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ABSTRACT: Chiral phosphoric acid-catalyzed asymmetric
C�H functionalization has been achieved. In this process,
enantiotopic C(sp3)�hydrogen is selectively activated by
chiral phosphoric acid to afford tetrahydroquinoline deriva-
tives with excellent enantioselectivities (up to 97% ee).

The direct and selective replacement of carbon�hydrogen
bonds for further functionalization represents an important

and longstanding goal in synthetic organic chemistry.1 Because
such replacement has enabled the transformation of C�H bonds
into C�C and/or C�X bonds (X =O,N, halogens, etc.) without
prefunctionalization (such as halogenation, triflation, etc.), much
effort has been exerted to develop novel C�H functionalization
methodologies.

Recently, C(sp3)�H bond functionalization mediated by an
internal redox process has attracted considerable attention
because of its unique features (Scheme 1):2 (1) the C�H bond
R to the heteroatom of 1 is cleaved via the [1,5]-hydride shift to
give zwitterionic intermediate A, and (2) subsequent 6-endo
cyclization affords cyclized product 2.3�5 It has been noted that
Brønsted acids can be employed to trigger the key [1,5]-hydride
shift. Our group and other groups have reported that strong
Brønsted acids (such as TsOH or TfOH) work as effective
activators of the internal redox process.6,7 Inspired by these
features, we turned our attention to the development of an
asymmetric version of these types of reactions, focusing on chiral
phosphoric acids8,9 as the chiral source.

There are only four precedents for the enantioselective internal
redox reaction. Three of them are chiral metal-catalyzed reactions
involving magnesium, cobalt, and gold.10a,c,d Quite recently, Kim and
co-workers disclosed that an organocatalyst (diarylprolinol silyl ether)
is also effective for this type of transformation.10b Although they
achieved the construction of a tetrahydroquinoline skeleton in a

highly enantioselective manner, in-depth investigations of the
transition state model were not conducted, and thus, a better
understanding of the origin of the stereoselectivity is desired.

We report herein a novel chiral phosphoric acid-catalyzed
asymmetric C�H bond functionalization via a hydride shift/
cyclization sequence. This strategy enabled us to construct a
pharmacologically important, optically active tetrahydroquino-
line skeleton with good to excellent enantioselectivity. Detailed
investigation of the origin of the stereoselectivity indicated that
the selective activation of enantiotopic C(sp3)�hydrogen
occurred in our system (eq 1).

Biphenyl phosphoric acid (S)-5 bearing either (a) 2,4-bis-
(trifluoromethyl)phenyl groups or (b) 4-nitro-2-trifluoro-
methylphenyl groups at the 3 and 30 positions turned out to be
a highly effective catalyst for the enantioselective internal redox
reaction of benzylidene malonate 3 (Table 1).11 The desired
tetrahydroquinoline 4a was obtained in good yield with excellent
enantioselectivity (83%, 95% ee; entry 1). Substrates with an
electron-donating group (methyl or methoxy) or an electron-
withdrawing group (bromo) meta or para to the nitrogen atom
yielded 4with excellent selectivities (92% ee or higher, except for
the p-bromo compound 4f) upon tuning of the reaction condi-
tions (solvent and temperature; entries 2�6). As in our previous
report,2l a substituent ortho to the nitrogen atom enhanced the
reactivity, affording the desired tetrahydroquinoline derivative 4g
in good yield within a short reaction time with excellent enantios-
electivity (81%, 5.5 h, 95% ee; entry 7). Naphthyl-type products
(4h and 4i) were obtained with excellent enantioselectivities
(91 and 97% ee, respectively; entries 8 and 9). Although no
chemoselective hydride shift between the benzyl and ethyl
groups was observed (4j/4k = 1.2/1; entry 10), the enantios-
electivities were also extremely high when binaphthyl phosphoric
acid 6b was employed (94% ee for 4j and 86% ee for 4k). The
non-benzylic product 4l was obtained in excellent yield with
good enantioselectivity (quant., 70% ee; entry 11). The absolute
configurations of these products [except 4j and 4k obtained

Scheme 1. C(sp3)�H Functionalization via an Internal Redox
Process
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using (R)-binaphthol-derived catalyst 6b] were surmised to be S
by analogy to 4d, whose absolute stereochemistry was unam-
biguously established by single-crystal X-ray analysis.12,13

The internal redox reactions of chiral benzylidenemalonates
(S)-7 and (R)-7 (using 10 mol % 5a in toluene at 80 �C;
Scheme 2) gave intriguing information that helped us clarify

the reaction mechanism: the enantiomers exhibited totally
different reactivities. Whereas (S)-7 underwent the redox
reaction in 24 h to give cyclized product 8 in good yield with
excellent selectivity (90% ee) in favor of the S enantiomer
(retention product), the reaction of (R)-7 was sluggish and
furnished 8 in less than 10% yield after 24 h with 64% ee in
favor of the R enantiomer.14 Notably, even treatment of (S)-7
with an achiral acid catalyst [Yb(OTf)3] afforded 8 in the
optically active form (85% ee) with the S enantiomer being
predominant.14 According to Reinhoudt’s pioneering result,15 we
rationalized this stereochemical outcome as follows: the chiral
information in 7 did not completely disappear through the hydride
shift process and was memorized16 as a helical chirality in cationic
intermediate B. Subsequent nucleophilic attack occurred predomi-
nantly from the same face of the transferred hydrogen to give
(S)-8.17,18

Wehad assumed that the stereoselectivity in 4was determined by
the enantiofacial selection of the nucleophilic attack on the iminium
cation (path I in Figure 1).19 However, the above results suggested
that this was not the case in our reaction and that the stereoselec-
tivity was mostly controlled at the time of the hydride shift process
(path II); in other words, the unprecedented selective activation of

Table 1. Substrate Scope of Asymmetric Internal Redox
Reactiona

aUnless otherwise noted, all of the reactions were conducted with 0.1
mmol of benzylidenemalonate 3 and 10mol % 5a in 2.0mL of toluene at
80 �C. b Isolated yield. cDetermined by chiral HPLC. d In 1:1 toluene/
CH2Cl2.

eAt 120 �C in p-xylene. fAt 110 �C in 1:1 toluene/(CH2Cl)2.
g 5b was employed instead of 5a. hAt 110 �C. iWith 6b at 70 �C. j ee of
4j. k ee of 4k. lWith 5b at 70 �C.

Scheme 2. Highly Stereoselective Nature of the Acid-Catalyzed
Internal Redox Reaction

Figure 1. Two plausible reaction pathways.



6168 dx.doi.org/10.1021/ja2014955 |J. Am. Chem. Soc. 2011, 133, 6166–6169

Journal of the American Chemical Society COMMUNICATION

enantiotopic hydrogen by a chiral phosphoric acid did occur in
our system.20,21

We propose for this asymmetric reaction the transition state
shown in Figure 2. Because of the steric repulsion between the
aromatic ring of the N-benzyl group and the aromatic group at
the 3 or 30 position of the catalyst, the benzyl group is located on
the opposite side (β-side) relative to the aromatic ring at the 3 or
30 position.21 In this case, Hβ is too far away to be transferred to
the olefinic carbon, and as a result, HR migrates preferentially.
Subsequent highly stereoselective cyclization affords (S)-4 as the
major enantiomer.

In summary, we have developed a chiral phosphoric acid-
catalyzed asymmetric C(sp3)�H functionalization. A range of
substrates are viable in our reaction: various N,N-dibenzyl sub-
strates and someN-alkyl substrates afforded tetrahydroquinoline
derivatives with good to excellent enantioselectivities. It is worth
noting that this process involves the selective activation of enantio-
topic hydrogen by means of a chiral phosphoric acid. Further
investigations into the development of another chiral transfor-
mation by exploiting this type of reaction are underway in our
laboratory.
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