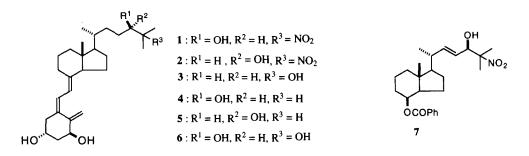


Bioorganic & Medicinal Chemistry Letters 9 (1999) 381-384

BIOORGANIC & MEDICINAL CHEMISTRY LETTERS

Synthesis and Biological Evaluation of 1α,24-Dihydroxy-25-nitrovitamin D₃

Jun-ichi Oshida,* Makoto Okamoto,** Seiichi Ishizuka,^b and Shizuo Azuma*

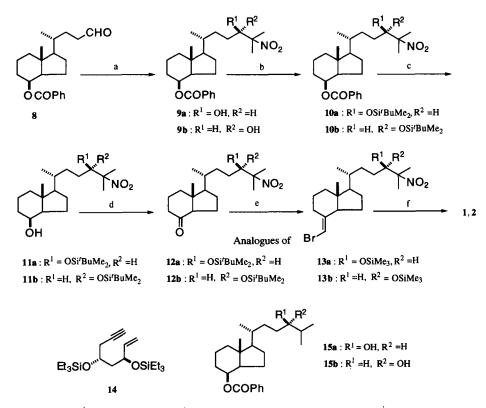

^aIwakuni Pharmaceutical Factory, Teijin, Ltd., 2-1 Hinode-cho, Iwakuni, Yamaguchi 740-8511, Japan ^bInstitute for Bio-Medical Research, Teijin, Ltd., 4-3-2 Asahigaoka, Hino, Tokyo 191-8512, Japan

Received 2 November 1998; accepted 16 December 1998

Abstract: $1\alpha,24(R)$ -Dihydroxy-25-nitrovitamin D₃ 1 and $1\alpha,24(S)$ -dihydroxy-25-nitrovitamin D₃ 2 were synthesized using the palladium-catalyzed alkylative enyne cyclization reaction. Their biological properties were studied based on VDR binding affinity and HL-60 cell differentiation activity. (© 1999 Elsevier Science Ltd. All rights reserved.

 $1\alpha,25$ -Dihydroxyvitamin D₃ **3**, an active metabolite of vitamin D₃, mediates calcium and phosphorous homeostasis,¹ and influences cell proliferation and cell differentiation.² For separating the calcemic effect from the differentiation activity, many structural analogues of **3** have been synthesized. Among them, $1\alpha,24(R)$ -dihydroxyvitamin D₃³ **4** is known to induce keratinocyte differentiation⁴ with less hypercalcemic activity, and is used as a therapeutic agent for psoriasis. Although **4** is a potent active Vitamin D₃ analogue, it is also known to be metabolized to $1\alpha,24(R),25$ -trihydroxyvitamin D₃ **6** thus reducing its biological activities.⁵

We previously reported⁶ the preparation of the CD-ring synthon 7 having a nitro group in the side chain using the asymmetric nitroaldol reaction, which could be utilized after denitration for the synthesis of 4. On the other hand, active vitamin D_3 analogues, which focused on the inhibition of hydroxylation at the 25position, by the introduction of a substituent have been rarely reported.⁷ Herein, we wish to describe the synthesis of $1\alpha, 24(R)$ -dihydroxy-25-nitrovitamin D_3 1 and $1\alpha, 24(S)$ -dihydroxy-25-nitrovitamin D_3 2, which are the first analogues of vitamin D_3 bearing a nitro group in the side chain, and also the results of their biological properties.



0960-894X/99/\$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved. *PII:* S0960-894X(99)00013-X

Synthesis

The key synthons 13a and 13b for the palladium-catalyzed alkylative enyne cyclization reaction,^{8a} which is considered one of the most useful methods for constructing the Vitamin D triene system,⁸ were prepared from the known CD-ring aldehyde⁹ 8 (Scheme 1).

The aldehyde 8 was subjected to the non-stereospecific nitroaldol reaction¹⁰ with 2-nitropropane using 'BuMe₂SiCl, tetrabutylammonium fluoride, and triethylamine to afford diastereomeric nitroaldol products 9a (41%) and 9b (32%) after separation by column chromatography. Each absolute configuration of 9a and 9b was determined by HPLC analysis by comparing the retention time of each denitration product 15a and 15b using Bu₃SnH in the presence of 2,2'-azobisisobutyronitrile (AIBN)⁶ with that of authentic samples after the denitration. The silylation of the nitroaldol adducts 9a and 9b led to the respective silylated alcohols 10a (99%) and 10b (96%). The deprotection of benzoates 10a and 10b was carried out by reduction with ¹Bu₂AlH to give alcohols 11a (94%) and 11b (99%). The oxidation of the resulting alcohols 11a and 11b with pyridinium chlorochromate (PCC) yielded ketones 12a (75%) and 12b (91%) according to the cited literature.⁹ The bromomethylation of the ketones followed by exchange of the protecting group from TBDMS to TMS furnished the key CD-ring synthons 13a (44%) and 13b (46%). Each CD-ring synthon was

Scheme 1. a) ${}^{i}PrNO_{2}$, NEt₃, Bu₄NF, ${}^{i}BuMe_{2}SiCl; b$) ${}^{i}BuMe_{2}SiOTf, 2,6-lutidine; c) {}^{i}Bu_{2}AlH; d$) PCC; e) (1)Ph₃P+CH₂Br Br', NaN(TMS)₂, (2)LiBF₄, H₂SO₄, (3)Me₃Si-imidazole; f) (1)13, Pd₂(dba)₃-CHCl₃, PPh₃, NEt₃, (2) pyridinium *p*-toluenesulfonate.

coupled with the A-ring enyne¹¹ 14 using $Pd_2(dba)_3$ CHCl₃, triethylamine and triphenylphosphine, and subsequently deprotected with pyridinium *p*-toluensulfonate to yield 1 α ,24(*R*)-dihydroxy-25-nitrovitamin D3 1 (41%) and 1 α ,24(*S*)-dihydroxy-25-nitrovitamin D3 2 (42%), respectively.¹² These obtained compounds showed satisfactory spectral data (NMR, MS, UV, etc).

Biological Evaluation

Vitamin D receptor (VDR) binding affinity was evaluated using chick intestinal VDR.¹³ 1α ,24(R)-Dihydroxy-25-nitrovitamin D₃ 1 showed a high affinity to VDR comparable to that of 1α ,25dihydroxyvitamin D₃ 3 and 1α ,24(R)-Dihydroxyvitamin D₃ 4. Whereas, 1α ,24(S)-dihydroxy-25nitrovitamin D₃ 2 showed about one-tenth the affinity of 1 as almost similar affinity to 1α ,24(S)dihydroxyvitamin D₃ 5.

Concerning the cell differentiation activity toward HL-60 cells, 14 1 exhibited almost a 2-fold higher activity than 3 similar to 4. On the other hand, the activity of 2 was about 10 times lower than those of the three derivatives (1, 3, 4) similar to 5.

These results showed that the nitro group at the 25-position seemed to have little effect on both the vitamin D receptor (VDR) binding affinity and cell differentiation activity toward HL-60 cells.

Analogue	VDR binding ²⁾	HL-60 cell differentiation ³⁾
$1\alpha,24(R)$ -dihydroxy-25-nitrovitamin D ₃ 1	93	182
$1\alpha_{3}24(S)$ -dihydroxy-25-nitrovitamin D ₃ 2	10	12
1α ,25-dihydroxyvitamin D ₃ 3	100	100
$1\alpha,24(R)$ -dihydroxyvitamin D ₃ 4	131	182
$1\alpha,24(S)$ -dihydroxyvitamin D ₃ 5	10	18

Table1. Biological Activity of 10,25-Dihydroxyvitamin D₃ Analogues¹⁾

1) The activity of all analogues are compared with that of 1α , 25-Dihydroxyvitamin D₃ 3.

2) Binding was assessed by relative affinity for chick intestinal vitamin D receptor.

3) Cell differentiation was assessed in terms of 4-nitro-blue tetrazolium (NBT) reductivity.

Conclusion

We have synthesized two novel analogues of active vitamin D₃ having a nitro group at the 25-position. The 24R-isomer $(1\alpha, 24(R))$ -dihydroxy-25-nitorovitamin D₃ 1) showed comparable biological activities to $1\alpha, 25$ -dihydroxyvitamin D₃ 3 in VDR binding affinity and cell differentiation activity and is considered promising candidate for further evaluation.

Acknowledgment

The authors gratefully acknowledge S. Sugihara for his technical assistance. We also thank Dr. T. Tanaka for his suggestions.

References

- 1. Lawson, D. E. M.; Wilson, P. W.; Kodicek, E., Biochem. J. 1969, 115, 269.
- (a) Binderup, L.; Walworth, N. C.; Holick, M. F. J. Invest. Dermatol. 1986, 86, 709; (b) Tanaka, H.;
 Abe, E.; Miyaura, C.; Kurihashi, T.; Konno, K.; Nishii, Y.; Suda, T., Biochem. J. 1982, 204, 713.
- 3. Morisaki, M.; Koizumi, N.; Ikekawa, N., J. Chem. Soc. Perkin. Trans. I 1975, 1421.
- (a) Matsumoto, K.; Hashimoto, K.; Kiyoki, M.; Yamamoto, M.; Yoshikawa, K., J. Dermatol. 1990, 17, 97; (b) Matsunaga, T.; Yamamoto, M.; Mimura, H.; Ohta, T.; Kiyoki, M.; Ohba, T.; Naruchi, T.; Hosoi, J.; Kuroki, T., J. Dermatol. 1990, 17, 135; (c) Kobayashi, T.; Okumura, H.; Azuma, Y.; Kiyoki, M.; Matsumoto, K.; Hashimoto, K.; Yoshikawa, K., J. Dermatol. 1990, 17, 707.
- (a) Kawashima, H.; Hoshina, K.; Saitoh, N.; Hashimoto, Y.; Ishimato, S.; Noguchi, T.; Orimo, H., FEBS Lett. 1979, 104, 367; (b) Chen, T. C.; Persons, K.; Uskovic, M. R.; Horst, R. L.; Holick, M. F., J. Nutr. Biochem. 1993, 4, 49.
- 6. Oshida, J.; Okamoto, M.; Azuma, S.; Tanaka, T. Tetrahedron Asymmetry 1997, 8, 2579.
- 7. Bouillon, R.; Okamura, W. H.; Norman, A. W. Endocrine Reviews 1995, 16, 200.
- (a) Trost, B. M.; Dumas, J.; Villa, M., J. Am. Chem. Soc. 1992, 114, 9836; (b) Inhoffen, H. H.; Irmsher, K.; Hirschfeld, H.; Stache, U.; Kreuzer, A., Chem. Ber., 1958, 91, 2309; (c) Harrison, I. Y.; Lythgoe, B., J. Chem. Soc., 1958, 837, 843; (d) Diwon, J.; Littlewood, P. S.; Lythgoe, B.; Saksena, A. K.; J. Chem. Soc. Chem. Commun. 1970, 993; (e) Nemoto, H.; Kimura, T.; Kurobe, H.; Fukumoto, K.; Kametani, T., J. Chem. Soc. Perkin. Trans. 1 1986, 1777; (f) Kocienski, P. J.; Lythgoe, B., J. Chem. Soc. Perkin. Trans. 1 1980, 1400; (g) Nemoto, H.; Kurobe, H.; Fukumoto, K.; Kametani, T., J. Org. Chem. 1986, 51, 5311; (h) Wilson, S. R.; Haque, M. S.; Venkatesan, A. M.; Zucker, P. A., Tetrahedron Lett. 1984, 25, 3151.
- 9. Okamoto, M.; Fujii, T.; Tanaka, T. Tetrahedron 1995, 51, 5543.
- 10. Fernandez, R.; Gasch, C.; Gomez-Sanchez, A.; Vichez, J. E. Tetrahedron Lett. 1991, 32, 3225.
- (a) Tabe, M.; Manabe, K.; Hazato, A; Gao, O, Japan. Patent 5-168967 (July 8, 1993); (b) Tazumi, K.; Ogasawara, K., J. Chem. Soc. Chem. Commun. 1994, 1903; (c) Trost, B. M.; Hanson, P. R.; Tetrahedron Lett. 1994, 35, 8119.
- 12. 1: ¹H NMR (200 MHz, CDCl₃, ppm) δ 0.56 (3H, s), 0.92 (3H, d, *J* = 6 Hz), 1.05 2.90 (20H, m), 1.57 (3H, s), 1.58 (3H, s), 3.90 4.05 (1H, m), 4.15 4.30 (1H, m), 4.40 4.50 (1H, m), 4.95 5.05 (1H, m), 5.30 5.40 (1H, m), 6.02 (1H, d, *J* = 12 Hz), 6.38 (1H, d, *J* = 12 Hz); UV (EtOH) λ_{max} 264 nm; MS *m*/z 461 (M⁺); HRMS *m*/z 461.3121, calcd. for C₂₇H₄₃NO₅: 461.3141. 2: ¹H NMR (200 MHz, CDCl₃, ppm) δ 0.56 (3H, s), 0.92 (3H, d, *J* = 6 Hz), 1.05 - 2.90 (20H, m), 1.57

(3H, s), 1.58 (3H, s), 3.90 - 4.05 (1H, m), 4.15 - 4.30 (1H, m), 4.40 - 4.50 (1H, m), 4.95 - 5.05 (1H, m), 5.30 - 5.40 (1H, m), 6.02 (1H, d, J = 12 Hz), 6.38 (1H, d, J = 12 Hz); UV (EtOH) λ_{max} 264 nm; MS m/z 461 (M+); HRMS m/z 461.3132, calcd. for C₂₇H₄₃NO₅: 461.3141.

- Imae, Y.; Manaka, A.; Yoshida, N., Ishimi, Y.; Shinki, T.; Abe, E.; Suda, T.; Konno, K.; Takayama, H.; Yamada, S. Biochim. Biophys. Acta 1994, 1213, 302.
- 14. Collins, S.; Ruscetti, F. W.; Gallagher, R.E.; Gallo, R.C. J. Exp. Med. 1979, 149, 969.