
1119

ISSN 1070-4280, Russian Journal of Organic Chemistry, 2020, Vol. 56, No. 6, pp. 1119–1121. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Zhurnal Organicheskoi Khimii, 2020, Vol. 56, No. 6, pp. 979–983.

SHORT 
COMMUNICATIONS

DOI: 10.1134/S107042802006024X

Dedicated to M.A. Pudovik on his 80th anniversary

Reaction of N-(4,4-Diethoxybutyl)phosphamides 
with Chloro(diphenyl)phosphine. Synthesis 

of 2-(Diphenylphosphoryl)pyrrolidines
A. V. Smolobochkina,*,  R. A. Turmanovb,  A. S. Gazizova,  E. A. Kuznetsovac,  

A. R. Burilova,  and  M. A. Pudovika

a Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientifi c Center, Russian Academy of Sciences, 
Kazan, 420088 Russia

b Kazan National Research Technological University, Kazan, 420015 Russia
c Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008 Russia

*e-mail: smolobochkin@iopc.ru

Received January 30, 2020; revised March 3, 2020; accepted March 10, 2020

Abstract—The reaction of N-(4,4-diethoxybutyl)phosphamides with chloro(diphenyl)phosphine in chloroform 
in the presence of acetic acid gave previously unknown 2-(diphenylphosphoryl)pyrrolidines, and hydrolysis of 
the latter afforded 2-(diphenylphosphoryl)pyrrolidine.
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Pyrrolidine ring is a structural fragment of many 
known biologically active compounds [1–4]. Of partic-
ular interest are derivatives of proline which is a pro-
teinogenic amino acid involved in biosynthesis of 
proteins and other biological processes [5]. In recent 
years, phosphorus-containing analogs of proline have 
attracted much interest due to their diverse biological 
activity. In particular, such compounds inhibit angio-
tensin-converting enzyme 2 [6, 7] and separase [8], and 
they can be used to monitor post-proline protease 
activity [9].

The known methods of synthesis of phosphoproline 
can be classed with two main approaches. The first one 
is based on phosphorylation of already synthesized 
cyclic precursors, derivatives of pyrrolidine and 1-pyr-
roline [10–12]. The necessity of preliminary prepara-
tion of the initial heterocycle complicates the synthetic 
scheme and reduces the overall yield. The second ap-
proach involves heterocyclization of linear precursors 
[13–15]. However, in this case, expensive metal-con-
taining catalysts are often required. On the other hand, 
its advantage is that no laborious synthesis of initial 
cyclic compounds is necessary.

We previously proposed a procedure for the syn-
thesis of 2-(diphenylphosphoryl)pyrrolidines by acid-
catalyzed reaction of N-(4,4-diethoxybutyl)ureas with 
chloro(diphenyl)phosphine [16]. In order to determine 
the scope of this approach, it seemed important to 
study the effect of the nature of the electron-withdraw-
ing fragment on the nitrogen atom in the amino acetal 
molecule on the reaction outcome. For this purpose, by 
reaction of 4,4-diethoxybutan-1-amine (1) with four-
coordinate phosphorus acid chlorides in benzene in the 
presence of triethylamine we obtained N-(4,4-diethoxy-
butyl)phosphamides 2a–2c. Acetals 2a–2c were then 
reacted with an equimolar amount of chloro(diphenyl)-
phosphine in anhydrous chloroform in the presence of 
acetic acid at room temperature. As a result, we isolated 
previously unknown diphosphorylated pyrrolidines 
3a–3c. Treatment of the latter with aqueous sodium 
hydrogen carbonate afforded 2-(diphenylphosphoryl)-
pyrrolidine (4) (Scheme 1).

Thus, the acid-catalyzed reaction of N-(4,4-di-
ethoxybutyl)phosphamides with chloro(diphenyl)-
phosphine leads to the formation of new diphos-
phorylated pyrrolidine derivatives under mild condi-
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tions. Obvious advantages of the proposed procedure 
are mild reaction conditions and the use of commer-
cially available acetic acid as catalyst.
N-(4,4-Diethoxybutyl)phosphamides 2a–2c (gen-

eral procedure). A mixture of 1.9 g of 4,4-diethoxy-
butan-1-amine (1), 2.4 g of triethylamine, and 
11.8 mmol of the corresponding phosphoryl compound 
in 20 mL of anhydrous benzene was stirred for 4 h at 
room temperature. The precipitate was filtered off, and 
the filtrate was evaporated under reduced pressure to 
leave a yellow oily product.

Diphenyl N-(4,4-diethoxybutyl)phosphoramidate 
(2a). Yield 90%. 1H NMR spectrum (CDCl3), δ, ppm: 
1.17 t (6H, CH3, J = 7.1 Hz), 1.49–1.63 m (4H, CH2), 
3.02–3.12 m (2H, CH2), 3.38–3.37 m (2H, CH2), 3.52–
3.62 m (2H, CH2), 4.41 t (1H, CH, J = 5.2 Hz), 7.15 t 
(2H, Harom, J = 6.9 Hz), 7.23–7.28 m (4H, Harom), 7.29–
7.36 m (4H, Harom). 31P NMR spectrum (CDCl3): 
δP 0.47 ppm.
N-(4,4-Diethoxybutyl)diphenylphosphinamide 

(2b). Yield 89%. 1H NMR spectrum (CDCl3), δ, ppm: 
1.11 t (6H, CH3, J = 7.0 Hz), 1.57–1.65 m (4H, CH2), 
2.88–2.99 m (2H, CH2), 3.32–3.45 m (2H, CH2), 3.48–
3.62 m (2H, CH2), 4.36–4.42 m (1H, CH), 7.32–7.46 m 
(6H, Harom), 7.78–7.89 m (4H, Harom). 31P NMR spec-
trum (CDCl3): δP 23.40 ppm.
N-(4,4-Diethoxybutyl)bis(chloromethyl)phos-

phinamide (2c). Yield 84%. 1H NMR spectrum 
(CDCl3), δ, ppm: 1.17 t (6H, CH3, J = 7.1 Hz), 1.56–
1.69 m (4H, CH2), 3.02–3.11 m (2H, CH2), 3.42–
3.54 m (4H, CH2), 3.57–3.67 m (4H, CH2), 3.69–
3.76 m (2H, CH2), 4.46 t (1H, CH, J = 5.2 Hz). 
13C NMR spectrum (CDCl3), δC, ppm: 15.30, 24.23 d 
(J = 5.0 Hz), 30.69, 34.41 d (J = 95.8 Hz), 39.82, 61.47, 
102.60. 31P NMR spectrum (CDCl3): δP 31.87 ppm.

2-(Diphenylphosphoryl)pyrrolidines 3a–3c (gen-
eral procedure). A mixture of N-(4,4-diethoxybutyl)-
phosphamide 2a–2c (1.52 mmol), 0.39 g of chloro(di-
phenyl)phosphine, 10 mL of anhydrous chloroform, 
and 0.1 mL of acetic acid was stirred for 24 h at 20°C. 

The mixture was evaporated, and the residue was 
treated with 5 mL of anhydrous diethyl ether. The 
white solid was filtered off and dried under reduced 
pressure (10 mm Hg). Compounds 3a–3c were isolated 
as white powders.

1-(Diphenoxyphosphoryl)-2-(diphenylphos-
phoryl)pyrrolidine (3a). Yield 82%, mp 103–105°C. 
IR spectrum, ν, cm–1: 2863, 2758, 1598, 1441, 1348. 
1H NMR spectrum (DMSO-d6), δ, ppm: 1.62–1.76 m 
(1H, CH2), 1.84–1.99 m (3H, CH2), 3.13–3.21 m (1H, 
CH2), 3.23–3.37 m (1H, CH2), 4.74–4.88 m (1H, CH), 
7.06–7.42 m (2H, Harom), 7.48–7.69 m (10H, Harom), 
7.79–7.92 m (4H, Harom), 7.97–8.12 m (4H, Harom). 
31P NMR spectrum (DMSO-d6), δP, ppm: –1.37 d (J = 
17.2 Hz), 30.81 d (J = 17.1 Hz). Mass spectrum (ESI-
TOF): m/z 504 [M + H]+. Found, %: C 66.99; H 5.49; 
N 2.91; P 12.46. C28H27NO4P2. Calculated, %: 
C 66.80; H 5.41; N 2.78; P 12.30.

1,2-Bis(diphenylphosphoryl)pyrrolidine (3b). 
Yield 75%, mp 135–137°C. IR spectrum, ν, cm–1: 
2869, 2786, 1597, 1441, 1348. 1H NMR spectrum 
(DMSO-d6), δ, ppm: 1.48–1.60 m (1H, CH2), 1.81–
1.94 m (1H, CH2), 1.97–2.03 m (2H, CH2), 3.02–
3.12 m (1H, CH2), 3.24–3.31 m (1H, CH2), 4.79–
4.86 m (1H, CH), 7.23–7.38 m (4H, Harom), 7.44–
7.60 m (10H, Harom), 7.63–7.68 m (2H, Harom), 7.70–
7.76 m (4H, Harom). 31P NMR spectrum (DMSO-d6), δP, 
ppm: 31.98 d (J = 24.0 Hz), 32.94 d (J = 24.1 Hz). 
Mass spectrum (ESI-TOF), m/z: 472 [M + H]+, 495 
[M + Na]+. Found, %: C 71.04; H 6.01; N 3.12; 
P 13.00. C28H27NO2P2. Calculated, %: C 71.33; 
H 5.77; N 2.97; P 13.14.

1-[Bis(chloromethyl)phosphoryl]-2-(diphenyl-
phosphoryl)pyrrolidine (3c). Yield 48%, mp 115–
116°C. IR spectrum, ν, cm–1: 2884, 2746, 1597, 1430, 
1346. 1H NMR spectrum (DMSO-d6), δ, ppm: 1.85–
2.03 m (4H, CH2), 3.14–3.23 m (1H, CH2), 3.27–
3.32 m (1H, CH2), 3.62–3.74 m (4H, CH2), 4.77–
4.86 m (1H, CH), 7.56–7.72 m (6H, Harom), 7.82–
7.90 m (2H, Harom), 7.94–8.03 m (2H, Harom). 31P NMR 
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spectrum (DMSO-d6), δP, ppm: 28.66 d (J = 22.1 Hz), 
38.64 d (J = 22.2 Hz). Mass spectrum (ESI-TOF): 
m/z 416 [M + H]+. Found, %: C 52.16; H 5.20; 
Cl 16.89; N 3.45; P 14.98. C18H21Cl2NO2P2. Calculat-
ed, %: C 51.94; H 5.09; Cl 17.03; N 3.37; P 14.88.

2-(Diphenylphosphoryl)pyrrolidine (4). A mixture 
of compound 3a–3c (0.99 mmol) and 0.8 g of sodium 
hydrogen carbonate in 20 mL of water was stirred for 
24 h at room temperature. The mixture was extracted 
with chloroform (3×10 mL), and the combined extracts 
were evaporated under reduced pressure. The spectral 
characteristics of 4 coincided with those reported 
previously [17].

The 1H and 13C NMR spectra were recorded on 
a Bruker Avance 600 spectrometer at 600 and 
150 MHz, respectively; the chemical shifts were meas-
ured relative to the residual proton and carbon signals 
of the solvent (DMSO-d6, CDCl3). The 31P NMR spec-
tra were recorded on a Bruker Avance II-400 instrument 
at 161.9 MHz using 85% H3PO4 as external standard. 
The IR spectra were recorded on a UR-20 spectrometer 
in the range 400–3600 cm–1; crystalline products were 
examined as KBr discs. Elemental analysis was per-
formed on a Carlo Erba EA 1108 analyzer. The mass 
spectra (electrospray ionization, positive ion detection, 
a.m.u. range 100–2800) were obtained with a Bruker 
Daltonik AmazonX mass spectrometer (Bremen, 
Germany). The melting points were measured in glass 
capillaries using a Stuart SMP 10 melting point 
apparatus.
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