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Abstract

The rare sugar L-tagatose was prepared with an overall yield of 78% by enzymatic C-5
oxidation of galactitol with co-substrate regeneration, and purification by ligand exchange
chromatography. The sugar was identified by HPLC, melting point determination, optical
rotation, and NMR spectrometry. © 1998 Elsevier Science Ltd.
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1. Introduction

Unnatural monosaccharides are potentially useful
as nonmetabolizable sweeteners and as building
blocks for the synthesis of interesting natural and
biologically active products [1]. For many decades,
L-sorbose is used as the starting material for the
industrial production of L-ascorbic acid [2], and only
recently has it been used as a precursor for the facile
synthesis of the potent glycosidase inhibitor 1-de-
oxygalactonojirimycin [3]. Similarly, but more effi-
ciently, L-tagatose (2 Scheme 1) can be also used as
starting material for the synthesis of 1-deoxyga-
lactonojirimycin [3]. While L-sorbose is abundantly
available, the accessibility of 2 is hampered by insuf-
ficient methods of production. 2 has been prepared
chemically from 1,5-anhydro-p-galactitol, D-galactose
and L-tartaric acid with yields of 3% [4], 38% [5,6],
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and 15% [7,8], respectively. More efficient are enzy-
matic routes, e.g., by use of L-fuculose 1-phosphate
aldolase for the synthesis of L-tagatose 1-phosphate
(86%) from dihydroxyacetone phosphate and L-
glyceraldehyde [9] which can be dephosphorylated to
2 (79%) with phosphatase [10]. The isomerization of
the rare sugar L-talose to 2 (75%) with L-rhamnose
isomerase [9], the epimerization of L-sorbose into 2
(20%) with D-tagatose 3-epimerase [11], and the mi-
crobial conversion of galactitol to 2 (70%) with
Klebsiella pneumoniae strain 40b [12] have also been
demonstrated.

In this communication, we report an efficient en-
zymatic synthesis of 2 by regioselective oxidation at
C-5 of the readily available polyol galactitol 1 Scheme
1 with partially purified galactitol dehydrogenase
(GDH) [13]. Since oxidation of 1 to 2 by GDH is
accomplished in the presence of catalytic amounts of
NAD (NAD:galactitol = 1:28), an efficient system
for continuous in situ regeneration of NAD with
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Scheme 1.

lactate dehydrogenase (LDH) is required [14] (Scheme
1). In this system, substrate oxidation is favoured by
an alkaline pH, and by the low co-substrate concen-
tration used in combination with an efficient re-
oxidation of NADH with excess LDH, which alto-
gether minimizes product inhibition of GDH by
NADH.

Fig. 1 shows the time course of the bioconversion
with partially purified GDH in the presence of 100
mM 1 (1.8 g in 100 mL) to give 2 in yields of 98%.
This result was confirmed by two other experiments
performed under the same conditions. However, at
lower GDH concentrations than 130 U /100 mL (see
Section 2) the bioconversions were incomplete and
resulted in significant lower yields of 2 with pro-
longed reaction times. 2 was purified from the reac-
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Fig. 1. Bioconversion of galactitol 1 to L-tagatose 2 by
galactitol dehydrogenase from Rhodobacter shaeroides D.
The operating conditions are described in Section 2.

tion solution of the bioconversion illustrated in Fig. 1
by ligand exchange chromatography [15,16,18] and
recovered as solid material following lyophilization.
A total of 1.4 g solid 2 was obtained corresponding to
an overall yield of 78%. 2 was identified by 'H and
¥C NMR spectrometry in comparison with authentic
p-tagatose [17], HPLC comparison with authentic
D-tagatose (retention time: 11.8 min), mp {129-130
°C (lit. [4]: 134-135 °C)}, and optical rotation {[a |3
+5.7 (c 1.0, waten); lit. [11]: [«@]5 +6.7 (c 84,
water)}.

2. Experimental

Organism and enzyme.—For the production of
galactitol dehydrogenase (GDH), the phototrophic
bacterium Rhodobacter sphaeroides D was used
which is a galactitol utilizable gain of function mu-
tant of the wild-type R. sphaeroides Si4 (DSM 8371)
[13]. The organism was grown in a 2-L bioreactor on
mineral medium with 6.0 g/L DL-malate as carbon
source [13]. Galactitol dehydrogenase (GDH) was
partially purified from cell extracts by ammonium
sulfate precipitation and chromatography on Phenyl-
Sepharose, and Q-Sepharose [13].

Bioconversion.—Bioconversions were performed
in 100 mM Tris—HCI (pH 8.5) containing the follow-
ing components in a total volume of 100 mL: galacti-
tol, 100 mM; sodium pyruvate, 200 mM; magnesium
chloride, 1 mM; NAD, 3.6 mM; GDH, 132 U; lactate
dehydrogenase, 367 U. The solution was shaken in an
Erlenmeyer flask at 150 rpm at 30 °C. Samples were
taken at the time intervals indicated, and the super-
natant was assayed for substrate and product.
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Starting material and product identification, and
sugar purification.—Educt and product in bioconver-
sions were determined by HPLC in comparison with
authentic galactitol and D-tagatose. A Benson-100
carbohydrate column (Benson Polymeric, Reno, USA)
[14,15] was used, linked with a refractive index de-
tector. The mobile phase was water at a flow rate of
0.85 mL min~'. The retention times determined for
galactitol and L-tagatose were 14.5 min and 11.8 min,
respectively. When the bioconversion was complete,
protein was precipitated and removed by centrifuga-
tion at 5000 g for 15 min at 4 °C. Then the super-
natant solution was concentrated in a Biichi rotary
evaporator at 40 °C to a volume of about 30 mL.
L-Tagatose was purified from this solution by ligand
exchange chromatography on a Ca®* loaded Dowex
50W X8 column [15,16,18]. Fractions containing L-
tagatose were pooled and concentrated by evapora-
tion to dryness. L-Tagatose was identified by 'H and
*C NMR spectrometry in comparison with authentic
D-tagatose prepared chemo-enzymatically from D-
galactose [17]. The NMR spectra of L-tagatose were
in complete agreement with those of authentic D-
tagatose [17]. The optical rotation of L-tagatose was
determined with a Perkin Elmer 241 spectral po-
larimeter following mutarotation for 16 h at room
temperature: [a]X +5.7 (c 1.0, water); {lit. [11]
[a]® +6.7 (c 8.4, water)}. The melting point of
L-tagatose was 129-130 °C (lit. [4]: 134—-135 °C).
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