), 3.77 (br s, 1H), 3.70 (t, J = 5.8 Hz, 2H), 3.31 (tt, J = 8.6, 3.6 Hz, 1H), 2.59 (dd, J = 13.1, 3.7 Hz, 1H), 2.28 (dd, J = 13.0, 7.4 Hz, 1H), 2.09 (s, 2H), 2.08 (t, J = 6.2 Hz, 2H), 1.98-1.94 (m, 2H), 1.75 (t, J)J = 5.8 Hz, 2H), 1.76–1.74 (m, 2H), 1.59–1.43 (m, 10H), 1.24 (s, 6H), 1.15–1.11 (m, 2H) ppm. For 18a: ¹H NMR $(500 \text{ MHz}, \text{ CDCl}_3) \delta 5.87 (AB, J = 12.4 \text{ Hz}, 1\text{H}), 5.70$ (AB, J = 12.4 Hz, 1H), 5.64 (br s, 1H), 4.19 (br s, 1H),4.14–4.09 (m, 1H), 3.79 (br s, 1H), 3.70 (t, J = 5.7 Hz, 2H), 3.32 (tt, J = 8.0, 4.0 Hz, 1H), 2.44 (dd, J = 16.7, 4.7 Hz, 1H), 2.08–2.03 (m, 3H), 1.86 (AB, J = 16.9 Hz, 1H), 1.82 (AB, J = 16.9 Hz, 1H), 1.72 (s, 3H), 1.76-1.41 (m, 14H),1.24 (s, 6H), 1.14-0.90 (m, 2H) ppm.