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Abstract: A glycotriazolophane (carbohydrate–triazole–cyclo-
phane hybrid) has been synthesized from a sugar amino acid via
copper-catalysed azide–alkyne cycloaddition.
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Macrocyclic compounds incorporating carbohydrates
have been of interest as they have application in bioorgan-
ic and supramolecular chemistry. Such compounds have
been investigated as inhibitors of carbohydrate–protein or
carbohydrate–RNA interactions where the embedded car-
bohydrate structures are involved in binding to a recep-
tor.1 Macrocyclic carbohydrates have also found
application in host–guest chemistry. This includes the use
of glycophanes (carbohydrate–cyclophane hybrids) for
studying carbohydrate–carbohydrate interactions2 or of
cyclodextrins3 and cyclodextrin mimetics and their appli-
cation. The incorporation of carbohydrates into macro-
cycles4 facilitates modification of properties through
modification of the reactive functional groups of the sac-
charide. Saccharides and their derivatives have thus found
wide application as scaffolds for novel bioactive molecule
design and synthesis.5 Macrocyclic compounds, such as
cyclophanes and their analogues, have also displayed
properties as scaffolds in bioactive molecule develop-
ment.6 Herein we describe the synthesis of a new class of
cyclophane7 derivatives from sugar amino acid building
blocks.

Sugar amino acids8 (SAA) are monosaccharide-based
building blocks that feature a carboxylic acid and an
amine (or azide) functional group, and they have found
application in peptidomimetic9 and foldamer10 synthesis.
The use of SAA 111 was investigated as a building block
to generate novel macrocycles. Thus treatment of 1 with
oxalyl chloride in the presence of DMF in dichloro-
methane gave the acid chloride, which was reacted with
p-xylene-1,4-diamine 2 in the presence of DIPEA in
dichloromethane followed by de-O-acetylation gave the
bisazide 3 in 37% yield from 1.

p-Bispropargyloxybenzene 4 was prepared as described
previously,12 and its reaction with 3 was investigated.
Thus reaction of 3 and 4 in the presence of copper sulfate

and sodium ascorbate in acetonitrile–water gave the de-
sired cyclophane derivative 5 in 56% yield (Scheme 1).13

Formation of the macrocyclic product 5 as opposed to oli-
gomeric products was supported by NMR and MS
{725.2549 [M + H]+}.14 A low energy structure for 5 was
generated using a conformational search (SUMM meth-
od) in Macromodel (Figure 1).15 The low solubility of the
macrocycle precluded an investigation of its molecular-
recognition phenomena in water.

In summary a new application for sugar amino acids lead-
ing to glycotriazolophanes has been outlined. It is envis-
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aged that a variety of novel chiral cyclophane16

derivatives could be generated by the concise approach
described herein.
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Figure 1 A low-energy structure of 5 (macromodel)
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