= SHORT COMMUNICATIONS =

Dedicated to M.A. Pudovik on his 80th anniversary

Reaction of *N*-(4,4-Diethoxybutyl)phosphamides with Chloro(diphenyl)phosphine. Synthesis of 2-(Diphenylphosphoryl)pyrrolidines

A. V. Smolobochkin^{*a*,*}, R. A. Turmanov^{*b*}, A. S. Gazizov^{*a*}, E. A. Kuznetsova^{*c*}, A. R. Burilov^{*a*}, and M. A. Pudovik^{*a*}

^a Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088 Russia

^b Kazan National Research Technological University, Kazan, 420015 Russia ^c Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008 Russia *e-mail: smolobochkin@iopc.ru

Received January 30, 2020; revised March 3, 2020; accepted March 10, 2020

Abstract—The reaction of *N*-(4,4-diethoxybutyl)phosphamides with chloro(diphenyl)phosphine in chloroform in the presence of acetic acid gave previously unknown 2-(diphenylphosphoryl)pyrrolidines, and hydrolysis of the latter afforded 2-(diphenylphosphoryl)pyrrolidine.

Keywords: acetals, chloro(diphenyl)phosphine, *N*-(4,4-diethoxybutyl)phosphamides, 2-(diphenylphosphoryl)-pyrrolidines

DOI: 10.1134/S107042802006024X

Pyrrolidine ring is a structural fragment of many known biologically active compounds [1–4]. Of particular interest are derivatives of proline which is a proteinogenic amino acid involved in biosynthesis of proteins and other biological processes [5]. In recent years, phosphorus-containing analogs of proline have attracted much interest due to their diverse biological activity. In particular, such compounds inhibit angiotensin-converting enzyme 2 [6, 7] and separase [8], and they can be used to monitor post-proline protease activity [9].

The known methods of synthesis of phosphoproline can be classed with two main approaches. The first one is based on phosphorylation of already synthesized cyclic precursors, derivatives of pyrrolidine and 1-pyrroline [10–12]. The necessity of preliminary preparation of the initial heterocycle complicates the synthetic scheme and reduces the overall yield. The second approach involves heterocyclization of linear precursors [13–15]. However, in this case, expensive metal-containing catalysts are often required. On the other hand, its advantage is that no laborious synthesis of initial cyclic compounds is necessary.

We previously proposed a procedure for the synthesis of 2-(diphenylphosphoryl)pyrrolidines by acidcatalyzed reaction of N-(4,4-diethoxybutyl)ureas with chloro(diphenyl)phosphine [16]. In order to determine the scope of this approach, it seemed important to study the effect of the nature of the electron-withdrawing fragment on the nitrogen atom in the amino acetal molecule on the reaction outcome. For this purpose, by reaction of 4,4-diethoxybutan-1-amine (1) with fourcoordinate phosphorus acid chlorides in benzene in the presence of triethylamine we obtained N-(4,4-diethoxybutyl)phosphamides 2a-2c. Acetals 2a-2c were then reacted with an equimolar amount of chloro(diphenyl)phosphine in anhydrous chloroform in the presence of acetic acid at room temperature. As a result, we isolated previously unknown diphosphorylated pyrrolidines **3a–3c**. Treatment of the latter with aqueous sodium hydrogen carbonate afforded 2-(diphenylphosphoryl)pyrrolidine (4) (Scheme 1).

Thus, the acid-catalyzed reaction of *N*-(4,4-diethoxybutyl)phosphamides with chloro(diphenyl)phosphine leads to the formation of new diphosphorylated pyrrolidine derivatives under mild condi-

R = OPh(a), Ph(b), $CH_2Cl(c)$.

tions. Obvious advantages of the proposed procedure are mild reaction conditions and the use of commercially available acetic acid as catalyst.

N-(4,4-Diethoxybutyl)phosphamides 2a-2c (general procedure). A mixture of 1.9 g of 4,4-diethoxybutan-1-amine (1), 2.4 g of triethylamine, and 11.8 mmol of the corresponding phosphoryl compound in 20 mL of anhydrous benzene was stirred for 4 h at room temperature. The precipitate was filtered off, and the filtrate was evaporated under reduced pressure to leave a yellow oily product.

Diphenyl *N*-(4,4-diethoxybutyl)phosphoramidate (2a). Yield 90%. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.17 t (6H, CH₃, J = 7.1 Hz), 1.49–1.63 m (4H, CH₂), 3.02–3.12 m (2H, CH₂), 3.38–3.37 m (2H, CH₂), 3.52– 3.62 m (2H, CH₂), 4.41 t (1H, CH, J = 5.2 Hz), 7.15 t (2H, H_{arom}, J = 6.9 Hz), 7.23–7.28 m (4H, H_{arom}), 7.29– 7.36 m (4H, H_{arom}). ³¹P NMR spectrum (CDCl₃): δ_P 0.47 ppm.

N-(4,4-Diethoxybutyl)diphenylphosphinamide (2b). Yield 89%. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.11 t (6H, CH₃, *J* = 7.0 Hz), 1.57–1.65 m (4H, CH₂), 2.88–2.99 m (2H, CH₂), 3.32–3.45 m (2H, CH₂), 3.48– 3.62 m (2H, CH₂), 4.36–4.42 m (1H, CH), 7.32–7.46 m (6H, H_{arom}), 7.78–7.89 m (4H, H_{arom}). ³¹P NMR spectrum (CDCl₃): δ_P 23.40 ppm.

N-(4,4-Diethoxybutyl)bis(chloromethyl)phosphinamide (2c). Yield 84%. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.17 t (6H, CH₃, *J* = 7.1 Hz), 1.56– 1.69 m (4H, CH₂), 3.02–3.11 m (2H, CH₂), 3.42– 3.54 m (4H, CH₂), 3.57–3.67 m (4H, CH₂), 3.69– 3.76 m (2H, CH₂), 4.46 t (1H, CH, *J* = 5.2 Hz). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 15.30, 24.23 d (*J*=5.0 Hz), 30.69, 34.41 d (*J*=95.8 Hz), 39.82, 61.47, 102.60. ³¹P NMR spectrum (CDCl₃): $\delta_{\rm P}$ 31.87 ppm.

2-(Diphenylphosphoryl)pyrrolidines 3a–3c (general procedure). A mixture of *N*-(4,4-diethoxybutyl)-phosphamide **2a–2c** (1.52 mmol), 0.39 g of chloro(diphenyl)phosphine, 10 mL of anhydrous chloroform, and 0.1 mL of acetic acid was stirred for 24 h at 20°C.

The mixture was evaporated, and the residue was treated with 5 mL of anhydrous diethyl ether. The white solid was filtered off and dried under reduced pressure (10 mm Hg). Compounds 3a-3c were isolated as white powders.

1-(Diphenoxyphosphoryl)-2-(diphenylphosphoryl)pyrrolidine (3a). Yield 82%, mp 103–105°C. IR spectrum, v, cm⁻¹: 2863, 2758, 1598, 1441, 1348. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 1.62–1.76 m (1H, CH₂), 1.84–1.99 m (3H, CH₂), 3.13–3.21 m (1H, CH₂), 3.23–3.37 m (1H, CH₂), 4.74–4.88 m (1H, CH), 7.06–7.42 m (2H, H_{arom}), 7.48–7.69 m (10H, H_{arom}), 7.79–7.92 m (4H, H_{arom}), 7.97–8.12 m (4H, H_{arom}), ³¹P NMR spectrum (DMSO- d_6), δ_P , ppm: –1.37 d (J = 17.2 Hz), 30.81 d (J = 17.1 Hz). Mass spectrum (ESI-TOF): m/z 504 [M + H]⁺. Found, %: C 66.99; H 5.49; N 2.91; P 12.46. C₂₈H₂₇NO₄P₂. Calculated, %: C 66.80; H 5.41; N 2.78; P 12.30.

1,2-Bis(diphenylphosphoryl)pyrrolidine (3b). Yield 75%, mp 135–137°C. IR spectrum, v, cm⁻¹: 2869, 2786, 1597, 1441, 1348. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 1.48–1.60 m (1H, CH₂), 1.81–1.94 m (1H, CH₂), 1.97–2.03 m (2H, CH₂), 3.02–3.12 m (1H, CH₂), 3.24–3.31 m (1H, CH₂), 4.79–4.86 m (1H, CH), 7.23–7.38 m (4H, H_{arom}), 7.44–7.60 m (10H, H_{arom}), 7.63–7.68 m (2H, H_{arom}), 7.70–7.76 m (4H, H_{arom}). ³¹P NMR spectrum (DMSO- d_6), δ_P , ppm: 31.98 d (J = 24.0 Hz), 32.94 d (J = 24.1 Hz). Mass spectrum (ESI-TOF), m/z: 472 [M + H]⁺, 495 [M + Na]⁺. Found, %: C 71.04; H 6.01; N 3.12; P 13.00. C₂₈H₂₇NO₂P₂. Calculated, %: C 71.33; H 5.77; N 2.97; P 13.14.

1-[Bis(chloromethyl)phosphoryl]-2-(diphenylphosphoryl)pyrrolidine (3c). Yield 48%, mp 115– 116°C. IR spectrum, v, cm⁻¹: 2884, 2746, 1597, 1430, 1346. ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 1.85– 2.03 m (4H, CH₂), 3.14–3.23 m (1H, CH₂), 3.27– 3.32 m (1H, CH₂), 3.62–3.74 m (4H, CH₂), 4.77– 4.86 m (1H, CH), 7.56–7.72 m (6H, H_{arom}), 7.82– 7.90 m (2H, H_{arom}), 7.94–8.03 m (2H, H_{arom}). ³¹P NMR spectrum (DMSO- d_6), δ_P , ppm: 28.66 d (J = 22.1 Hz), 38.64 d (J = 22.2 Hz). Mass spectrum (ESI-TOF): m/z 416 [M + H]⁺. Found, %: C 52.16; H 5.20; Cl 16.89; N 3.45; P 14.98. C₁₈H₂₁Cl₂NO₂P₂. Calculated, %: C 51.94; H 5.09; Cl 17.03; N 3.37; P 14.88.

2-(Diphenylphosphoryl)pyrrolidine (4). A mixture of compound **3a–3c** (0.99 mmol) and 0.8 g of sodium hydrogen carbonate in 20 mL of water was stirred for 24 h at room temperature. The mixture was extracted with chloroform (3×10 mL), and the combined extracts were evaporated under reduced pressure. The spectral characteristics of **4** coincided with those reported previously [17].

The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 600 spectrometer at 600 and 150 MHz, respectively; the chemical shifts were measured relative to the residual proton and carbon signals of the solvent (DMSO- d_6 , CDCl₃). The ³¹P NMR spectra were recorded on a Bruker Avance II-400 instrument at 161.9 MHz using 85% H₃PO₄ as external standard. The IR spectra were recorded on a UR-20 spectrometer in the range 400–3600 cm^{-1} ; crystalline products were examined as KBr discs. Elemental analysis was performed on a Carlo Erba EA 1108 analyzer. The mass spectra (electrospray ionization, positive ion detection, a.m.u. range 100-2800) were obtained with a Bruker Daltonik AmazonX mass spectrometer (Bremen, Germany). The melting points were measured in glass capillaries using a Stuart SMP 10 melting point apparatus.

AKNOWLEDGMENTS

The authors thank Joint Spectral and Analytical Center (Kazan Scientific Center, Russian Academy of Sciences) for technical support.

FUNDING

This study was performed under financial support by the President of the Russian Federation (program for state support of young Russian doctors of science, project no. MD-585.2019.3).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

 Debnath, B., Singh, W.S., Das, M., Goswami, S., Singh, M.K., Maiti, D., and Manna, K., *Mater: Today Chem.*, 2018, vol. 9, p. 56. https://doi.org/10.1016/j.mtchem.2018.05.001

- Singh, P., Manda, S.L.K., Samanta, K., and Panda, G., *Tetrahedron*, 2017, vol. 73, p. 1911. https://doi.org/10.1016/j.tet.2017.02.029
- Gouliaev, A.H. and Senning, A., *Brain Res. Rev.*, 1994, vol. 19, p. 180. https://doi.org/10.1016/0165-0173(94)90011-6
- 4. Hollstein, U., *Chem. Rev.*, 1974, vol. 74, p. 625. https://doi.org/10.1021/cr60292a002
- Szabados, L. and Savouré, A., *Trends Plant Sci.*, 2010, vol. 15, p. 89. https://doi.org/10.1016/j.tplants.2009.11.009
- Mores, A., Matziari, M., Beau, F., Cuniasse, P., Yiotakis, A., and Dive, V., *J. Med. Chem.*, 2008, vol. 51, p. 2216. https://doi.org/10.1021/jm701275z
- Almquist, R.G., Chao, W.R., and Jennings-White, C., J. Med. Chem., 1985, vol. 28, p. 1067. https://doi.org/10.1021/jm00146a015
- Gilmore, B.F., Lynas, J.F., Scott, C.J., McGoohan, C., Martin, L., and Walker, B., *Biochem. Biophys. Res. Commun.*, 2006, vol. 346, p. 436. https://doi.org/10.1016/j.bbrc.2006.05.175
- Sabidó, E., Tarragó, T., Niessen, S., Cravatt, B.F., and Giralt, E., *ChemBioChem*, 2009, vol. 10, p. 2361. https://doi.org/10.1002/cbic.200900244
- Miguélez-Ramos, J., Batchu, V.R., and Boto, A., *Eur. J.* Org. Chem., 2013, vol. 2013, p. 846. https://doi.org/10.1002/ejoc.201201443
- Argyropoulos, D.S., Li, H., Gaspar, A.R., Smith, K., Lucia, L.A., and Rojas, O.J., *Bioorg. Med. Chem.*, 2006, vol. 14, p. 4017. https://doi.org/10.1016/j.bmc.2006.02.009
- Gosset, G., Clément, J.-L., Culcasi, M., Rockenbauer, A., and Pietri, S., *Bioorg. Med. Chem.*, 2011, vol. 19, p. 2218. https://doi.org/10.1016/j.bmc.2011.02.040
- Roubaud, V., Le Moigne, F., Mercier, A., and Tordo, P., Synth. Commun., 1996, vol. 26, p. 1507. https://doi.org/10.1080/00397919608003517
- Yamashita, Y., Nam, L.C., Dutton, M.J., Yoshimoto, S., and Kobayashi, S., *Chem. Commun.*, 2015, vol. 51, p. 17064. https://doi.org/10.1039/C5CC07066J
- Chen, Q. and Yuan, C., *Synthesis*, 2008, vol. 2008, p. 1085. https://doi.org/10.1055/s-2008-1032127
- Smolobochkin, A.V., Turmanov, R.A., Gazizov, A.S., Appazov, N.O., Burilov, A.R., and Pudovik, M.A., *Russ. J. Gen. Chem.*, 2019, vol. 89, p. 2143. https://doi.org/10.1134/S1070363219100244
- Liu, X.-W., Le, T.N., Lu, Y., Xiao, Y., Ma, J., and Li, X., Org. Biomol. Chem., 2008, vol. 6, p. 3997. https://doi.org/10.1039/b811581h

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 56 No. 6 2020