Date: 03-04-12 10:20:33

Pages: 9

Buchwald–Hartwig Coupling/Michael Addition Reactions: One-Pot Synthesis of 1,2-Disubstituted 4-Quinolones from Chalcones and Primary Amines

Xiang-Dong Fei,^[a] Zhou Zhou,^[a] Wen Li,^[a] Yong-Ming Zhu,^{*[a]} and Jing-Kang Shen^{*[b]}

Keywords: Palladium / Cyclization / Michael addition / Dehydrogenation / Heterocycles

The Buchwald–Hartwig coupling/Michael addition sequence has been successfully applied to the synthesis of functionalized 1,2-disubstituted 4-quinolones using $Pd(OAc)_2$ as a catalyst and PPh₃ as a ligand. Under these conditions, the

Introduction

Over the years, 4-quinolone derivatives have attracted considerable attention from medicinal chemists due to their diverse biological activity. They have been extensively studied as a useful structural moiety for drug candidates. Some of them have been investigated as antiviral,^[1] antimitotic,^[2] antidiabetic,^[3] antibacterial,^[4] antitrypanosomal,^[4b] and antitumor agents^[5] as well as HIV-1 integrase inhibitors.^[6] In addition, scientists have found that quinolone derivatives exhibit selective M1 positive allosteric modulating activity.^[7] Such characteristics have made the molecule important and this has resulted in sustained interest in developing new efficient synthetic strategies for this structural moiety. Numerous synthetic routes to 4-quinolones have been reported involving Camps cyclization,^[8] reaction of isatoic anhydrides,^[9-12] cyclization of N-substituted phenacyl or acetonyl anthranilates in polyphosphoric acid,^[13] cyclization of anthranilic acid derived ynone intermediates,^[14] intramolecular coupling of aryl halides with β -enaminones,^[15] acid-catalyzed cyclization,[16] cycloacylation of aniline derivatives,^[17] palladium-catalyzed carbonylative Sonogashira coupling of 2-iodoaniline with arylacetylene,^[18] and metalfree intramolecular amination.^[19] Although these methods are effective and give relatively high yields, most of them give 1-unsubstituted 2-substituted 4-quinolones, 1-unsubstituted 3-substituted 4-quinolones, or 1,3-disubstituted 4quinolones. Only a few literature reports give examples of 1,2-disubstituted 4-quinolone syntheses.

[a] School of Pharmacy, Soochow University, Suzhou 215123, People's Republic of China E-mail: zhuyongming@suda.edu.cn

[b] Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China

E-mail: jkshen@mail.shcnc.ac.cn

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201200172.

intermediate products first formed from chalcones and primary amines underwent catalytic dehydrogenation to yield the 1,2-disubstituted 4-quinolones.

Recently, the synthesis of 1,2-disubstituted 4-quinolones has been reported by palladium-catalyzed tandem amination and copper-catalyzed cyclization.^[20a,20b] However, the deficiency is that the alkynone substrates were synthesized from phenylacetylene by using *n*BuLi at -78 °C or [PdCl₂(PPh)₃]/CuI as catalysts, which increases the difficulty of substrate preparation (Scheme 1, a). On this basis, we considered investigating a more general strategy for the synthesis of 1,2-disubstituted 4-quinolones by using chalcones as substrates, which can be easily obtained by aldol condensation of the acetophenone with appropriate aldehydes (Scheme 1, b).

Scheme 1. Strategy for the synthesis of 1,2-disubstituted 4-quinolones.

Results and Discussion

During the course of our study we screened different combinations of catalysts, solvents, and bases in an effort to improve the yields. In an initial attempt, the reaction was performed with $Pd(OAc)_2$ as catalyst in the presence of K_2CO_3 as base in anhydrous dioxane (Table 1, entry 1). The product **3a** was not observed. However, the expected product **3a** was formed in 74% yield when PPh₃ was employed as a ligand in the reaction (Table 1, entry 2). The yields

FULL PAPER

could not be improved by using other ligands such as PCy₃, DPPE, DPPF, and TFP (Table 1, entries 3–6). In comparison with K_2CO_3 , the use of Cs_2CO_3 as base resulted in a lower yield (Table 1, entry 7). The effect of solvent was then explored, however, better results were not obtained with other solvents (Table 1, entries 8–11). When [Pd₂(dba)₃] was used as catalyst and combined with PPh₃, the yield was slightly lower (Table 1, entry 12). Thus, the best result was obtained by using **1a** and aniline in the presence of Pd(OAc)₂ (5 mol-%) and PPh₃ (10 mol-%) in anhydrous dioxane (1 mL) with K₂CO₃ (2 equiv.) as base.

Table 1. Optimization of the reaction conditions for the synthesis of 1,2-disubstituted 4-quinolones.^[a]

\bigcirc	O Ph Br 1a	+ PhNH ₂ 2a	Pd(OAc) ₂ /ligand K ₂ CO ₃ , solvent reflux, 4 h	O N Ph
Entry	Ligand	Solvent	Temperature	Yield [%] ^[b]
1	_	dioxane	reflux	0
2	PPh ₃	dioxane	reflux	74
3	PCy ₃	dioxane	reflux	40
4	DPPE	dioxane	reflux	<5
5	DPPF	dioxane	reflux	<5
6	TFP	dioxane	reflux	18
7	PPh ₃	dioxane	reflux	52 ^[c]
8	PPh ₃	DMF	120 °C	0
9	PPh ₃	toluene	reflux	61
10	PPh ₃	DMSO	120 °C	9
11	PPh ₃	THF	reflux	31
12	PPh ₃	dioxane	reflux	55 ^[d]

[a] Conditions: **1a** (0.5 mmol), aniline (**2a**; 0.75 mmol), Pd-(OAc)₂ (5 mol-%), ligand (10 mol-%), base (1.0 mmol), solvent (1 mL), nitrogen. [b] Isolated yield. [c] Cs_2CO_3 was used as base. [d] [Pd₂(dba)₃] was used as catalyst.

With the above optimized reaction conditions, we explored the substrate scope of the reaction. Interestingly, attempts to expand the generality and applicability of the reaction proved successful, thus providing a functional handle for further manipulation. As illustrated in Table 2, 1a readily reacted with functionalized arylamines bearing ortho, meta, and para substituents on the aryl ring to give the corresponding products 3b-31 in moderate-to-good yields (Table 2, entries 2-12). Arylamines containing electron-donating groups (Table 2, entries 2-4, and 11) gave higher yields than those with electron-withdrawing groups (Table 2, entries 5–10). However, this reaction was not limited to simple aromatic amines; the pyridine-containing substrate 2m also afforded 3m in good yield (Table 2, entry 13). Note also that aliphatic amines such as benzylamine (2n) and cyclopropylamine (2o) gave products 3n and 3o, respectively, in moderate yields (Table 2, entries 14 and 15).

Next, chalcones **1b–1m** were investigated in the reaction of aniline (**2a**) under the optimized conditions. Different functional groups R^1 and R^2 of chalcone **1** were all tolerated (Table 3, entries 1–14). Note that the products **3y** and

[a] All reactions were performed under N_2 on a 0.5 mmol scale with arylamines (1.5 equiv.), Pd(OAc)₂ (5 mol-%), PPh₃ (10 mol-%), and K_2CO_3 (2.0 equiv.) in anhydrous 1,4-dioxane (1 mL) at reflux. [b] Isolated yield.

Table 3. Palladium-catalyzed reactions of chalcones 1 with aniline, $^{\left[a\right] }$

[a] All reactions were performed under N₂ on a 0.5 mmol scale with arylamines (1.5 equiv.), Pd(OAc)₂ (5 mol-%), PPh₃ (10 mol-%), and K₂CO₃ (2.0 equiv.) in anhydrous 1,4-dioxane (1 mL) at reflux. [b] Isolated yield. [c] *p*-Methoxyaniline was used as a primary amine. [d] *m*-Aminopyridine was used as a primary amine. [e] The reaction temperature was 140 °C.

3z were generated in moderate yields when R^2 is an aliphatic group (Table 3, entries 10 and 11). However, due to the low oxidative addition reactivity of the C–Cl bond, chloro-substituted substrate 1m gave product 3a in low yield upon raised temperature (Table 3, entry 14).

A plausible reaction mechanism for this one-pot synthesis of 1,2-disubstituted 4-quinolones is outlined in Scheme 2 (Paths A and B).^[20b-20d] In Path A, oxidative addition of **1a** to the Pd⁰ catalyst leads to palladium complex **A**. The C=C bond in **A** can be activated through coordination to the Pd^{II} and attacked by aniline to form intermediate **D**. Note, intermediate **C** was not formed from complex **A** under these conditions. Path B involves the Michael addition of aniline to **1a** and oxidative addition, and then intermediate **D** is formed by elimination of HBr. Both pathways proceed via intermediate **D**, followed by reductive elimination of Pd⁰ to yield **E**. Intermediate **E** leads to **3a** by catalytic dehydrogenation of Pd⁰, which is the key step.^[21]

Conclusions

We have developed an efficient palladium-catalyzed tandem amination protocol for the synthesis of 1,2-disubstituted 4-quinolones from easily accessible chalcones and primary amines in which the catalyst palladium plays a dual role, namely in the Buchwald–Hartwig coupling and catalytic dehydrogenation. This approach provides one of the simplest methods for the synthesis of this class of valuable compounds, and a wide range of multisubstituted 4-quinolones could be generated accordingly in the construction of a chemical library.

Experimental Section

General: Anhydrous dioxane was obtained by distillation over metallic sodium. Other solvents and reagents were used as received. TLC was performed on silica HSGF254 plates. Melting points were determined with a digital melting-point apparatus. ¹H, ¹³C, and ¹⁹F NMR spectra were obtained from a solution in CDCl₃ or DMSO with TMS as internal standard using a 400/101/377 MHz (¹H/¹³C/¹⁹F) or 300/75 MHz (¹H/¹³C) spectrometer. Chemical shifts (δ) are given in ppm and *J* in Hz. IR spectra were recorded in KBr tablets and wavenumbers are given in cm⁻¹. HRMS were recorded by using an electrospray ionization (ESI) mass spectrometer.

1-(2-Bromophenyl)-3-phenylprop-2-en-1-one (1a): Chalcones **1** were prepared following the known procedure.^[22] Benzaldehyde (1.061 g, 10 mmol) and NaOH (2.5 M, 80 mL) were added to a solution of *o*-bromoacetophenone (1.991 g, 10 mmol) in EtOH (200 mL) at room temp. The mixture was stirred for 3 h, neutralized with diluted HCl, and extracted with EtOAc. The organic layer was dried (Na₂SO₄) and the solvents evaporated. The residue was purified by column chromatography on silica gel (EtOAc/petroleum ether = 1:50) to give **1a** as a yellow oil (2.613 g, 91%). ¹H NMR (300 MHz, CDCl₃): δ = 7.65 (d, *J* = 7.8 Hz, 1 H), 7.60–7.49 (m, 2 H), 7.48–7.28 (m, 7 H), 7.10 (d, *J* = 16.1 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 194.6, 146.6, 141.0, 134.3, 133.3, 131.3, 130.9, 129.1, 128.9, 128.5, 127.3, 126.0, 119.4 ppm.

Scheme 2. Plausible mechanism for the synthesis of 3a from 1a.

1-(2-Bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (1b): Yellow solid (2.411 g, 76%); m.p. 88-90 °C. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.64$ (d, J = 7.8 Hz, 1 H), 7.51 (d, J = 8.6 Hz, 2 H), 7.44–7.28 (m, 4 H), 6.94 (dd, J = 15.3, 12.5 Hz, 3 H), 3.84 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 194.8, 161.9, 146.7, 141.3, 133.3, 131.1, 130.4, 129.0, 127.2, 127.0, 123.9, 119.4, 114.4, 55.4 ppm.

1-(2-Bromophenyl)-3-(p-tolyl)prop-2-en-1-one (1c): Yellow solid (2.560 g, 85%); m.p. 75–77 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.64 (d, J = 7.6 Hz, 1 H), 7.51–7.29 (m, 6 H), 7.20 (d, J = 7.7 Hz, 2 H), 7.05 (d, J = 16.1 Hz, 1 H), 2.38 (s, 3 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 194.8, 146.9, 141.6, 141.2, 133.4, 131.6,$ 131.2, 129.7, 129.1, 128.6, 127.3, 125.2, 119.5, 21.5 ppm.

1-(2-Bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one (1d): White solid (1.897 g, 59%); m.p. 101-103 °C. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.65$ (d, J = 7.3 Hz, 1 H), 7.55–7.29 (m, 8 H), 7.07 (d, J = 16.1 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 194.3$, 144.8, 140.9, 136.8, 133.4, 132.9, 131.5, 129.7, 129.3, 129.2, 127.4, 126.5, 119.5 ppm.

1-(2-Bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (1e): Yellow oil (0.915 g, 30%). ¹H NMR (300 MHz, CDCl₃): δ = 7.64 (d, J = 7.5 Hz, 1 H), 7.54 (s, 2 H), 7.37 (dd, J = 17.8, 8.5 Hz, 4 H), 7.06 (dd, J = 22.5, 12.4 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 194.4, 165.9, 162.5, 145.1, 141.0, 133.4, 131.4, 130.5, 130.4, 129.1, 127.3, 125.8, 119.4, 116.3, 116.0 ppm.

1-(2-Bromophenyl)-3-(3-nitrophenyl)prop-2-en-1-one (1f): Yellow solid (1.561 g, 47%); m.p. 142–144 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.40 (s, 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 7.89 (d, J = 7.5 Hz, 1 H), 7.74–7.57 (m, 2 H), 7.56–7.33 (m, 4 H), 7.23 (d, J = 16.1 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 193.7, 148.6, 142.7, 140.5, 136.2, 133.9, 133.5, 131.9, 130.0, 129.3, 128.4, 127.5, 124.9, 122.8, 119.5 ppm.

1-(2-Bromophenyl)-3-(3-chlorophenyl)prop-2-en-1-one (1g): Yellow solid (1.351 g, 42%); m.p. 54–56 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.65 (d, J = 7.7 Hz, 1 H), 7.53 (s, 1 H), 7.47–7.28 (m, 7 H), 7.09 (d, J = 16.1 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta =$ 194.2, 144.5, 140.8, 136.2, 135.0, 133.4, 131.6, 130.6, 130.2, 129.2, 128.2, 127.4, 127.2, 126.6, 119.4 ppm.

1-(2-Bromophenyl)-3-(3-methoxyphenyl)prop-2-en-1-one (1h): Yellow oil (2.506 g, 79%). ¹H NMR (300 MHz, CDCl₃): δ = 7.64 (d, *J* = 7.7 Hz, 1 H), 7.47–7.27 (m, 5 H), 7.11 (dd, *J* = 17.5, 9.0 Hz, 3 H), 6.96 (d, J = 7.7 Hz, 1 H), 3.82 (s, 3 H) ppm. ¹³C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 194.6, 159.9, 146.5, 141.0, 135.7, 133.4,$ 131.3, 129.9, 129.1, 127.3, 126.3, 121.2, 119.4, 116.8, 113.2, 55.3 ppm.

1-(2-Bromophenyl)-3-cyclohexylprop-2-en-1-one (1i): Yellow oil (1.085 g, 37%). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.60$ (d, J =

7.8 Hz, 1 H), 7.42–7.28 (m, 3 H), 6.62 (dd, J = 15.9, 6.6 Hz, 1 H), 6.39 (d, J = 16.0 Hz, 1 H), 2.30-2.14 (m, 1 H), 1.85-1.63 (m, 5 H),1.34–1.13 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 195.7, 157.9, 141.1, 133.3, 131.0, 129.0, 127.7, 127.1, 119.3, 40.9, 31.5, 25.9, 25.6 ppm.

1-(2-Bromophenyl)-4,4-dimethylpent-2-en-1-one (1j): Yellow oil (2.458 g, 92%). ¹H NMR (400 MHz, CDCl₃): δ = 7.60 (d, J = 7.8 Hz, 1 H), 7.40–7.25 (m, 3 H), 6.67 (d, J = 16.1 Hz, 1 H), 6.36 (d, J = 16.1 Hz, 1 H), 1.10 (s, 9 H) ppm. ¹³C NMR (101 MHz, $CDCl_3$): $\delta = 195.6, 162.1, 141.0, 133.2, 131.0, 128.9, 127.1, 125.3,$ 119.2, 34.1, 28.4 ppm.

1-(2-Bromo-5-fluorophenyl)-3-phenylprop-2-en-1-one (1k): Yellow solid (1.343 g, 44%); m.p. 73–75 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.65–7.49 (m, 3 H), 7.44 (d, J = 14.4 Hz, 4 H), 7.11 (ddd, J = 16.1, 8.7, 4.9 Hz, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 193.2, 163.3, 160.0, 147.2, 142.6, 142.6, 135.0, 134.9, 134.1, 131.1, 129.0, 128.7, 125.5, 118.8, 118.5, 116.5, 116.2, 113.7, 113.6 ppm.

1-(2-Bromo-5-methoxyphenyl)-3-phenylprop-2-en-1-one (11): Yellow solid (2.601 g, 82%); m.p. 110-112 °C. 1H NMR (400 MHz, $CDCl_3$): $\delta = 7.56 (dd, J = 6.5, 3.0 Hz, 2 H), 7.50 (d, J = 8.8 Hz, 1)$ H), 7.45 (d, J = 16.1 Hz, 1 H), 7.40 (dd, J = 5.0, 1.8 Hz, 3 H), 7.08 (d, J = 16.1 Hz, 1 H), 6.95 (d, J = 3.0 Hz, 1 H), 6.88 (dd, J = 8.8, 3.1 Hz, 1 H), 3.81 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 194.4, 158.9, 146.6, 141.9, 134.4, 134.2, 130.9, 129.0, 128.6, 126.0, 117.6, 114.3, 109.7, 55.6 ppm.

1-(2-Chlorophenyl)-3-phenylprop-2-en-1-one (1m): Yellow oil (1.966 g, 81%). ¹H NMR (300 MHz, CDCl₃): δ = 7.63–7.31 (m, 10 H), 7.15 (d, *J* = 16.1 Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 193.7, 146.2, 139.0, 134.3, 131.3, 131.2, 130.8, 130.2, 129.2,$ 128.9, 128.5, 126.8, 126.2 ppm.

General Procedure for the Synthesis of 1,2-Diphenylquinolin-4(1H)one (3a): Reactions were carried out under nitrogen. Aniline (2a; 0.75 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), PPh₃ (13.1 mg, 0.05 mmol), and K₂CO₃ (138.2 mg, 1.0 mmol) were added to an oven-dried, nitrogen-purged flask containing 1a (0.5 mmol) in anhydrous 1,4-dioxane (1 mL). The reaction mixture was stirred under reflux and monitored by TLC. Upon completion, the reaction mixture was filtered and the residue was purified by column chromatography on silica gel by using ethyl acetate/petroleum ether (1:3) as eluent to afford pure product 3a as a yellow solid (109 mg, 74%); m.p. 281–283 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.51 (d, J = 7.9 Hz, 1 H), 7.47 (t, J = 7.2 Hz, 1 H), 7.41–7.30 (m, 4 H), 7.20–7.15 (m, 7 H), 6.91 (d, J = 8.6 Hz, 1 H), 6.45 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 177.9, 154.0, 142.5, 139.0, 135.6, 131.8, 129.9, 129.5, 129.1, 128.9, 128.5, 127.8, 126.2, 126.0, 123.7, 118.0, 112.4 ppm. IR (KBr): $\tilde{v} = 1629$, 1595, 1492, 1478, 1458, 1405, 1313, 1136, 700 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₆NO [M + H]⁺ 298.1226; found 298.1235.

Buchwald-Hartwig Coupling/Michael Addition Reactions

2-Phenyl-1-(*p***-tolyl)quinolin-4(1***H***)-one (3b):** Yellow solid (135 mg, 87%); m.p. 210–212 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.51 (d, *J* = 7.9 Hz, 1 H), 7.46 (t, *J* = 7.0 Hz, 1 H), 7.36 (t, *J* = 7.4 Hz, 1 H), 7.24–7.10 (m, 7 H), 7.02 (d, *J* = 8.1 Hz, 2 H), 6.92 (d, *J* = 8.5 Hz, 1 H), 6.43 (s, 1 H), 2.33 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.9, 154.1, 142.7, 138.9, 136.4, 135.7, 131.8, 130.1, 129.6, 129.1, 128.5, 127.8, 126.2, 126.1, 123.7, 118.1, 112.5, 21.1 ppm. IR (KBr): \tilde{v} = 3051, 1628, 1599, 1514, 1464, 1415, 1319, 835, 748, 700 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO [M + H]⁺ 312.1383; found 312.1395.

1-(4-Methoxyphenyl)-2-phenylquinolin-4(1*H***)-one (3c):** Yellow solid (129 mg, 79%); m.p. 193–195 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.50$ (d, J = 7.8 Hz, 1 H), 7.47 (t, J = 7.2 Hz, 1 H), 7.37 (t, J = 7.3 Hz, 1 H), 7.25–7.11 (m, 5 H), 7.06 (d, J = 8.7 Hz, 2 H), 6.93 (d, J = 8.5 Hz, 1 H), 6.84 (d, J = 8.7 Hz, 2 H), 6.43 (s, 1 H), 3.79 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): $\delta = 177.9$, 159.4, 154.4, 142.9, 135.7, 131.8, 131.7, 130.8, 129.1, 128.5, 127.9, 126.1, 126.0, 123.7, 118.1, 114.6, 112.4, 55.4 ppm. IR (KBr): $\tilde{v} = 1626$, 1599, 1508, 1462, 1406, 1252, 1028, 839, 758, 696 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO₂ [M + H]⁺ 328.1332; found 328.1333.

1-(Benzo[*d*][1,3]dioxol-5-yl)-2-phenylquinolin-4(1*H*)-one (3d): White solid (140 mg, 82%); m.p. 188–190 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.50 (d, *J* = 8.0 Hz, 1 H), 7.50 (t, *J* = 7.7 Hz, 1 H), 7.38 (t, *J* = 7.4 Hz, 1 H), 7.31–7.15 (m, 5 H), 7.00 (d, *J* = 8.6 Hz, 1 H), 6.74 (d, *J* = 8.5 Hz, 1 H), 6.62 (d, *J* = 5.7 Hz, 2 H), 6.43 (s, 1 H), 6.00 (d, *J* = 12.0 Hz, 2 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.9, 154.3, 148.5, 147.8, 142.9, 135.7, 132.7, 131.9, 129.1, 128.7, 128.0, 126.3, 123.8, 123.7, 118.0, 112.6, 110.5, 108.4, 102.0 ppm. IR (KBr): \tilde{v} = 1630, 1600, 1497, 1481, 1466, 1420, 1234, 1038, 937, 748, 707 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₆NO₃ [M + H]⁺ 342.1125; found 342.1140.

1-(4-Chlorophenyl)-2-phenylquinolin-4(1*H***)-one (3e): White solid (126 mg, 76%); m.p. 204–206 °C. ¹H NMR (400 MHz, CDCl₃): \delta = 8.50 (dd,** *J* **= 8.0, 1.4 Hz, 1 H), 7.49 (ddd,** *J* **= 8.7, 7.1, 1.7 Hz, 1 H), 7.42–7.30 (m, 3 H), 7.26–7.19 (m, 3 H), 7.18–7.07 (m, 4 H), 6.87 (d,** *J* **= 8.5 Hz, 1 H), 6.44 (s, 1 H) ppm. ¹³C NMR (101 MHz, CDCl₃): \delta = 177.8, 153.7, 142.3, 137.6, 135.3, 134.9, 132.0, 131.3, 129.8, 129.0, 128.8, 128.0, 126.3, 126.0, 123.9, 117.7, 112.7 ppm. IR (KBr): \tilde{v} = 3030, 1618, 1599, 1493, 1463, 1408, 1317, 835, 762, 702 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅CINO [M + H]⁺ 332.0837; found 332.0850.**

1-(4-Fluorophenyl)-2-phenylquinolin-4(1*H***)-one (3f): White solid (104 mg, 66%); m.p. 220–222 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.48 (dd,** *J* **= 8.0, 1.3 Hz, 1 H), 7.54–7.42 (m, 1 H), 7.37 (t,** *J* **= 7.1 Hz, 1 H), 7.26–7.11 (m, 7 H), 7.05 (t,** *J* **= 8.4 Hz, 2 H), 6.88 (d,** *J* **= 8.6 Hz, 1 H), 6.41 (s, 1 H) ppm. ¹⁹F NMR (377 MHz, CDCl₃): \delta = -111.0 (s, Ar-F) ppm. ¹³C NMR (101 MHz, CDCl₃): \delta = 177.8, 163.3, 160.8 (d, ¹***J***_{C-F} = 186.75 Hz), 153.9, 142.5, 135.4, 135.0 (d, ⁴***J***_{C-F} = 2.25 Hz), 132.0, 131.8, 131.7 (d, ³***J***_{C-F} = 6.75 Hz), 129.1, 128.7, 128.0, 126.3, 126.0, 123.8, 117.7, 116.7, 116.5 (d, ²***J***_{C-F} = 17.25 Hz), 112.6 ppm. IR (KBr): \tilde{v} = 1622, 1595, 1506, 1480, 1464, 1406, 1317, 1211, 1153, 838, 775, 708 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅FNO [M + H]⁺ 316.1132; found 316.1142.**

1-(4-Acetylphenyl)-2-phenylquinolin-4(1*H***)-one (3g): Yellow solid (110 mg, 65%); m.p. 218–220 °C. ¹H NMR (400 MHz, CDCl₃): \delta = 8.51 (dd,** *J* **= 8.0, 1.5 Hz, 1 H), 7.95 (d,** *J* **= 8.5 Hz, 2 H), 7.47 (ddd,** *J* **= 8.7, 7.1, 1.7 Hz, 1 H), 7.38 (t,** *J* **= 7.1 Hz, 1 H), 7.29 (d,** *J* **= 8.5 Hz, 2 H), 7.25–7.12 (m, 5 H), 6.85 (d,** *J* **= 8.5 Hz, 1 H), 6.44 (s, 1 H), 2.59 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): \delta = 196.6, 177.8, 153.4, 143.2, 142.1, 137.0, 135.2, 132.1, 130.4, 129.5, 129.0, 128.9, 128.1, 126.4, 126.0, 124.0, 117.6, 112.8, 26.7 ppm. IR (KBr): \tilde{v} = 1683, 1627, 1597, 1463, 1402, 1262, 762, 706 cm⁻¹.**

HRMS (ESI): calcd. for $C_{23}H_{18}NO_2 [M + H]^+$ 340.1332; found 340.1342.

Pages: 9

1-(4-Nitrophenyl)-2-phenylquinolin-4(1*H***)-one (3h):** Yellow solid (93 mg, 54%); m.p. 265–267 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.50 (d, J = 7.2 Hz, 1 H), 8.23 (d, J = 8.1 Hz, 2 H), 7.50 (t, J = 7.3 Hz, 1 H), 7.40 (t, J = 7.3 Hz, 3 H), 7.26–7.19 (m, 3 H), 7.16 (d, J = 6.6 Hz, 2 H), 6.81 (d, J = 8.5 Hz, 1 H), 6.45 (s, 1 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.7, 153.0, 147.4, 144.8, 141.8, 134.8, 132.3, 131.4, 129.2, 129.0, 128.3, 126.6, 125.9, 124.9, 124.2, 117.2, 113.0 ppm. IR (KBr): \tilde{v} = 1630, 1601, 1592, 1518, 1493, 1402, 1344, 1314, 756, 706 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅N₂O₃ [M + H]⁺ 343.1077; found 343.1090.

3-[4-Oxo-2-phenylquinolin-1(4*H***)-yl]benzonitrile (3i):** Yellow solid (98 mg, 61%); m.p. 262–264 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.46 (d, J = 7.9 Hz, 1 H), 7.64 (d, J = 7.3 Hz, 1 H), 7.57–7.44 (m, 4 H), 7.37 (t, J = 7.5 Hz, 1 H), 7.27–7.07 (m, 5 H), 6.78 (d, J = 8.5 Hz, 1 H), 6.39 (d, J = 6.8 Hz, 1 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.6, 153.2, 141.9, 140.0, 134.8, 133.5, 132.5, 132.2, 130.6, 129.0, 128.2, 126.4, 125.8, 124.1, 117.2, 117.0, 113.8, 112.8 ppm. IR (KBr): \tilde{v} = 3040, 2230, 1629, 1601, 1481, 1466, 1416, 1319, 748, 706 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₅N₂O [M + H]⁺ 323.1179; found 323.1195.

2-Phenyl-1-[3-(phenylsulfonyl)phenyl]quinolin-4(1*H***)-one (3j): White solid (131 mg, 60%); m.p. 336–338 °C. ¹H NMR (400 MHz, DMSO): \delta = 8.29 (d,** *J* **= 7.5 Hz, 1 H), 8.17 (s, 1 H), 7.89 (d,** *J* **= 8.3 Hz, 1 H), 7.84 (d,** *J* **= 7.4 Hz, 2 H), 7.76 (t,** *J* **= 6.4 Hz, 2 H), 7.71–7.58 (m, 4 H), 7.45 (t,** *J* **= 7.4 Hz, 1 H), 7.19 (d,** *J* **= 7.3 Hz, 2 H), 7.05 (t,** *J* **= 7.5 Hz, 1 H), 6.95 (t,** *J* **= 7.5 Hz, 2 H), 6.79 (d,** *J* **= 8.5 Hz, 1 H), 6.13 (s, 1 H) ppm. ¹³C NMR (101 MHz, DMSO): \delta = 176.1, 153.5, 142.2, 141.9, 140.4, 139.8, 135.4, 134.9, 133.8, 132.4, 131.1, 129.7, 129.6, 128.9, 128.3, 127.6, 127.3, 125.4, 125.3, 123.7, 117.8, 111.2 ppm. IR (KBr): \hat{v} = 3059, 1626, 1601, 1408, 1320, 1304, 1155, 758, 707 cm⁻¹. HRMS (ESI): calcd. for C₂₇H₂₀NO₃S [M + H]⁺ 438.1158; found 438.1175.**

2-Phenyl-1-(*m***-tolyl)quinolin-4(1***H***)-one (3k): Yellow solid (122 mg, 79%); m.p. 222–224 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.51 (d, J = 7.1 Hz, 1 H), 7.52–7.41 (m, 1 H), 7.36 (t, J = 7.4 Hz, 1 H), 7.25–7.09 (m, 7 H), 6.95 (t, J = 7.0 Hz, 3 H), 6.43 (s, 1 H), 2.28 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 177.8, 153.9, 142.5, 139.6, 138.8, 135.6, 131.7, 130.3, 129.5, 129.2, 129.0, 128.5, 127.7, 126.8, 126.0, 125.9, 123.6, 118.1, 112.3, 21.0 ppm. IR (KBr): \tilde{v} = 1629, 1595, 1478, 1460, 1406, 1307, 1136, 761, 708 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO [M + H]⁺ 312.1383; found 312.1398.**

2-Phenyl-1-(*o***-tolyl)quinolin-4(1***H***)-one (3l):** Red solid (51 mg, 33%); m.p. 255–257 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.59–8.47 (m, 1 H), 7.52–7.45 (m, 1 H), 7.40 (t, *J* = 7.3 Hz, 1 H), 7.29–7.16 (m, 9 H), 6.77 (d, *J* = 8.5 Hz, 1 H), 6.49 (s, 1 H), 1.93 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 176.7, 154.0, 141.8, 137.9, 136.6, 135.3, 132.2, 131.5, 130.5, 129.5, 128.8, 127.8, 127.0, 126.4, 126.1, 123.9, 117.6, 112.7, 17.5 ppm. IR (KBr): \tilde{v} = 1627, 1595, 1477, 1460, 1406, 1310, 1138, 775, 760, 727, 702 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO [M + H]⁺ 312.1383; found 312.1397.

2-Phenyl-1-(pyridin-3-yl)quinolin-4(1*H***)-one (3m):** White solid (115 mg, 77%); m.p. 200–202 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.57 (dd, J = 4.7, 1.0 Hz, 1 H), 8.53–8.44 (m, 2 H), 7.57–7.46 (m, 2 H), 7.43–7.31 (m, 2 H), 7.25–7.19 (m, 3 H), 7.16 (dd, J = 6.5, 3.0 Hz, 2 H), 6.82 (d, J = 8.6 Hz, 1 H), 6.45 (s, 1 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.8, 153.7, 150.9, 149.8, 142.4, 137.4, 136.0, 134.9, 132.3, 129.1, 129.0, 128.3, 126.6, 126.0, 124.2, 124.1, 117.4, 112.8 ppm. IR (KBr): \tilde{v} = 3042, 1630, 1601, 1574, 1482, 1414, 1319, 762, 748, 704 cm⁻¹. HRMS (ESI): calcd. for C₂₀H₁₅N₂O [M + H]⁺ 299.1179; found 299.1184.

FULL PAPER

1-Benzyl-2-phenylquinolin-4(1*H***)-one (3n):** Yellow solid (80 mg, 52%); m.p. 146–148 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.51 (d, *J* = 7.3 Hz, 1 H), 7.55–7.48 (m, 1 H), 7.45–7.39 (m, 1 H), 7.39–7.31 (m, 6 H), 7.31–7.21 (m, 3 H), 6.98 (d, *J* = 7.2 Hz, 2 H), 6.34 (s, 1 H), 5.27 (s, 2 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.6, 155.1, 141.2, 136.4, 135.7, 132.2, 129.6, 129.0, 128.6, 128.1, 127.6, 127.2, 126.8, 125.5, 123.7, 117.2, 113.1, 52.1 ppm. IR (KBr): \hat{v} = 1615, 1596, 1556, 1486, 1413, 1269, 766, 735, 703 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO [M + H]⁺ 312.1383; found 312.1393.

1-Cyclopropyl-2-phenylquinolin-4(1*H***)-one (30):** Yellow solid (59 mg, 45%); m.p. 168–170 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.43 (d, J = 7.9 Hz, 1 H), 7.96 (d, J = 8.6 Hz, 1 H), 7.69 (t, J = 7.6 Hz, 1 H), 7.53–7.47 (m, 5 H), 7.39 (t, J = 7.4 Hz, 1 H), 6.31 (s, 1 H), 3.42–3.27 (m, 1 H), 0.94 (d, J = 6.3 Hz, 2 H), 0.56 (d, J = 2.9 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 178.1, 155.4, 143.0, 136.8, 131.6, 129.1, 128.4, 128.3, 126.6, 126.3, 123.5, 117.8, 113.2, 32.3, 12.9 ppm. IR (KBr): \tilde{v} = 1613, 1594, 1555, 1486, 1462, 1416, 777, 765, 707 cm⁻¹. HRMS (ESI): calcd. for C₁₈H₁₆NO [M + H]⁺ 262.1226; found 262.1237.

2-(4-Methoxyphenyl)-1-phenylquinolin-4(1*H***)-one (3p**): White solid (128 mg, 78%); m.p. 205–207 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.51 (d, *J* = 7.7 Hz, 1 H), 7.52–7.29 (m, 5 H), 7.16 (d, *J* = 6.5 Hz, 2 H), 7.08 (d, *J* = 7.9 Hz, 2 H), 6.90 (d, *J* = 8.4 Hz, 1 H), 6.69 (d, *J* = 7.9 Hz, 2 H), 6.43 (s, 1 H), 3.74 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 177.9, 159.5, 153.9, 142.6, 139.2, 131.8, 130.5, 129.9, 129.6, 128.8, 128.0, 126.1, 125.9, 123.7, 118.0, 113.3, 112.6, 55.1 ppm. IR (KBr): \tilde{v} = 3046, 1624, 1601, 1510, 1481, 1402, 1250, 1186, 1024, 839, 776, 760 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO₂ [M + H]⁺ 328.1332; found 328.1333.

1-Phenyl-2-(*p***-tolyl)quinolin-4(1***H***)-one (3q):** Yellow solid (133 mg, 86%); m.p. 289–291 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.50 (d, J = 7.2 Hz, 1 H), 7.52–7.31 (m, 5 H), 7.16 (s, 2 H), 7.01 (d, J = 14.1 Hz, 4 H), 6.90 (d, J = 8.2 Hz, 1 H), 6.43 (s, 1 H), 2.25 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 177.8, 154.1, 142.5, 139.2, 138.5, 132.7, 131.7, 129.9, 129.5, 129.0, 128.8, 128.5, 126.1, 126.0, 123.6, 118.0, 112.5, 21.1 ppm. IR (KBr): $\tilde{\nu}$ = 1630, 1595, 1508, 1493, 1478, 1458, 1403, 1313, 1136, 762, 706 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO [M + H]⁺ 312.1383; found 312.1397.

2-(4-Chlorophenyl)-1-phenylquinolin-4(1*H***)-one (3r): White solid (148 mg, 89%); m.p. 232–234 °C. ¹H NMR (300 MHz, DMSO): \delta = 8.27 (d,** *J* **= 7.0 Hz, 1 H), 7.59 (t,** *J* **= 7.1 Hz, 1 H), 7.51–7.24 (m, 10 H), 6.83 (d,** *J* **= 8.5 Hz, 1 H), 6.16 (s, 1 H) ppm. ¹³C NMR (75 MHz, DMSO): \delta = 176.2, 152.9, 142.4, 138.8, 134.5, 133.5, 132.4, 131.2, 130.2, 129.8, 129.3, 127.9, 125.6, 125.4, 123.9, 118.3, 111.4 ppm. IR (KBr): \tilde{v} = 3054, 1629, 1608, 1593, 1495, 1480, 1414, 1316, 754, 696 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅ClNO [M + H]⁺ 332.0837; found 332.0853.**

2-(4-Fluorophenyl)-1-phenylquinolin-4(1*H***)-one (3s): White solid (121 mg, 77%); m.p. 225–227 °C. ¹H NMR (300 MHz, DMSO): \delta = 8.28 (d, J = 6.8 Hz, 1 H), 7.60 (t, J = 7.0 Hz, 1 H), 7.42 (s, 8 H), 7.08 (t, J = 8.7 Hz, 2 H), 6.83 (d, J = 8.4 Hz, 1 H), 6.16 (s, 1 H) ppm. ¹⁹F NMR (377 MHz, CDCl₃): \delta = -111.8 (s, Ar-F) ppm. ¹³C NMR (75 MHz, DMSO): \delta = 176.2, 163.5, 160.2 (d, ¹_{J_{C-F}} = 247.5 Hz), 153.1, 142.4, 138.9, 132.4, 132.1 (d, ⁴_{J_{C-F}} = 3 Hz), 131.7, 131.6 (d, ³_{J_{C-F}} = 8.25 Hz), 130.2, 129.7, 129.2, 125.6, 125.4, 123.8, 118.3, 115.0, 114.7 (d, ²_{J_{C-F}} = 21 Hz), 111.5 ppm. IR (KBr): \tilde{v} = 3045, 1628, 1595, 1511, 1494, 1483, 1420, 1319, 847, 747 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅FNO [M + H]⁺ 316.1132; found 316.1147.**

2-(3-Nitrophenyl)-1-phenylquinolin-4(1*H***)-one (3t):** Yellow solid (111 mg, 65%); m.p. 279–281 °C. ¹H NMR (400 MHz, CDCl₃): δ

= 8.48 (d, J = 8.0 Hz, 1 H), 8.08 (d, J = 8.5 Hz, 1 H), 8.04 (s, 1 H), 7.55 (d, J = 7.4 Hz, 1 H), 7.49 (t, J = 7.5 Hz, 1 H), 7.45–7.29 (m, 5 H), 7.19 (d, J = 7.2 Hz, 2 H), 6.90 (d, J = 8.5 Hz, 1 H), 6.41 (s, 1 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.7, 151.0, 147.4, 142.5, 138.5, 137.1, 134.9, 132.3, 130.0, 129.8, 129.5, 129.2, 126.3, 126.0, 124.2, 123.5, 118.0, 112.7 ppm. IR (KBr): \tilde{v} = 3056, 3045, 1628, 1604, 1595, 1526, 1493, 1346, 841, 816, 744, 706 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅N₂O₃ [M + H]⁺ 343.1077; found 343.1080.

2-(3-Chlorophenyl)-1-phenylquinolin-4(1*H***)-one (3u): White solid (119 mg, 72%); m.p. 272–274 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.50 (d,** *J* **= 7.9 Hz, 1 H), 7.50–7.35 (m, 5 H), 7.17–7.08 (m, 5 H), 7.05 (d,** *J* **= 7.5 Hz, 1 H), 6.91 (d,** *J* **= 8.5 Hz, 1 H), 6.41 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 177.8, 152.2, 142.5, 138.8, 137.2, 133.8, 132.0, 129.9, 129.7, 129.2, 128.8, 127.3, 126.3, 126.0, 123.9, 118.0, 112.5 ppm. IR (KBr): \tilde{v} = 3042, 1627, 1595, 1495, 1470, 1423, 1404, 1317, 800, 748 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅CINO [M + H]⁺ 332.0837; found 332.0848.**

2-(3-Methoxyphenyl)-1-phenylquinolin-4(1*H***)-one (3v): White solid (100 mg, 61%); m.p. 217–219 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.50 (dd,** *J* **= 7.7, 1.2 Hz, 1 H), 7.53–7.31 (m, 5 H), 7.18 (d,** *J* **= 4.2 Hz, 2 H), 7.09 (t,** *J* **= 7.9 Hz, 1 H), 6.92 (d,** *J* **= 8.5 Hz, 1 H), 6.80–6.63 (m, 3 H), 6.45 (s, 1 H), 3.68 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 177.8, 158.8, 153.7, 142.5, 139.1, 136.7, 131.8, 129.9, 129.5, 128.9, 126.2, 126.0, 123.7, 121.7, 118.0, 114.7, 114.4, 112.4, 55.2 ppm. IR (KBr): \tilde{v} = 3051, 3037, 1627, 1602, 1595, 1578, 1480, 1291, 1057, 748, 712 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO₂ [M + H]⁺ 328.1332; found 328.1340.**

2-(3-Methoxyphenyl)-1-(4-methoxyphenyl)quinolin-4(1*H***)-one (3w): Yellow solid (134 mg, 75%); m.p. 178–180 °C. ¹H NMR (300 MHz, DMSO): \delta = 8.26 (d,** *J* **= 7.8 Hz, 1 H), 7.59 (t,** *J* **= 6.9 Hz, 1 H), 7.42 (d,** *J* **= 7.1 Hz, 1 H), 7.34 (d,** *J* **= 8.3 Hz, 2 H), 7.17 (t,** *J* **= 7.7 Hz, 1 H), 7.05–6.73 (m, 6 H), 6.15 (s, 1 H), 3.74 (s, 3 H), 3.67 (s, 3 H) ppm. ¹³C NMR (75 MHz, DMSO): \delta = 176.2, 159.1, 158.4, 154.3, 142.9, 137.0, 132.3, 131.6, 131.3, 129.1, 125.7, 125.3, 123.7, 121.5, 118.4, 114.9, 114.6, 114.5, 111.2, 55.5, 55.2 ppm. IR (KBr): \tilde{v} = 3056, 1626, 1597, 1508, 1463, 1407, 1250, 1032, 841, 760 cm⁻¹. HRMS (ESI): calcd. for C₂₃H₂₀NO₃ [M + H]⁺ 358.1438; found 358.1455.**

2-(3-Methoxyphenyl)-1-(pyridin-3-yl)quinolin-4(1*H***)-one (3x): White solid (120 mg, 73%); m.p. 213–215 °C. ¹H NMR (300 MHz, CDCl₃): \delta = 8.60 (s, 1 H), 8.49 (d,** *J* **= 7.8 Hz, 2 H), 7.58–7.48 (m, 2 H), 7.39–7.29 (m, 2 H), 7.12 (t,** *J* **= 6.8 Hz, 1 H), 6.84–6.71 (m, 4 H), 6.46 (s, 1 H), 3.70 (s, 3 H) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 177.8, 159.1, 153.5, 150.8, 149.8, 142.3, 137.4, 136.0, 132.3, 129.4, 126.5, 126.0, 124.1, 124.0, 121.6, 117.4, 114.8, 114.7, 112.7, 55.2 ppm. IR (KBr): \tilde{v} = 1630, 1597, 1481, 1464, 1423, 1406, 1319, 1292, 1267, 1039, 1028, 750 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₇N₂O₂ [M + H]⁺ 329.1285; found 329.1292.**

2-Cyclohexyl-1-phenylquinolin-4(1*H***)-one (3y**): Yellow solid (81 mg, 53%); m.p. 240–242 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.42 (d, J = 7.7 Hz, 1 H), 7.62 (s, 3 H), 7.37 (t, J = 7.6 Hz, 1 H), 7.29 (d, J = 11.1 Hz, 3 H), 6.61 (d, J = 8.5 Hz, 1 H), 6.40 (s, 1 H), 2.11 (t, J = 11.5 Hz, 1 H), 1.80 (d, J = 12.6 Hz, 2 H), 1.70 (d, J = 12.9 Hz, 2 H), 1.59 (d, J = 12.9 Hz, 1 H), 1.42 (q, J = 12.4 Hz, 2 H), 1.17 (q, J = 12.9 Hz, 1 H), 0.94 (q, J = 12.6 Hz, 2 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 178.2, 159.6, 142.6, 138.6, 131.3, 130.3, 129.7, 129.0, 125.8, 125.7, 123.3, 118.2, 108.2, 41.1, 33.0, 26.2, 25.5 ppm. IR (KBr): \hat{v} = 2940, 2847, 1626, 1601, 1489, 1465, 1423, 1303, 1136, 844, 781, 760, 710 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₂₂NO [M + H]⁺ 304.1696; found 304.1688.

Buchwald-Hartwig Coupling/Michael Addition Reactions

2-*tert***-Butyl-1-phenylquinolin-4(1***H***)-one (3***z***): Yellow solid (91 mg, 65%); m.p. 219–221 °C. ¹H NMR (400 MHz, CDCl₃): \delta = 8.37 (d, J = 7.6 Hz, 1 H), 7.56 (d, J = 6.4 Hz, 3 H), 7.40–7.18 (m, 4 H), 6.66 (s, 1 H), 6.40 (d, J = 8.7 Hz, 1 H), 1.16 (s, 9 H) ppm. ¹³C NMR (101 MHz, CDCl₃): \delta = 178.8, 161.3, 144.8, 140.4, 131.6, 131.4, 129.8, 129.3, 125.4, 125.0, 123.2, 118.3, 110.1, 37.5, 31.7 ppm. IR (KBr): \tilde{v} = 1623, 1560, 1571, 1488, 1464, 1391, 1315, 847, 764, 715 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₄FNO [M + H]⁺ 316.1132; found 316.1143. HRMS (ESI): calcd. for C₁₉H₂₀NO [M + H]⁺ 278.1539; found 278.1532.**

6-Fluoro-1,2-diphenylquinolin-4(1*H***)-one (3aa):** Yellow solid (81 mg, 51%); m.p. 269–271 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.12 (dd, J = 8.9, 3.0 Hz, 1 H), 7.40–7.32 (m, 3 H), 7.21–7.14 (m, 8 H), 6.90 (dd, J = 9.4, 4.3 Hz, 1 H), 6.40 (s, 1 H) ppm. ¹⁹F NMR (377 MHz, CDCl₃): δ = -117.8 (s, Ar-F) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 176.9, 160.8, 157.5 (d, ¹ J_{C-F} = 244.5 Hz), 154.0, 139.0 (d, ⁶ J_{C-F} = 4.5 Hz), 135.4, 129.8, 129.6 (d, ⁴ J_{C-F} = 14.25 Hz), 129.1, 128.6, 127.9, 127.5, 127.4 (d, ⁵ J_{C-F} = 6.75 Hz), 120.4, 120.1 (d, ³ J_{C-F} = 18.75 Hz), 111.8, 110.8, 110.5 (d, ² J_{C-F} = 22.5 Hz), 104.7 ppm. IR (KBr): \tilde{v} = 3046, 1616, 1595, 1496, 1478, 1395, 1310, 1182, 839, 779, 704 cm⁻¹. HRMS (ESI): calcd. for C₂₁H₁₅FNO [M + H]⁺ 316.1132; found 316.1143.

6-Methoxy-1,2-diphenylquinolin-4(1*H***)-one (3ab):** White solid (67 mg, 41%); m.p. 244–246 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, J = 3.0 Hz, 1 H), 7.39–7.29 (m, 3 H), 7.21–7.12 (m, 7 H), 7.09 (dd, J = 9.3, 3.1 Hz, 1 H), 6.85 (d, J = 9.3 Hz, 1 H), 6.42 (s, 1 H), 3.94 (s, 3 H) ppm. ¹³C NMR (101 MHz, CDCl₃): δ = 177.2, 156.3, 153.0, 139.3, 137.3, 135.7, 130.0, 129.5, 129.2, 128.9, 128.5, 127.8, 127.2, 122.5, 119.8, 111.6, 105.2, 55.8 ppm. IR (KBr): \tilde{v} = 1607, 1593, 1491, 1479, 1309, 1032, 779, 700 cm⁻¹. HRMS (ESI): calcd. for C₂₂H₁₈NO₂ [M + H]⁺ 328.1332; found 328.1340.

Supporting Information (see footnote on the first page of this article): ¹H, ¹³C, and ¹⁹F NMR spectra.

Acknowledgments

We gratefully acknowledge the financial support by the Jiangsu Higher Education Institutions (through PAPD, a project funded by the Priority Academic Program Development) and the National Nature Science Foundation of China (NSFC) (grant number 81172954).

- [1] F. C. Santos, P. Abreu, H. C. Castro, I. C. P. P. Paixão, C. C. Cirne-Santos, V. Giongo, J. E. Barbosa, B. R. Simonetti, V. Garrido, D. C. Bou-Habib, D. O. Silva, P. N. Batalha, J. R. Temerozo, T. M. Souza, C. M. Nogueira, A. C. Cunha, C. R. Rodrigues, V. F. Ferreira, M. C. B. V. Souza, *Bioorg. Med. Chem.* 2009, 17, 5476–5481.
- [2] a) M. Hadjeri, E.-L. Peiller, C. Beney, N. Deka, A. Lawson, C. Dumontet, A. Boumendjel, *J. Med. Chem.* 2004, 47, 4964–4970; b) Y.-Y. Lai, L.-J. Huang, K.-H. Lee, Z. Xiao, K. F. Bastow, T. Yamoric, S.-C. Kuo, *Bioorg. Med. Chem.* 2005, 13, 265–275.
- [3] D. Edmont, R. Rocher, C. Plisson, J. Chenault, *Bioorg. Med. Chem. Lett.* 2000, 10, 1831–1834.
- [4] a) T. P. T. Cushnie, J. Lamb, *Phytomedicine* 2006, 13, 187–191;
 b) X. Ma, W. Zhou, R. Brun, *Bioorg. Med. Chem. Lett.* 2009, 19, 986–989;
 c) A. A. Wube, F. Bucar, C. Hochfellner, M. Blunder, R. Bauer, A. Hüfner, *Eur. J. Med. Chem.* 2011, 46, 2091–2101.
- [5] a) Y. Xia, Z.-Y. Yang, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, E. Hamel, A. Brossia, K.-H. Lee, *Bioorg. Med.*

Chem. Lett. **2003**, *13*, 2891–2893; b) S. Nakamura, M. Kozuka, K. F. Bastow, H. Tokuda, H. Nishino, M. Suzuki, J. Tatsuzaki, S. L. M. Natschke, S.-C. Kuo, K.-H. Lee, *Bioorg. Med. Chem.* **2005**, *13*, 4396–4401; c) Q.-D. You, Z.-Y. Li, C.-H. Huang, Q. Yang, X.-J. Wang, Q.-L. Guo, X.-G. Chen, X.-G. He, T.-K. Li, J.-W. Chern, *J. Med. Chem.* **2009**, *52*, 5649–5661.

- [6] a) M. Sato, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita, Y. Ito, H. Kawakami, Y. Matsuzaki, W. Watanabe, K. Yamataka, S. Ikeda, E. Kodama, M. Matsuoka, H. Shinkai, J. Med. Chem. 2006, 49, 1506–1508; b) R. D. Santo, R. Costi, A. Roux, M. Artico, A. Lavecchia, L. Marinelli, E. Novellino, L. Palmisano, M. Andreotti, R. Amici, C. M. Galluzzo, L. Nencioni, A. T. Palamara, Y. Pommier, C. Marchand, J. Med. Chem. 2006, 49, 1939–1945; c) R. Dayam, L. Q. Al-Mawsawi, Z. Zawahir, M. Witvrouw, Z. Debyser, N. Neamati, J. Med. Chem. 2008, 51, 1136–1144; d) M. Sato, H. Kawakami, T. Motomura, H. Aramaki, T. Matsuda, M. Yamashita, Y. Ito, Y. Matsuzaki, K. Yamataka, S. Ikeda, H. Shinkai, J. Med. Chem. 2009, 52, 4869–4882; e) Q.-Q. He, S.-X. Gu, J. Liu, H.-Q. Wua, X. Zhang, L.-M. Yang, Y.-T. Zheng, F.-E. Chen, Bioorg. Med. Chem. 2011, 19, 5039–5045.
- [7] F. V. Yang, W. D. Shipe, J. L. Bunda, M. B. Nolt, D. D. Wisnoski, Z. Zhao, J. C. Barrow, W. J. Ray, L. Mab, M. Wittmann, M. A. Seager, K. A. Koeplinger, G. D. Hartman, C. W. Lindsley, *Bioorg. Med. Chem. Lett.* **2010**, *20*, 531–536.
- [8] a) D. Ding, X. Li, X. Wang, Y. Du, J. Shen, *Tetrahedron Lett.* 2006, 47, 6997–6999; b) C. P. Jones, K. W. Anderson, S. L. Buchwald, *J. Org. Chem.* 2007, 72, 7968–7973; c) J. Huang, Y. Chen, A. O. King, M. Dilmeghani, R. D. Larsen, M. M. Faul, *Org. Lett.* 2008, 10, 2609–2612.
- [9] a) P. Hradil, M. Grepl, J. Hlaváč, M. Soural, M. Maloň, V. Bertolasi, J. Org. Chem. 2006, 71, 819–822; b) E. Stern, G. G. Muccioli, B. Bosier, L. Hamtiaux, R. Millet, J. H. Poupaert, J. P. Hénichart, P. Depreux, J.-F. Goossens, D. M. Lambert, J. Med. Chem. 2007, 50, 5471–5484.
- [10] Y. Yoshino, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 7494–7495.
- [11] a) W. M. Abdou, A. A. Kamel, Synth. Commun. 2007, 37, 3945–3960; b) A. A. Kamel, W. M. Abdou, Synlett 2007, 1269– 1273.
- [12] S.-C. Kuo, H.-Z. Lee, J.-P. Juang, Y.-T. Lin, T.-S. Wu, J.-J. Chang, D. Lednicer, K. D. Paull, C. M. Lin, E. Hamel, K.-H. Lee, J. Med. Chem. 1993, 36, 1146–1156.
- [13] P. Hradil, J. Hlavac, K. Lemr, J. Heterocycl. Chem. 1999, 36, 141–144.
- [14] T. R. Ward, B. J. Turunen, T. Haack, B. Neuenswander, W. Shadrick, G. Georg, *Tetrahedron Lett.* 2009, 50, 6494–6497.
- [15] a) R. Weiss, M. Bess, S. M. Huber, F. W. Heinemann, J. Am. Chem. Soc. 2008, 130, 4610–4617; b) M. M. Škugor, V. Štimac, I. Palej, D. Lugarić, H. Č. Paljetak, D. Filić, M. Modrić, I. Dilović, D. Gembarovski, S. Mutak, V. E. Haber, D. J. Holmes, Z. Ivezić-Schoenfeld, S. Alihodžić, Bioorg. Med. Chem. 2010, 18, 6547–6558; c) O. Tabarrini, S. Massari, D. Daelemans, F. Meschini, G. Manfroni, L. Bottega, B. Gatto, M. Palumbo, C. Pannecouque, V. Cecchetti, ChemMedChem 2010, 5, 1880– 1892.
- [16] a) J. A. Donnelly, D. F. Farrell, J. Org. Chem. 1990, 55, 1757–1761; b) A. L. Tökés, G. Litkei, L. Szilágyi, Synth. Commun. 1992, 22, 2433–2445; c) C. Praveen, K. Parthasarathy, P. T. Perumal, Synlett 2010, 11, 1635–1640.
- [17] D. Zewge, C. Chen, C. Deer, P. G. Dormer, D. L. Hughes, J. Org. Chem. 2007, 72, 4276–4279.
- [18] a) V. N. Kalinin, M. V. Sbostakovsky, A. B. Ponomaryov, *Tetrahedron Lett.* **1992**, *33*, 373–376; b) S. Torii, H. Okumoto, L. H. Xu, M. Sadakane, M. V. Shostakovsky, A. B. Ponomaryov, V. N. Kalinin, *Tetrahedron* **1993**, *49*, 6773–6784; c) N. Haddad, J. Tan, V. Farina, *J. Org. Chem.* **2006**, *71*, 5031–5034; d) M. Genelot, A. Bendjeriou, V. Dufaud, L. Djakovitch, *Appl. Catal. A* **2009**, *369*, 125–132; e) M. Genelot, V. Dufaud, L. Djakovitch, *Tetrahedron* **2011**, *67*, 976–981.

FULL PAPER

- [19] Q.-L. Liu, Q.-L. Li, X.-D. Fei, Y.-M. Zhu, ACS Comb. Sci. 2011, 13, 19–23.
- [20] a) R. Bernini, S. Cacchi, G. Fabrizi, A. Sferrazza, Synthesis 2009, 1209–1219; b) T. Zhao, B. Xu, Org. Lett. 2010, 12, 212–215; c) Z. Zheng, H. Alper, Org. Lett. 2008, 10, 829–832; d) J. F. Hartwig, Angew. Chem. 1998, 110, 2154; Angew. Chem. Int. Ed. 1998, 37, 2046–2067.
- [21] a) Y. Shvo, A. H. I. Arisha, J. Org. Chem. 1998, 63, 5640–5642;
 b) T. Ohmura, A. Kijima, M. Suginome, Org. Lett. 2011, 13, 1238–1241.
- [22] İ. Karamana, H. Gezegen, M. B. Gürdere, A. Dingil, M. Ceylan, *Chem. Biodiversity* 2010, 7, 400–408.

Received: February 14, 2012 Published Online: ■

Buchwald-Hartwig Coupling/Michael Addition Reactions

Catalytic Dehydrogenation

 $R^{1} \xrightarrow[l]{} X^{2} + R^{3}NH_{2} \xrightarrow{Pd(OAc)_{2} (5 \text{ mol-}\%)}{K_{2}CO_{3} (2 \text{ equiv.})}$

The Buchwald–Hartwig coupling/Michael addition sequence has been successfully used for the synthesis of 1,2-disubstituted 4-quinolones starting from chalcones and primary amines using Pd(OAc)₂/PPh₃/

 K_2CO_3 as the catalyst system. The intermediates formed underwent catalytic dehydrogenation to give the products in good yields. The methodology has a broad scope and is applicable to library synthesis. X.-D. Fei, Z. Zhou, W. Li, Y.-M. Zhu,* J.-K. Shen* 1–9

Buchwald–Hartwig Coupling/Michael Addition Reactions: One-Pot Synthesis of 1,2-Disubstituted 4-Quinolones from Chalcones and Primary Amines

Keywords: Palladium / Cyclization / Michael addition / Dehydrogenation / Heterocycles