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An effective and stereo-controlled synthesis of 1,3,4-tris(benzyloxy)-2,5-diiodopentane starting from
2,3,5-tris(benzyloxy)pentane-1,4-diol was reported. Synthesis was improved to get the diiodide com-
pound instead of forming the ring-closure product (benzyloxylated tetrahydrofuran). From the diiodide
intermediate, the five-membered aza-sugar was synthesized with high yield.

Crown Copyright � 2013 Published by Elsevier Ltd. All rights reserved.
Carbohydrate mimetics in which the endocyclic oxygen is re-
placed by sulfur, nitrogen, and other heteroatoms (Fig. 1a) have
been found to possess a range of biological activities against HIV,
Gaucher’s disease, hepatitis, cancer, diabetes, and other diseases.1

The five-membered sugar mimetics (1 and 3), core structures of
many azasugar- and thiosugar-nucleosides, have emerged as
promising synthetic drugs as inhibitors of DNA- or RNA-related en-
zymes2 and glycosidases (Fig. 1).3 The C-nucleoside hydrochloride
D-ImmH (2), now ‘Fodosine™’, is in phase II clinical trials as an
anti-T-cell leukemia agent.4 A new class of naturally occurring gly-
cosidase inhibitors (4) was isolated by Yoshikawa et al.5 from Sal-
acia reticulata Wight (known as ‘kothala himbutu’ in Singhalese),
used in Ayurveda medicine for the treatment of Type II diabetes
mellitus, and the core structure was thiosugar (3). In this regard,
the development of reaction methodologies, which provides a sim-
ple and economically favorable synthesis of such carbohydrate
mimetics, is very necessary.

To date, a number of synthetic strategies for the total synthesis
of these challenging imino-, thio-, and seleno-sugar mimetics have
been demonstrated, starting from amino acids6 or carbohydrates as
well as by asymmetric7 or enzymatic synthesis.8 Previous studies
show that a simple and convenient strategy was to introduce
two leaving groups via one step and close the sugar ring by a
013 Published by Elsevier Ltd. All r

0.
nucleophile reactant (Scheme 1a). For example, Fleet has demon-
strated the efficient assembly of azetidines with poly-hydroxyl
and poly-chiral centers via a ring closure reaction from sugar ditri-
flate.9 Satoh has investigated the synthesis of thiosugar via ring
open sugar by the reduction reaction.10 However, these methods
suffered from the drawback of the carbon chiral centers of C5
which were reversed by the SN2 nucleophilic reaction. Recently,
Kumar et al.11 and Zhang et al.12 synthesized a series of imino-su-
gar derivatives by inversion of the configuration of C5 by the Mits-
unobu reaction followed by the second SN2 substitution reaction
ights reserved.

Figure 1. Carbohydrate derivatives with O atom substituted by other heteroatoms
(S, N, and Se).
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Scheme 1. Reported strategies for the ring-closure reaction.
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(Scheme 1b). Although this strategy can synthesize target products
in a good yield, the synthetic routes are time-consuming because
of the protection and deprotection steps. Protection group-free
synthesis of aza-sugars from carbohydrates was also reported,13

but only 2,3-cis-pyrrolidine products could be obtained. In contin-
uation of our studies on glycosidase inhibitors,14 we herein report a
more concise and practical synthesis of imino-sugar derivatives
from stereo-controlled benzyloxylated-diiodopentane intermedi-
ate via stereochemistry.

Skrydstrup and co-workers17 reported the transformation of
two hydroxyl groups into iodic groups simultaneously from methyl
2,4-di-O-benzyl-D-mannopyranoside. The alkene product, but not
the C3-nitrile compound was isolated due to the trans-b-elimina-
tion reaction of the C4-proton. Also, only the 3,6-anhydro product
was observed from corresponding ditriflate sugars. In our ap-
proach, diol compound 5, easily prepared from D-ribose through
four steps,10 was treated with PPh3/I2 to afford the key intermedi-
ate 615 as depicted in Scheme 2. Subjection of the diiodide deriva-
tive 6 to excess sodium azide in DMF led to the mono-substituted
compound 816 selectively. Subsequent treatment of 8 with PPh3/
THF/H2O and ring-closure simultaneously, afforded the protected
1,4-imino D-ribitol. After deprotection using Pd/C, the final com-
pound (+)-1,4-dideoxy-1,4-imino D-ribitol 1,7 which is consistent
with that reported in literatures,7 was obtained.

Unfortunately, at room temperature or at higher temperature,
the yield of diiodide compound 6 from diol compound 5 was very
low (only 5%). It was assumed that this was due to the lower reac-
tivity of the secondary hydroxyl group18and the mono-substituted
intermediate (Scheme 3a) was produced predominantly. With the
nucleophilic group and the leaving group existing in one linear
structure, the intramolecular nucleophilic reaction happened eas-
ily to obtain the 2,5-anhydro products 719 (Scheme 3a). To avoid
the intramolecular nucleophilic reaction and the formation of
2,5-anhydro products, lower temperature was applied for the syn-
thesis of the di-phosphide intermediate (Scheme 3b). The lower
temperature reaction was conducted using diethyl ether–acetoni-
trile (1:1, v/v) or DCM as solvent which, among many other sol-
vents screened, such as THF and toluene, was found to be best in
terms of suspension and reaction yield. An effort to prevent the for-
mation of 2,5-anhydro product 7 by lowering the temperature and
prolonging the reaction time led to maximized yield of diiodide
Scheme 2. Reagents and conditions: (a) PPh3/I2, 90% for 6 and 7 (Scheme 4); (b) NaN3, 9
(97%).
compound 6. As shown in Scheme 4, the ratio and the yield of com-
pounds 6 and 7 varied, as the reaction time was prolonged at the
same temperature. After stirring at �30 �C for 48 h and a subse-
quent reaction time of 2 h in refluxing toluene, diiodide compound
6 was obtained in 90% yield.

With the key diiodide compound 6 in hand, azido-iodide com-
pound 8,16 instead of diazido compound, was synthesized selec-
tively and conveniently using sodium azide in DMF under 50 �C
for 3 h. After reduction and ring-closure simultaneously, the sec-
ondary amine was protected by Boc for purification. Deprotection
of Boc by AcCl/MeOH and subsequent debenzylation using Pd/C
under hydrogen atmosphere afforded compound 120 in nearly
quantitative yield.

Afterward, the diiodide product 1221 (P/E = 10:1, Rf = 0.8) was
synthesized from arabinose with high yield and simple operation
to further demonstrate the efficiency of this general application
(Scheme 5). As an important intermediate for the synthesis of sal-
asinol, the corresponding thiosugar 1322 was prepared with an
overall yield of 92%.

To test the feasibility of this approach, the developed protocol
was further applied to the six-membered aza-sugars’ synthesis.
However, a complex mixture of elimination products was obtained
with no trace of the corresponding diiodide and the major product
14 was separated and characterized. The spectroscopic data were
consistent with the compound reported in the literature.23 The re-
mote group participation of methyloxyl and benzyloxyl groups has
been disclosed in previous synthesis.24 It was hypothesized that
intramolecular participation of the 4-O-benzyl group led to the for-
mation of oxonium ion intermediate (Scheme 6), which was at-
tacked by the iodide ion to form 14 and benzyl iodide. The
spectroscopic data of the benzyl iodide product supported this
hypothesis.

In summary, we have developed a novel and efficient synthesis
of stereo-controlled benzyloxylated-diiopentane which was the
key intermediate of carbohydrate mimetics’ synthesis. The most
important feature of this system was to simultaneously convert
two hydroxyl groups into iodic groups as leaving ligands and re-
verse the stereochemistry of the 4-OH with high yield. This method
is practical for the large scale synthesis of poly-benzylated-dii-
opentanes and imino-sugar derivatives available to the carbohy-
drate mimetics research.
0%; (c) (i) PPh3/H2O, THF, (ii) Boc2O/NaOH, 82%, (d) AcCl/MeOH (100%); (e) Pd/C, H2



Scheme 3. (a) The pathway of ring closure; (b) the pathway of diiodide reaction.

Scheme 6. Proposed mechanism for remote group participation reaction.

Scheme 4. The varied yield of diiodide compound.

Scheme 5. The synthesis of diiodide compound 12 from arabinose.
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