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ABSTRACT 

The total synthesis of two isoflavone C-glycosides (6-tert-butylpuerarin and 

6-tert-butyl-4'-methoxypuerarin) was achieved through the deoxybenzoin pathway with overall 

yields of 14.6% and 14.2%. The key intermediate 12 was obtained by de-tert-butylation of 10 with 

trifluoroacetic acid and Friedel-Crafts acetylation of 2-C-β-D-glucopyranoside 11. The ring 

closure of 12 with the POCl3/DMF reagent resulted glucosyl isoflavone formation 13, which was 

debenzylated and demethylated by BBr3 to obtain 14 and 15. This pathway represents a novel 

synthetic pathway based on Friedel–Crafts acetylation and Vilsmeier-Haack cyclization to achieve 

isoflavone C-glycosides in high yields. 

KEYWORDS: C-glycoside; Isoflavone; 6-tert-butylpuerarin; deoxybenzoin pathway; 
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Isoflavone C-glycosides, in which the sugar moiety is attached by a C–C bond 

directly to the isoflavone ring, are not easily hydrolyzed in acidic gastric juices 

compared with O-glycosides and aglycone. These glycosides exhibit various 

biological activities such as radioprotective,
1
 anti-myocardial ischemic,

2
 mitogenic, 

and colony-stimulating,
3 

and antidiabetic
4 

activities. Among these compounds, 

puerarin, which is found mainly in Pueraria radix, show strong anti-myocardial 

ischemic effects;
5
 it expands the coronary artery and cerebrovascular system,

6
 

significantly reduces myocardial oxygen consumption,
7
 and improves cardiac systolic 

function. To improve the efficacy of puerarin and enhance its concentration in the 

blood, 6-tert-butylpuerarin and 6-tert-butyl-4'-methoxypuerarin were totally 

synthesized to prevent the 7-O-β-D-glucuronide and 4'-O-sulfate formation of the 

compound in the liver.
8
  

Numerous active C-glucosylflavonoids, such as vicenin-1,
9
 flavocommelin,

10
 

saponarin,
11

 and orientin,
12 

were synthesized starting from C-glucosyl acetophenones. 

The condensation of C-glucosyl acetophenone 1 with 

3,4-bis(benzyloxy)benzaldehyde led to the production of C-glucosylchalcone 2, which  

yielded orientin (Scheme 1)
12

 after I2–dimethyl sulfoxide promoted intramolecular 

cyclodehydrogenation and a final debenzylation by hydrogenolysis. The synthetic 

pathway of C-glucosylisoflavonoids was highly similar to that of 

C-glucosylflavonoids. 8-β-D-glucopyranosylgenistein was synthesized via 

C-glucosylchalcone 3 formation by aldol condensation of C-glucosyl acetophenone 1 

with 4-(benzyloxy)benzaldehyde. The oxidative rearrangement of chalcone 3 with 

thallium(III) nitrate yielded a dimethyl acetal 5, which was then cyclizated by 

refluxing in 10% HCl and de-O-benzylated by hydrogenolysis to give the desired 8-β- 
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Scheme 1: Total synthesis of a flavone C-glycoside (orientin) and an isoflavone C-glycoside 

(8-β-D-glucopyranosylgenistein) 

D-glucopyranosylgenistein (Scheme 1).
13

 

However, previous literature reviews 
13-17

 showed that the synthesis of isoflavone 

C-glycosides only involves the chalcone pathway starting from 

C-glucosylacetophenone. Moreover, numerous aryl C-glycosides without acetyl 

groups were not used in synthesizing isoflavone C-glycosides, thereby limiting the 

synthesis of various isoflavone C-glycosides. Furthermore, highly toxic thallium (III) 

nitrate is used in the conventional total synthesis of isoflavone C-glycosides by 

oxidative rearrangement of chalcones.
13, 15-17

 Therefore, a facile green synthesis 

method should be developed for synthesizing of C-glucosylisoflavonoids. In this 

paper, two isoflavone C-glycosides (6-tert-butylpuerarin and 

6-tert-butyl-4'-methoxypuerarin) was totally synthesized through a simple 

deoxybenzoin route in five steps for overall yields of 14.6% and 14.2%. 

   

Results and Discussion 

  Results are shown in Scheme 2. 4,6-di-tert-butylbenzene-1,3-diol (8) was reacted 

with 2,3,4,6-tetra-O-benzylglucopyranosyl trifluoroacetimidate (9) to obtain the 

desired 2-C-β- D-glucopyranoside 10 using the O→C glycoside rearrangement 

methods with TMSOTf as an activator at 0°C;
18, 19 

moreover, the reaction mixture 

temperature was elevated gradually to ambient temperature. We tried to react 

2,3,4,6-tetra-O-benzyl-glucopyranosyl trifluoroacetimidate with 

1-(5-tert-butyl-2,4-dihydroxyphenyl)-2-(4-methoxyphenyl)ethanone, but the desired 

C-glycoside was not detected. This failure was due to the electron-withdrawing acyl 

group in the phenol acceptor that decreased the electron cloud density of the oxygen 

atoms in the phenolic hydroxyl group, thereby resulting in decreased reactivity with 

glycosyl donor. 1-(5-tert-butyl-2,4-dihydroxyphenyl)ethenone was used as the phenol 

acceptor, only a minimal amount of the corresponding β-C-glycoside [δ:13.20 (s, 1H; 

OH-6), 9.31 (s, 1H; OH-4), 7.59 (s, 1H; H-8), 2.59 (s, 3H; H-1), 1.38 (s, 9H; (CH3)3C)] 

was obtained.  



  

 

8 9 10

O
BnO

BnO
OBn

OBn
HO

HO

OHHO
O

BnO
BnO

OBn

OBn

O CF3

NPh

OH
O

BnO
BnO

OBn

OBn

O r.t.

OH

O

BnO
OBn

BnO

OBn

HO

+

OH

O

BnO
OBn

BnO

OBn

HO

O
O

O

O

OBn

BnO

OBn

HO

O
O

BnO

O

O

OH

HO

OH

HO

O
OR

HO

11 12 14: R = CH3

15: R = H

d e

13

a

b c

O

OH

O
+ SOCl2

O

Cl

O

7

7

 

Scheme 2. Total synthesis of two isoflavone C-glycosides (6-tert-butyl puerarin and 

6-tert-butyl-4'-methoxypuerarin).  Reagents and conditions: a) TMSOTf, CH2Cl2, 0°C to room 

temperature (r.t.), 51.6%; b) CF3COOH, Na2S2O4, r.t., 66.2%; c) AlCl3, Et2O, r.t., 63.6%; d) 

POCl3, DMF, 70°C, 68.3%; e) BBr3, CH2Cl2, -78°C, 14 (95.5%), 15 (98.6%). 

This low C-glycoside yield from this reaction was likely a result of the poor matching 

of the reactivities of the glycosyl donor and phenol acceptor.  

Subsequent de-tert-butylation encounters many difficulties. Several conditions of 

de-tert-butylation of β-C-glycoside 10 have been attempted and were unsuccessful, 

such as treatment of 10 with HBr,
20

 TfOH,
21

 AlCl3 in toluene,
22

 AlCl3 in 

dichloromethane,
23

 sulfuric acid in toluene,
24 

and AlCl3 in nitromethane and toluene.
25 

We noticed that 6-tert-butyl group can be removed from β-C-glycoside 10 by stirring 

at room temperature for 90 min in the presence of trifluoroacetic acid to allow it to 

synthesize 11.
26

 Subsequently, treating 4-methoxyphenylacetyl acid with thionyl 

chloride at room temperature for 4 h resulted in the corresponding acid chloride 7,
27

 

which was reacted with 2-C-β-D-glucopyranoside 11 in the presence of anhydrous 

aluminium chloride to result in deoxybenzoin 12 with a 63.6% yield.
18, 28

    

However, the desired deoxybenzoin was not detected when a de-tert-butyl product, 

which was obtained through the deprotection of the 4,6-di-tert-butyl groups in 10, was 

reacted with 7 and anhydrous AlCl3. This finding illustrated that the large steric 

hindrance of the tert-butyl substituent allows the acyl group to be selectively attached 

to C-6 in the C-glycoside 11. 

Upon obtaining the glucosylisoflavone 13 from 12, we first tried to take advantage 

of the reaction of deoxybenzoin 12 in DMF with morpholine and triethyl orthoformate 

at 140 °C; however, a poor yield (12%) of 13 was obtained owing to the destruction 

of the sugar ring caused by high temperature.
29

 An increased glucosylisoflavone yield 

(68.3%) 13 was prepared by treatment of 12 in DMF with the POCl3/DMF reagent 

(prepared at 10°C) at 70 °C for 6 h.
30

 The reaction mechanism could be as follows: 

The reaction of DMF with POCl3 leads to the production of carbocation a, which 



  

attacks the methylene carbon of deoxybenzoin 12 consecutively with a ring closure to 

produce glucosylisoflavone 13, as outlined in Scheme 3. However, this method was 
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Scheme 3. Proposed reactions and mechanisms for converting deoxybenzoin 12 to 

glucosylisoflavone 13 

not suitable for any of the deoxybenzoins containing a phloroglucinol structure, 

because a carbonyl group in the phloroglucinol nucleus that is attacked by the DMF- 

POCl3 reagent leads to nuclear formylation and polymerization.
30

 

The subsequent debenzylation and demethylation of 13 with BBr3 proceeded 

rapidly to yield 6-tert-butyl-4'-methoxypuerarin (14) and 6-tert-butyl puerarin (15) 

with 95.5% and 98.6% yields,
31-33

 respectively. When isoflavone 13 and BBr3 were 

stirred at -78 ° C for 1 h, the de-benzyl product 14 was first produced. The reaction 

system was then stirred at room temperature for 10 min to yield the demethylated 

product 15. Under hydrogenolysis using 10% Pd–C, the debenzylation of 13 did not 

proceed because of the olefin reduction.
34-35

 

 

Conclusion 

Two isoflavone C-glycosides (6-tert-butyl puerarin and 

6-tert-butyl-4'-methoxypuerarin) was totally synthesized through a novel synthetic 

pathway based on Friedel-Crafts acetylation and Vilsmeier-Haack cyclization in five 

steps with overall yields of 14.6% and 14.2%. The facile green deoxybenzoin route 

was developed to analyze C-glucosylisoflavonoids and applicable to the large-scale 

synthesis of various isoflavone C-glycosides. 
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                   Research highlights 

 

This was a novel synthetic pathway to achieve isoflavone C-glycosides. 

 

The total synthesis of 6-tert-butyl puerarin was achieved. 

 

The first total synthesis of 6-tert-butyl-4'- methoxypuerarin was achieved. 
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