## **Original paper**

# Synthesis and diuretic activity of imidazo[2,1-b]thiazole acetohydrazones

Aldo ANDREANI<sup>1</sup>, Mirella RAMBALDI<sup>1</sup>, Giuseppe MASCELLANI<sup>2</sup> and Pierluigi RUGARLI<sup>2</sup>

<sup>1</sup>Istituto di Chimica Farmaceutica e Tossicologica. University of Bologna, Bologna, and <sup>2</sup>Mediolanum Farmaceutici s.r.l., Via S. G. Cottolengo 31, Milano, Italia

(Received 4-28-1986, accepted 9-22-1986)

Summary — The synthesis of dimethylaminoacetohydrazones of 5-formylimidazo[2,1-b]thiazoles and thiazolines is reported. A potent diuretic activity was confirmed for the 2-methyl derivative bearing a phenyl ring at position  $6(4_1)$ .

Résumé — Synthèse et activité diurétique d'acétohydrazones de dérivés de l'imidazo[2,1-b]thiazole. Synthèse de diméthylaminoacétohydrazones de formyl-5 imidazo[2,1-b]thiazoles et thiazolines. Une forte activité diurétique se manifeste lorsque le dérivé méthylé en 2 porte un noyau phényle en position  $6(4_1)$ .

imidazo[2,1-b]thiazoles / hydrazones / diuretic activity

#### Introduction

Owing to our interest in heterocyclic medicinal chemistry, we have investigated the synthesis and the diuretic properties of a number of formylimidazo[2,1-b]thiazole dimethylaminoacetohydrazones. These derivatives have been designed bearing in mind two recently published reports: on the one hand, the anti-inflammatory [1, 2] and anti-secretory [3] activities of different acetohydrazones, on the other, the diuretic actions of the imidazothiadiazole acrylamides 1 [4, 5]. The new derivatives 4 (Scheme 1) widen the pharmacological spectrum of the acetohydrazones and show the effectiveness of changing the supporting moiety (bioisosteric cycle replacement) and of introducing a basic substituent on the acyl group. For an exhaustive review on bicyclic heterocyclic diuretics see ref. [6].



#### Chemistry

The imidazo[2,1-b]thiazoles 2, reacting under Vilsmeier conditions, afforded the 5-formyl derivatives 3 which, in turn, were treated with N, N-dimethylaminoaceto-hydrazide to yield the hydrazones 4.

The new aldehydes  $3_{k-m}$  are described under experimental protocols, whereas the physical data concerning the hydrazones  $4_{a-m}$  are reported in Tables I and II.

#### Pharmacological Results and Discussion

Table III shows, for each compound, the acute toxicity and the diuretic effect in rats at a given dose level. Evaluation of the diuretic activity of both the saturated compounds  $4_{f-j}$  and their unsaturated analogues  $(4_{a-c})$  shows that, among the 6-position substituents which were synthesized, a phenyl or substituted phenyl group was superior. This was confirmed by the results obtained with the analogues, 2- and 3-methyl derivatives  $(4_{1-m})$  which, considering the dose employed and the acute toxicity (i.e., their therapeutic index), are obviously the most promising derivatives. For this reason, compounds  $4_{1-m}$  were chosen for more extensive evaluation of their diuretic activities. Table IV gives the results obtained in rats while Table V shows the effects of the same compounds in dogs. Taking into account the same dose levels in rats for the 0-6 h period, the salidiuretic effects of compounds  $4_1$  and  $4_m$ were comparable to that of furosemide, except for their greater kaluretic activity. In dogs, compound  $4_1$  is much more effective than  $4_m$ . Although  $4_1$  is about as potent a salidiuretic agent as furosemide, it is less effective and displays no meritorious differences in its electrolyte excre-



Table I. Dimethylaminoacetohydrazones  $4_{a-m}$ .

| Compound   | Starting                       | x               | у     | <br>R                         | Formula (mw)                                                    | Mp (°C) | Solvent |
|------------|--------------------------------|-----------------|-------|-------------------------------|-----------------------------------------------------------------|---------|---------|
|            | material                       |                 |       |                               |                                                                 |         |         |
| <u>4</u> a | <u>3</u> (7)                   | СН              | СН    | C1                            | C10 <sup>H</sup> 12 <sup>C1N</sup> 5 <sup>OS</sup> (285.8)      | 183-185 | EtOH    |
| 4 b        | <u>3</u> (7)                   | СН              | СН    | снз                           | C H N OS (265.3)                                                | 174-175 | EtOH    |
| <u>4</u> c | $\frac{3}{c}$ (7)              | CH              | CH    | с <sub>6</sub> н5             | C H N OS (327,4)                                                | 160-161 | EtOH    |
| 4 d        | <u>3</u> (8)                   | CH              | CH    | C6H4C1(p)                     | C H CIN OS (361.8)                                              | 225-227 | EtOH    |
| <u>4</u> e | 3 (8)                          | СН              | СН    | C_H_CH_(p)                    | C H N OS (341.4)                                                | 212-215 | EtOH    |
| 4 f        | $\frac{3}{1}$ f <sup>(7)</sup> | CH              | CH2   | Cl                            | C_H_C1N_OS (287.2)                                              | 120-125 | Toluene |
| 4 .        | 3 (7)                          | CH2             | CH2   | СНз                           | C1H N OS (267.4)                                                | 128-130 | Toluene |
| 4 h        | <u>3</u> (7)                   | CH2             | CH2   | C <sub>6</sub> H <sub>5</sub> | C H N OS (329.4)                                                | 174-175 | Toluene |
| <u>4</u> i | <u>3</u> (8)                   | CH <sub>2</sub> | CH2   | C_H_C1(p)                     | C_H_CIN_OS (363.9)                                              | 187-188 | Toluene |
| 4 i        | 3 (8)                          | CH2             | CH2   | C_H_CH_(p)                    | C H N OS (343.4)                                                | 203-204 | Toluene |
| 4<br>- k   | 3.                             | C-CH3           | СН    | CH3                           | C_H_N_OS (279.4)                                                | 177-178 | Toluene |
| 4 1        | 3 1                            | C-CH3           | СН    | CH                            | C_H_N_OS (341.4)                                                | 204-205 | Toluene |
| 4 m        | 3 m                            | СН              | C-CH3 | с <sub>6</sub> н<br>65        | C <sub>17</sub> <sup>19</sup> <sup>5</sup> <sup>0</sup> (341,4) | 110-113 | Toluene |

tion profile. In conclusion, the present biological data on compound  $\mathbf{4}_1$  indicate that it is a new type of potent high ceiling diuretic which also appears to be safe, as measured by its acute toxicity.

#### **Experimental** protocols

#### Chemistry

The melting points are uncorrected. Elemental analyses (C, H, N) were performed by Dr. V. Nuti (University of Pisa) and determined values are within 0.4% of the theoretical ones. Bakerflex plates (silicagel IB2-F) were used for TLC and Kieselgel 60 (Merck) for column chromatography. The eluent was a mixture of acetone/petroleum ether/30% NH<sub>4</sub>OH in different proportions (*e.g.*, 70/29/1). The IR were recorded in nujol on a Perkin—Elmer 298 and the <sup>1</sup>H NMR in CDCl<sub>3</sub> on a Varian EM-390 (90 MHz) using TMS as an internal standard.

#### Synthesis of the aldehydes $3_{k-m}$

The Vilsmeier reagent was prepared by dropping POCl<sub>3</sub> (9.2 g, 0.06 mol) into a stirred and cooled solution of DMF (4.38 g, 0.06 mol) in CHCl<sub>3</sub> (6 ml). 0.03 mol of 2,6-dimethylimidazo[2,1-b]thiazole  $2_k$  (submitted for publication) or 2-methyl-6-phenylimidazo[2,1-b]thiazole  $2_1$  [9] or 3-methyl-6-phenylimidazo[2,1-b]thiazole  $2_m$  [10] were dissolved in 40 ml of CHCl<sub>3</sub> and slowly added to the stirred and cooled Vilsmeier reagent. After 1 h at room temperature, the mixture was refluxed for 5 h, the solvent eliminated under reduced pressure, and the residue oil poured onto ice. Dilute NH<sub>4</sub>OH was slowly added to complete the precipitation (pH  $\simeq$  6) and the crude aldehyde was recovered by filtration with a yield of *ca.* 65%.

2,6-Dimethyl-5-formylimidazo[2,1-b]thiazole  $3_k$ .  $C_8H_8N_2OS$  (180.2); mp 158—59°C (EtOH);  $\nu_{max}$  (cm<sup>-1</sup>): 1640, 1320, 1260, 890.  $\delta$  (ppm): 2.45 (3H, d,  $CH_3$ -2, J = 1.5 Hz); 2.60 (3H, s,  $CH_3$ -6); 8.01 (1H, q, H-3, J = 1.5 Hz); 9.82 (1H, s, CHO).

2-Methyl-5-formyl-6-phenylimidazo [2,1-b] thiazole  $3_1$ .  $C_{13}H_{10}N_2OS$  (242.3); mp 172—75°C (EtOH);  $\nu_{max}$  (cm<sup>-1</sup>): 1630, 1320, 850, 705.  $\delta$  (ppm): 2.48 (3H, s,  $CH_3$ ); 7.55 (3H, m, ar.); 7.82 (2H, m, ar.); 8.16 (1H, q, H-3, J = 1.5 Hz); 9.95 (1H, s, CHO).

3-Methyl-5-formyl-6-phenylimidazo[2,1-b]thiazole  $3_{\rm m}$ .  $C_{13}H_{10}N_2OS$  (242.3); mp 167—69°C (EtOH);  $\nu_{\rm max}$  (cm<sup>-1</sup>): 1665, 1340, 1270, 700.  $\delta$  (ppm): 2.82 (3H, d,  $CH_3$ , J = 1.5 Hz); 6.58 (1H, q, H-2, J = 1.5 Hz); 7.54 (3H, m, ar.); 7.78 (2H, m, ar.); 9.80 (1H, s, CHO).

Synthesis of the dimethylaminoacetohydrazones 4a-m

The aldehyde  $3_{a-m}$  (4 mmol) was dissolved in 30 ml of EtOH and refluxed for 10 min with *N*,*N*-dimethylaminoacetohydrazide hydrochloride (4.5 mmol) dissolved in 5 ml of H<sub>2</sub>O. The hydrochloride thus formed was separated, dissolved in H<sub>2</sub>O and treated with dilute NH<sub>4</sub>OH to yield the hydrazone  $4_{a-m}$  as free base (*ca.* 80%) which was crystallized as reported in Table I. Compound  $4_m$  was previously purified by column chromatography. The spectroscopic data for compounds  $4_{a-m}$  are reported in Table II.

#### Pharmacology

#### Diuretic activity in rats

Four rats (Charles River—Calco, Como, Italy) were orally administered distilled water (25 ml/kg) containing the compound being tested, which had previously been suspended in Tween 80 (1% v/v with respect to water). Urine excreted during the 6 h following the treatment was collected in order to measure the sodium concentration by means of atomic absorption. The ratio of the mEq/100 g of body weight of the treated animals to the corresponding ratio of the control animals (treated with the vehicle alone) was calculated: the mean values obtained are reported in Table III.

For the determination of the excreted urinary volumes and electrolytes (Table IV), 3 groups of 2 animals were treated as in the previous test, but at the 3rd h were intubated with an additional amount of distilled water (25 ml/kg).

#### Diuretic activity in dogs

Four male beagles weighing 10-13 kg were housed in an air-conditioned room and received commercial diet and water *ad libitum*. Two days before the treatment, urine was collected by means of a catheter, measured and analyzed. The mean values of volumes and electrolytes thus obtained were used as a control (Table V). On day 3 the lower dose was administered p.o. and urine excreted during the first 2 h was collected and analyzed separately from that excreted during the subsequent 4 h. On day 6, the dogs received the second dose (5 mg/kg) of the same compound and the new data were registered. The same experiment was repeated with the second compound under consideration and then with furosemide included as usual for comparative purposes.

v (cm<sup>-1</sup>)  $\delta(ppm)$ : th = thiazole thn = thiazoline Compound 1675,1300, 2.36(6H,s,CH<sub>2</sub>NCH<sub>2</sub>);3.15(2H,s,CH<sub>2</sub>);7.06(1H,d,th,J=4.5Hz);8.32(1H,s,CH);  $\frac{4}{2}$  a 1240,1150 8.50(1H,d,th,J=4.5Hz);10.25(1H,broad s,NH) 4 h 1675,1610, 2.38(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);2.43(3H,s,CH<sub>3</sub>);3.15(2H,s,CH<sub>2</sub>);6.91(1H,d,th,J=4.5 1300,1260 Hz);8.40(1H,s,CH);8.43(1H,d,th,J=4.5Hz);10.19(1H,broad s,NH) 1670,1285, <u>4</u> 2.32(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);3.11(2H,s,CH<sub>2</sub>);6.90(1H,d,th,J=4.5Hz);7.40(3H,m,ar); 1255,1150 7.68(2H,m,ar);8.45(1H,s,CH);8.51(1H,d,th,J=4.5Hz);10.25(1H,broad s,NH) 1675,1290,  $\frac{4}{d}$ 2.42(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);3.20(2H,s,CH<sub>2</sub>);6.98(1H,d,th,J=4.5Hz);7.50(2H,d,ar, 1235,1150 J=8.5Hz);7.70(2H,d,ar,J=8.5Hz);8.58(1H,s,CH);8.60(1H,d,th,J=4.5Hz); 10.30(1H,broad s,NH) 1675,1370, <u>4</u> e 2.35(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);2.41(3H,s,C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>);3.13(2H,s,CH<sub>2</sub>);6.90(1H,d,th, 1285,1160 J=4.5Hz);7.30(2H,d,ar,J=8.5Hz);7.58(2H,d,ar,J=8.5Hz);8.41(1H,s,CH); 8.55(1H,d,th,J=4.5Hz);10.05(1H,broad s,NH)  $\frac{4}{f}$ f 1685,1290, 2.35(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);3.13(2H,s,CH<sub>2</sub>);3.85(2H,t,thn,J=7.5Hz);4.60(2H,t, 1240,1165 thn,J=7.5Hz);8.08(1H,s,CH);10.25(1H,broad s,NH) 1675,1610, 2.25(3H,s,CH<sub>3</sub>);2.32(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);3.10(2H,s,CH<sub>2</sub>);3.81(2H,t,thn,J=7.5  $\frac{4}{g}$ 1370,1260 Hz);4.54(2H,t,thn,J=7.5Hz);8.10(1H,s,CH);10.08(1H,broad s,NH) 2.31(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);3.08(2H,s,CH<sub>2</sub>);3.80(2H,t,thn,J=7.5Hz);4.60(2H,t,  $\frac{4}{h}$ 1690,1600, 1300,1255 thn,J=7.5Hz);7.38(3H,m,ar);7.57(2H,m,ar);8.20(1H,s,CH);10.17(1H, broad s,NH) <u>4</u> i 1690,1300, 2.33(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);3.10(2H,s,CH<sub>2</sub>);3.86(2H,t,thn,J=7.5Hz);4.63(2H,t, 1250,830 thn,J=7.5Hz);7.40(2H,d,ar,J=8.5Hz);7.65(2H,d,ar,J=8.5Hz);8.24(1H,s, CH);10.15(1H,broad s,NH)  $\frac{4}{1}$ 1670,1585, 2.34(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);2.40(3H,s,C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>);3.12(2H,s,CH<sub>2</sub>);3.87(2H,t,thn, 1540,1250 J=7.5Hz);4.66(2H,t,thn,J=7.5Hz);7.29(2H,d,ar,J=8.5Hz);7.53(2H,d,ar, J=8.5Hz);8.20(1H,s,CH);10.08(1H,broad s,NH) 1675,1300, 4 k 2.35(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);2.40(3H,s,CH<sub>3</sub>-6);2.42(3H,d,CH<sub>3</sub>-2,J=1.5Hz);3.13(2H, 1250,1170 s,CH<sub>2</sub>);8.10(1H,q,th,J=1.5Hz);8.32(1H,s,CH);10.11(1H,broad s, NH) 1655,1595, 2.32(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);2.43(3H,d,CH<sub>3</sub>,J=1.5Hz);3.11(2H,s,CH<sub>2</sub>);7.40(3H,m, 4 1 1530,1325 ar);7.65(2H,m,ar);8.17(1H,q,th,J=1.5Hz);8.38(1H,s,CH);10.20(1H,s,NH) 1690,1570, 4 m 2.32(6H,s,CH<sub>3</sub>NCH<sub>3</sub>);2.85(3H,d,CH<sub>3</sub>,J=1.5Hz);3.10(2H,s,CH<sub>3</sub>);6.45(1H,q,th, 1225,1155 J=1.5Hz);7.45(3H,m,ar);7.65(2H,m,ar);8.28(1H,s,CH);10.0(1H,broad s,NH)

Table II. IR and <sup>1</sup>H NMR data for the hydrazones  $4_{a-m}$ .

Table III. Diuretic activity and acute toxicity of the hydrazones  $4_{a-m}$  in rats.

| Compound                     | Dose<br>(mg/kg) | Diuretic<br>effect <sup>a</sup> | $LD_{50}$ p.o. and i.p. (mg/kg) |
|------------------------------|-----------------|---------------------------------|---------------------------------|
| 4,                           | 20              | 120                             | 1500, 250                       |
| <b>4</b> <sup><b>b</b></sup> |                 | n.s.                            | 1500, 600                       |
| <b>4</b> <sub>c</sub>        | 5               | 310                             | 600, 600                        |
| <b>4</b> <sub>d</sub>        | 20              | 170                             | > 1000, > 1000                  |
| <b>4</b> <sub>e</sub>        | 5               | 130                             | > 3000, > 3000                  |
| 4 <sub>f</sub>               | 20              | 130                             | > 1000, 600                     |
| 4 <sub>g</sub>               |                 | n.s.                            | > 1000, > 1000                  |
| $4_{\rm h}$                  | 10              | 230                             | > 3000, > 1000                  |
| 4 <sub>i</sub>               | 20              | 230                             | 800, 600                        |
| <b>4</b> <sub>i</sub>        | 20              | 120                             | 800, 600                        |
| <b>4</b> <sub>k</sub>        | 10              | 180                             | 1000, 600                       |
| <b>4</b> <sub>1</sub>        | 1               | 300                             | > 3000, > 3000                  |
| 4 <sub>m</sub>               | 0.5             | 250                             | > 3000, > 3000                  |
| Furosemide                   | 10              | 490                             |                                 |
| Hydroflumethiazide           | 5               | 260                             |                                 |
| Spironolactone               | 20              | 360                             |                                 |
| Acetazolamide                | 2.5             | 200                             |                                 |

### References

- 1 Tajana A., Portioli F., Nardi D. & Magistretti M. J. (1979) Boll. Chim. Farm. 118, 397
- 2 Verma M., Gujrati V. R., Sharma M., Bhalla T. N., Saxena A. K., Sinha J. N., Bhargava K. P. & Shanker K. (1984) Arch. Pharm. 317, 890
- Catto A., Cappelletti R., Leonardi A., Maggi F., Tajana A. & Nardi D. (1983) Farmaco, Ed. Sci. 38, 559
- 4 Ingendoh A., Meyer H. & Garthoff B. (1984) Ger. Offen. DE 3208437; (1984) Chem. Abstr. 100, 156587r
- 5 Ingendoh A., Meyer H. & Garthoff B. (1985) Ger. Offen. DE 3329621; (1985) Chem. Abstr. 103, 22596w
- 6 Cragoe E. J. Jr. (1983) in: Diuretics: Chemistry, Pharmacology and Medicine (Cragoe E. J. Jr., ed.), John Wiley & Sons, New York, p. 425
- 7 Andreani A., Rambaldi M. & Bonazzi D. (1980) Farmaco, Ed. Sci., 35, 573
- 8 Andreani A., Bonazzi D. & Rambaldi M. (1982) Arch. Pharm. 315, 451
- 9 Pyl T., Giebelmann R. & Beyer H. (1961) Annalen 643, 145
- 10 Kondo H. & Nagasawa F. (1937) J. Pharm. Soc. Jpn 57, 1050; Chem. Abstr. 32, 3398-6

<sup>a</sup> Increase of sodium excretion expressed as a percentage in comparison to control = 100; n.s. = not significant.

Table IV. Excreted urinary volumes and electrolytes in rats (mean  $\pm$  SEM).

| Compound                                                                                      | Dose<br>(mg/kg)              | Urinary volut<br>Body weight                                                                                                      | me (ml) a<br>(kg)                                                                                                                 | Ion (mEq) <sup>b</sup><br>Body weight (kg)                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4 <sub>1</sub><br>4 <sub>1</sub><br>4 <sub>m</sub><br>4 <sub>m</sub><br>Furosemide<br>Control | 2.5<br>10<br>2.5<br>10<br>10 | $\begin{array}{c} 26.5 \pm 0.42 \\ 34.5 \pm 1.30 \\ 33.3 \pm 1.20 \\ 32.6 \pm 0.75 \\ 36.5 \pm 0.83 \\ 20.3 \pm 1.21 \end{array}$ | $\begin{array}{c} 16.7 \pm 1.22 \\ 16.4 \pm 1.54 \\ 13.6 \pm 0.52 \\ 14.7 \pm 2.43 \\ 10.7 \pm 0.87 \\ 10.5 \pm 0.95 \end{array}$ | $\begin{array}{c} 1.32 \pm 0.15; 0.48 \pm 0.01 \\ 2.24 \pm 0.06; 0.66 \pm 0.09 \\ 2.03 \pm 0.15; 0.93 \pm 0.05 \\ 2.55 \pm 0.71; 1.04 \pm 0.12 \\ 1.82 \pm 0.33; 1.02 \pm 0.05 \\ 0.24 \pm 0.01; 0.38 \pm 0.02 \end{array}$ | $\begin{array}{c} 0.06 \pm 0.01 \text{; } 0.35 \pm 0.02 \\ 0.15 \pm 0.01 \text{; } 0.33 \pm 0.03 \\ 0.14 \pm 0.02 \text{; } 0.33 \pm 0.04 \\ 0.16 \pm 0.03 \text{; } 0.25 \pm 0.02 \\ 0.03 \pm 0.01 \text{; } 0.13 \pm 0.02 \\ 0.05 \pm 0.01 \text{; } 0.20 \pm 0.01 \end{array}$ |  |

a 0-3 h and 3-6 h, respectively.

<sup>b</sup> Na<sup>+</sup>; K<sup>+</sup> for the period 0-3 h and 3-6 h, respectively.

| Compound                  | Dose<br>(mg/kg) | Urinary volume                                                                                           | Na <sup>+</sup>                                                                                   | K+                                                                                                                      | Cl-                                                                                              |
|---------------------------|-----------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Control<br>4 <sub>1</sub> | <u> </u>        | $\begin{array}{rrrr} 24.9 \pm & 1.9 & 30.6 \pm & 2.1 \\ 99.0 \pm & 2.8 & 76.5 \pm & 15.9 \end{array}$    | $\begin{array}{ccc} 2.65 \pm 0.40 & 2.82 \pm 0.42 \\ 18.21 \pm 2.44 & 5.60 \pm 0.26 \end{array}$  | $\begin{array}{c} 0.33 \pm 0.11 \ 0.38 \pm 0.09 \\ 1.51 \pm 0.56 \ 0.54 \pm 0.12 \end{array}$                           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                             |
| Control<br>4 <sub>1</sub> | 5               | $\begin{array}{rrrr} 28.6 \pm & 2.0 & 31.8 \pm & 2.3 \\ 232.0 \pm & 21.9 & 121.8 \pm & 10.7 \end{array}$ | $\begin{array}{c} 2.70 \pm 0.28 & 2.76 \pm 0.40 \\ 24.02 \pm 2.98 & 11.26 \pm 1.42 \end{array}$   | $\begin{array}{c} 0.62 \pm 0.14 \ \ 0.33 \pm 0.10 \\ 3.35 \pm 0.81 \ \ 0.39 \pm 0.19 \end{array}$                       | $\begin{array}{c} 2.45 \pm 0.23 \ 2.74 \ \pm 0.37 \\ 33.25 \pm 1.65 \ 8.61 \pm 1.48 \end{array}$ |
| Control<br>4 <sub>m</sub> | 1               | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                     | $\begin{array}{cccc} 2.65 \pm 1.45 & 2.72 \pm 0.45 \\ 4.17 \pm 0.50 & 4.45 \pm 0.22 \end{array}$  | $\begin{array}{c} 0.26 \pm 0.08 \hspace{0.1cm} 0.46 \pm 0.21 \\ 0.36 \pm 0.09 \hspace{0.1cm} 0.62 \pm 0.25 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                             |
| Control<br>4 <sub>m</sub> | 5               | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                     | $\begin{array}{cccc} 2.27 \pm 0.18 & 2.73 \pm 0.28 \\ 6.60 \pm 1.01 & 5.32 \pm 0.80 \end{array}$  | $\begin{array}{c} 0.73 \pm 0.13 \ 0.66 \pm 0.09 \\ 1.63 \pm 0.17 \ 1.74 \pm 0.18 \end{array}$                           | $\begin{array}{cccc} 2.33 \pm 0.18 & 2.36 \pm 0.27 \\ 5.31 \pm 0.49 & 5.07 \pm 0.46 \end{array}$ |
| Control<br>Furosemide     | 1               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     | $\begin{array}{cccc} 2.81 \pm 0.44 & 3.10 \pm 0.58 \\ 20.88 \pm 6.14 & 4.89 \pm 0.69 \end{array}$ | $\begin{array}{c} 0.35 \pm 0.11 \hspace{0.1cm} 0.43 \pm 0.15 \\ 0.86 \pm 0.36 \hspace{0.1cm} 0.93 \pm 0.46 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                             |
| Control<br>Furosemide     | 5               | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                     | $\begin{array}{rrrr} 3.20 \pm 0.45 & 2.24 \pm 0.20 \\ 57.15 \pm 7.98 & 6.31 \pm 2.68 \end{array}$ | $\begin{array}{c} 0.52 \pm 0.07 \ 0.65 \pm 0.14 \\ 6.78 \pm 0.83 \ 1.60 \pm 0.30 \end{array}$                           | $\begin{array}{c} 2.26 \pm 0.15 & 2.45 \pm 0.24 \\ 22.47 \pm 2.95 & 30.09 \pm 1.59 \end{array}$  |

Table V. Excreted urinary volumes (ml) and electrolytes (mEq) in dogs.