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Abstract—To develop antisense oligonucleotides, novel nucleosides, 20-O,40-C-ethylene nucleosides and their corresponding phos-
phoramidites, were synthesized as building blocks. The 1H NMR analysis showed that the 20-O,40-C-ethylene linkage of these
nucleosides restricts the sugar puckering to the N-conformation as well as the linkage of 20-O,40-C-methylene nucleosides which are
known as bridged nucleic acids (BNA) or locked nucleic acids (LNA). The ethylene-bridged nucleic acids (ENA) showed a high
binding affinity for the complementary RNA strand (�Tm=+5.2 �C/modification) and were more nuclease-resistant than natural
DNA and BNA/LNA. These results indicate that ENA have better properties as antisense oligonucleotides than BNA/LNA.
# 2001 Elsevier Science Ltd. All rights reserved.

Antisense technology has attracted more interest as a
target validation tool in the field of drug discovery
through genomics,1 and developing antisense oligonu-
cleotides as nucleic acid drugs for clinical use could lead
to a novel treatment of inveterate diseases such as can-
cer, inflammation, and viral diseases.2 Phosphoro-
thioate oligonucleotides, which are most widely used in
antisense technology, exhibit high nuclease resistance,
but have a number of limitations, such as non-sequence
specific toxicity, immune stimulation and low RNA
affinity.3 Many studies have been focused on developing
various types of modified oligonucleotides.4�9 Recently,
our and Wengel’s group independently reported the
synthesis of novel 20-O,40-C-methylene nucleosides
whose sugar puckering is fixed in the N-conformation as
in RNA, and that oligonucleotides containing these
bridged nucleosides (BNA/LNA) showed much higher
affinity toward their complementary RNA than any
other modified oligonucleotides.10�13 Moreover, Wah-
lestedt et al. showed that LNA and DNA copolymers
were useful for in vivo antisense application.14

The 20-O,40-C-methylene linkage forms a five-membered
ring with the furanose to give a bicyclic nucleoside. It
occurred to us that adding one more carbon in the
linkage could form a six-membered ring with less strain
than a five-membered ring and the resulting nucleoside
and corresponding oligonucleotide might show better
properties. Recently, Wang et al. reported the synthesis
of the 20,40-C-bridged 20-deoxynuclosides, which has six-
membered rings with 20-deoxy-type sugars and an
increase in Tm values of their corresponding oligo-
nucleotides.15 In this report, we synthesized 20-O,40-C-
ethylene nucleosides, which have six-membered rings
with ribo-type sugars, containing all possible natural
nucleobases (thymine, adenine, guanine, cytosine, ura-
cil, 5-methylcytosine) and evaluated their basic proper-
ties as antisense oligonucleotides.
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A novel nucleoside, 20-O,40-C-ethylene thymidine was
synthesized as shown in Scheme 1. The hydroxymethyl
group at the 4-position of compound 116 was converted
to a hydroxyethyl group via Swern oxidation, Wittig
reaction and hydroboration followed by oxidation to
give compound 4. Tosylation of 4 afforded 5, which was
converted to diacetate 6 by treatment with AcOH and
Ac2O in the presence of a catalytic amount of H2SO4.
The resulting compound 6 was coupled with a silylated
thymine by Vorbrüggen’s method.17 Then, base-induced
ring closure by the treatment with 1 M NaOH/pyridine-
H2O afforded 20-O,40-C-ethylene thymidine 8. After
debenzylation of compound 8, the phosphoramidite
building block 11 was prepared by a standard proce-
dure. In the 1H NMR analysis of the bridged nucleo-
sides (8–11),18 the coupling constant (JH10�H20) was 0 Hz
just as that of 20-O,40-C-methylene-bridged nucleosides,10

which indicated that the puckering of the furanose ring
was restricted to the N-conformation.19,20 Other
nucleosides containing all possible natural nucleobases
(adenine, cytosine, guanine, uracil and 5-methylcyto-
sine) were synthesized by a similar procedure (K.
Morita et al., in preparation). Using these phosphor-

amidites and natural DNA phosphoramidites, desired
oligonucleotides were synthesized on a DNA synthesizer
by the phosphoramidite method and purified by reverse-
phase HPLC. These modified oligonucleotides were
characterized by negative ion ESI mass spectroscopy.

First, we tested the affinity of an oligonucleotide con-
taining six 20-O,40-C-ethylene thymidines (eT) toward its
complementary RNA or DNA, and compared it to that
of an oligonucleotide containing six 20-O,40-C-methylene
thymidines (mT). The 20-O,40-C-ethylene-modified oli-
gonucleotide showed an excellent Tm value for RNA
(�Tm/modification=5.2 �C), that was almost identical
to that of the 20-O,40-C-methylene-modified oligonucleo-
tide (�Tm/modification=5.5 �C, Table 1). Also,Tm values
of bothmodified oligonucleotides for DNAwere identical.
These results indicate that 20-O,40-C-ethylene nucleic
acids (ENA) have a high affinity for DNA and RNA as
do 20-O,40-C-methylene nucleic acids (BNA/LNA).

Next, we evaluated the effect on stability of a 20-O,40-C-
ethylene modification against endonuclease using thy-
midine trimers (50-TpXpT-30). The middle nucleoside

Scheme 1. (i) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C, 91%; (ii) Ph3P
+CH3Br

�, NaH, DMSO, 64%; (iii) 9-BBN, THF then H2O2, NaOH, 93%;
(iv) TsCl, Et3N, CH2Cl2 97%; (v) Ac2O, H2SO4, AcOH, 86% (a:b=4:1); (vi) silylated thymine, TMSOTf, ClC2H4Cl, reflux, 67%; (vii) 1N NaOH,
pyridine–H2O, 80%; (viii) H2, Pd(OH)2, MeOH, 77%; (ix) DMTrCl, pyridine, CH2Cl2, 81%; (x) ((iPr)2N)2P(OC2H4CN), N,N-diisopropylammo-
nium tetrazolide, 89%; (xi) DNA/RNA synthesizer.

Table 1. Tm values (�C) of the modified oligonucleotides towards complementary RNA and DNA

Oligonucleotide RNA complement DNA complement
50-d(GCGXXXXXXGCT)-30 50-r(AGCAAAAAACGC)-30 50-d(AGCAAAAAACGC)-30

Tm (�C) �Tm (�C) /modification Tm (�C) �Tm (�C)/modification

DNA (X=T) 43 48
BNA/LNA (X=mT) 77 5.5 61 2.2
ENA (X=eT) 75 5.2 61 2.2

Duplex concentration: 4 mM. Buffer: 100 mM NaCl, 10 mM sodium phosphate buffer (pH 7.2); mT: 20-O,40-C-methylene thymidine, eT: 20-O,40-C-
ethylene thymidine.
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(X) of the trimer was substituted with 20-O,40-C-ethyl-
ene thymidine (eT) or 20-O,40-C-methylene thymidine
(mT). The trimer has two phosphodiester linkages
(position I and II, Fig. 1a) which can be cleaved by

endonuclease, nuclease P1. When the modified oligonu-
cleotides (X=eT and mT) were incubated with nuclease
P1, the products (50-TpX-30 and thymidine-50-mono-
phosphate), which would be cleaved at position I, were
never detected in the HPLC analysis even under high
concentration as 62.5 mg/mL nuclease P1 (data not
shown). On the other hand, the products (thymidine
and 50-pXpT-30), which were cleaved at position II,
were detected at 1.3 mg/mL nuclease P1. Under this
condition, both phosphodiester linkages in natural 50-
TpTpT-30 were completely hydrolyzed by nuclease P1

within 5 min (Fig. 1b). Hydrolysis rates of the phos-
phodiester linkage at position II in 50-TpXpT-30 (X=eT
and mT) were measured (Fig. 1b). The initial rate con-
stants of hydrolysis of the trimers (X=eT and mT) were
calculated as 4.6�10�3 min�1 and 1.8�10�2 min�1,
respectively. From these results, we found that the 20-
O,40-C-ethylene-modified trimer was approximately 4
times more stable than the 20-O,40-C-methylene-modified
trimer.

Furthermore, we investigated the stability of the modified
oligonucleotides against 30-exonuclease (snake venom
phosphodiesterase, SVPD). Using oligothymidylates,
which contain a modified thymidine on the second
nucleotide from the 30-end (50-d(TTTTTTTTTTXT)-30,
X=T, mT or eT), the amount of the first 30-phospho-
diester cleavage by 30-exonuclease was quantified by
HPLC analysis. Although natural oligothymidylates
(X=T) and 20-O,40-C-methylene-modified oligonucleo-
tides (X=mT) were rapidly hydrolyzed by 30-exo-
nuclease, approximately 82% of 20-O,40-C-ethylene-
modified oligonucleotides still remained after 2 h (Fig.
2). We measured and calculated the observed rate con-
stants (kobs) of hydrolysis of the three oligonucleotides
(DNA: kobs=>7.5�10�1 min�1, BNA/LNA:
kobs=8.2�10�2 min�1, ENA: kobs=1.5�10�3 min�1).
These data show that one 20-O,40-C-ethylene modifica-
tion resulted in more than 500 times higher stability
than natural nucleotides, and approximately 55 times
higher stability than the 20-O,40-C-methylene nucleotide.

In conclusion, we further optimized BNA/LNA by the
addition of one more carbon in the linkage, and syn-
thesized novel 20-O,40-C-ethylene-bridged nucleic acids
(ENA) which have high affinity for RNA and high
nuclease-resistance. Only one example of an in vivo
BNA/LNA application in the cerebrospinal fluid system
with very low levels of nuclease has already been repor-
ted.14 More highly nuclease-resistant ENA than BNA/
LNA would greatly contribute to the developments of
antisense drugs. Further antisense studies are currently
in progress.
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