

Article

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Alkali-induced Ring-Opening of 2-Amidodihydrofuran and Manganese Catalyzed Aerobic Dehydrogenation Annulation: An Access to Functionalized Oxazole

Pan Li, Jingjing Zhao, Xinjian Li, and Fuwei Li

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b00112 • Publication Date (Web): 06 Apr 2017 Downloaded from http://pubs.acs.org on April 6, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Alkali-induced Ring-Opening of 2-Amidodihydrofuran and Manganese Catalyzed Aerobic Dehydrogenation Annulation: An Access to Functionalized Oxazole

Pan Li, Jingjing Zhao, Xinjian Li and Fuwei Li*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of

Sciences, Lanzhou 730000, P. R. China.

fuweili@licp.cas.cn

Table of content graphic

Abstract

A novel and efficient synthesis of functionalized oxazoles from 2-amidodihydrofurans has been achieved by alkali-induced intramolecular C–O bond cleavage and formation using air as a green oxidant. Moreover, these functionalized oxazoles could be readily transformed into the corresponding oxazole substituted pyrazoles and 2*H*-azirines.

Introduction

The cleavage and construction of chemical bonds are basic elements in catalysis and organic synthesis, their realizations via an efficient, selective and highly atom economic manner are the long term goal for sustainable chemistry. C–O Bonds widely exist in oxygen-containing heterocycles and functional compounds such as alcohol and ether, their catalytic cleavages and transformations between different types for the advanced synthesis have attracted enormous interests in recent times.¹ Therefore, it is highly desirable and interesting if these C–O bond breakings and formations would catalytically occur in the diverse conversion of oxygen-containing heterocycle into another heterocyclic skeleton compound,² especially when such transformation simultaneously generates functional moiety for further transformations.

Oxazole skeleton is widely existed in natural products and pharmaceutical compounds,³ extensive efforts have been devoted to the synthesis and functionalization of oxazoles.⁴ In particular, the as-prepared or *in situ* generated enamides are active substrates or intermediates to yield oxazoles mainly *via* the following two pathways: first, intramolecular vinylation of

the amide as indicated in the path A of Scheme 1, and these specific enamides usually need a leaving group (LG) in the β -vinylic position;⁵ second, direct cyclization of enamide with the neighbouring olefin through oxidative C–H functionalization,⁶ nevertheless, such atom-economic transformation requires strong oxidants, such as K₂S₂O₈, PhI(OAc)₂, copper salts (Scheme 1, Path B). Compared with these two routes, the C–O bond formation of oxazole enabled by the catalytic aerobic oxidation represents a more challenging and greener way in view of the natural and environmentally benign character of air.⁷ Herein, we develop a novel nonprecious metal-catalyzed procedure to synthesize the oxazole skeleton via the oxidative cyclization of enamide with the *in situ* generated allene moiety⁸ using air as a green oxidant. In addition, the functional substituents could also be generated onto the oxazole ring due to the uniqueness of this procedure.

Scheme 1. Reported Synthesis of Oxazoles from Enamines.

$$R^{1} \xrightarrow{R^{2}} R^{2} \xrightarrow{Path A} R^{2} \xrightarrow{R^{1}} R^{2} \xrightarrow{Path B} R^{1} \xrightarrow{R^{2}} R^{2} \xrightarrow{Path B} R^{1} \xrightarrow{R^{2}} R^{2}$$

$$LG = I, Br, SMe, OR$$

Besides taking as a nucleophile for the annulation to yield oxazole, the amide group of 2-amidodihydrofuran is also herein proposed to be an assisting function to facilitate the ring opening of dihydrofuran *via* C–O bond cleavage in the presence of base,⁹ which is then experimentally verified by replacing the amide with representative Ph or H, without any reaction observed as indicated in Scheme 2. However, the 2-aminodihydrofuran afforded the ring opening product **5a** with a mixture of *E* and *Z* isomer was obtained in total 44% yield with one isomer structurally confirmed by XRD (CCDC 1401603) under the same reaction condition, which showed that ring opening of **1a** indeed happened with the help of a base along with its catalyzed decarbonylation resulting in the loss of an acetyl moiety.

Scheme 2. Investigation on the Role of Amide Substitutent for the Ring-Opening of Dihydrofurans.

Taking such unique advantage, it is hypothesized as illustrated in Scheme 3 that the 2-amidodihydrofuran could go through C–O bond cleavage to generate γ -dicarbonyl enamide which thereafter undergoes an oxidative dehydrogenation process to

The Journal of Organic Chemistry

generate the allene intermediate,⁸ eventually, from which the oxazoles bearing a 1,3-dicarbonyl moiety would be formed *via* an intramolecular nucleophilic annulation.

Scheme 3. Our Proposed Strategy for the Synthesis of Functionalized Oxazoles from 2-Amidodihydrofurans.

Results and Discussion

With the above assumption in mind, we started the investigation by the catalytic transformation of 1a (Table 1). Considering that copper catalysts play a crucial role in the aerobic oxidation,¹⁰ a series of copper salts were initially selected as the oxidation catalysts with the presence of Cs_2CO_3 to initiate the cyclic C–O cleavage under an air atmosphere. The expected oxazole 2a was obtained in moderate yields (entries 1–6). Manganese catalyst, also a good single-electron oxidant,¹¹ can possibly facilitate the oxidization of the in situ generated 1,3-dicarbonyl anion species via C-O bond cleavage of 1a to produce corresponding alkyl radical intermediate,¹² which would be easily trapped by O₂ to forward the oxidative dehydrogenation.¹³ Within the screened manganese catalysts, Mn(OAc)₃ displayed higher efficiency (entries 7-9). Interestingly, the transformation of 1a to 2a could also proceed in the absence of metal catalyst but only giving 24% yield (entry 10), and no reaction occurred without base (entry 11), indicating the *in situ* generated 1,3-dicarbonyl anion intermediate could slowly react with O2 without a metal catalyst although which could accelerate such process.14 Present transformation was found to be very sensitive to solvent, it proceeded smoothly in DMF and DMSO (entries 12 and 13), however, only gave 10% yield of 2a in toluene or DCE (entries 14 and 15). K₂CO₃ showed the best assisting activity among the screened bases (entries 16-18), giving 2a in 73% yield. As mentioned in Scheme 2, 5a was observed instead of 2a when the reaction was conducted under an argon atmosphere, suggesting oxygen was expectedly involved in the oxidation step (entry 19). However, only 47% yield of 2a was obtained in 1 atm oxygen owning to the 2a will further oxidized in an excess of oxygen (entry 20). In addition, the yield dramatically decreased as the temperature declined, probably indicating one step among C-O cleavage, oxidative dehydrogenation and/or annulation is significantly temperature sensitive (entries 21 and 22).

ACS Paragon Plus Environment

To our delight, 78% yield of 2a could be achieved even using 0.5 equiv. of K₂CO₃ (entries 23 and 24). However, only 45% yield of 2a was obtained when using 0.25 equiv. of K₂CO₃, and the 1a was still observed (entry 25).

Table 1. Reaction optimization^a

	OMe		MeOH	
		M (cat.), Base		
	Ph	air, 100 °C		
	1a CO ₂ Et		Ph 2a	
entry	catalyst (10 mol%)	base (equiv)	solvent	yield (%)
1	CuBr	$Cs_2CO_3(3)$	MeCN	45
2	CuI	$Cs_2CO_3(3)$	MeCN	54
3	CuCl ₂	$Cs_2CO_3(3)$	MeCN	51
4	CuF_2	$Cs_2CO_3(3)$	MeCN	44
5	Cu(TFA) ₂	$Cs_2CO_3(3)$	MeCN	54
6	$Cu(OAc)_2$	$Cs_2CO_3(3)$	MeCN	64
7	MnCl ₂ .4H ₂ O	$Cs_2CO_3(3)$	MeCN	61
8	Mn(OAc) ₂ .4H ₂ O	$Cs_2CO_3(3)$	MeCN	57
9	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	MeCN	68
10		$Cs_2CO_3(3)$	MeCN	24
11	Mn(OAc) ₃ .2H ₂ O		MeCN	0
12	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	DMF	47
13	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	DMSO	47
14	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	DCE	10
15	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	Toluene	10
16	Mn(OAc) ₃ .2H ₂ O	$K_2CO_3(3)$	MeCN	73
17	Mn(OAc) ₃ .2H ₂ O	K ₃ PO ₄ (3)	MeCN	57
18	Mn(OAc) ₃ .2H ₂ O	CsF (3)	MeCN	10
19^{b}	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	MeCN	N. D.
20^{c}	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	MeCN	47
21^d	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	MeCN	66
22^{e}	Mn(OAc) ₃ .2H ₂ O	$Cs_2CO_3(3)$	MeCN	35
23	Mn(OAc) ₃ .2H ₂ O	$K_{2}CO_{3}(1)$	MeCN	76
24	Mn(OAc) ₃ .2H ₂ O	$K_2CO_3(0.5)$	MeCN	78
25 ^f	Mn(OAc) ₃ .2H ₂ O	K ₂ CO ₃ (0.25)	MeCN	45

^{*a*} All reactions were carried out on a 0.2 mmol scale in 2 mL of solvent in a 35 mL sealed tube (total volume 50 mL) in 100 °C for 18 h. ^{*b*} Under argon. ^{*c*} Under 1 atm O₂. ^{*d*} 90 °C. ^{*c*} 80 °C. ^{*f*} 36 h.

Having identified the optimized reaction conditions (Table 1, entry 23), we turned to examining the scope of this catalytic transformation (Scheme 4). 2-Acetamidedihydrofurans derived from various aromatic enamides ($R^3 = Me$, with different Ar) were initially investigated, substrates with electron-donating groups (R = Me or OMe) and electron-withdrawing groups (R = F, Br, I, or NO₂) were all suitable for this transformation, affording the desired oxazoles in 42% to 75% yields, respectively

ACS Paragon Plus Environment

(2b–2h). Besides, other representative aromatic substrates, such as thiophene and naphthalene groups, were also well tolerated (2i–2l). Subsequently, 2-acetamide-dihydrofurans derived from various 1,3-dicarbonyl compounds (different R^1 , R^2) were examined, the unsymmetrical 1,3-dicarbonyl derived substrates gave the corresponding products in 40% to 75% yields, respectively (2m–2o, 2u and 2v). These 2-acetamidedihydrofurans derived from symmetrical 1,3-dicarbonyl compounds afforded desirable products in moderate to excellent yields (2p–2t), and the cyclic 2-amidodihydrofurans displayed higher activity in this transformation (2r–2t).

Scheme 4. Catalytic Tandem Synthesis of Functionalized Oxazoles from 2-Amidodihydrofurans.

The structure of the representative oxazole 2u is further confirmed by X-ray single crystal diffraction (XRD, CCDC 1401540). The C5–C12 bond length is 1.368 Å indicating its C=C character, and the hydrogen atom attached to O2 suggests the presence of alcoholic group. Moreover, it is worthy to note that a high chemical shift HNMR peak (13–18 ppm) belonging to product 2 (except for 2r-2t) was observed which revealed the intramolecular O–H[…]O hydrogen bond between the hydroxyl and ketone group is stably present in the solution condition, this interesting observation is significantly different

with the reported structures of aryl substituted 1,3-dicarbonyl compounds which are keto- or keto-enol mixture in solution,^[15] these functionalized oxazoles prepared by present method display exclusive enolic form in either liquid or solid condition.

Moreover, the amide substituent of dihydrofuran could also be smoothly changed (2w). Surprisingly, dihydrofuran 1x derived from 1,3-diphenylpropanedione ($R^1 = R^2 = Ph$, $R^3 = Me$, Ar = Ph) gave the pyrrole (2x) instead of oxazole in 86% yield via an another plausible process. It's worth noting that a little of pyrroles were detected in the transformation from dihydrofurans (1p and 1q) to oxazoles (2p and 2q) owing to losing the acetyl group. As shown in Scheme 5, the 2-amidodihydrofuran 1x undergoes alkali-induced ring opening to form carbanion **A**. Then **A** experiences an intramolecular annulation to generate a five-membered ring **B**, followed by further intramolecular annulation to generate d from **C** via a ring-opening along with benzoate leaving. And the benzoic acid was detected by GC-MS.

With the hydroxyl enone as a synthetic moiety, the above funtionalized oxazoles could be further transformed into other interesting oxazole substituted heterocyclic compounds as representatively shown in Scheme 6. The hydroxyl enone substituent of 2p could react with hydrazine hydrate to obtain corresponding pyrazole 3 in 90% yield.¹⁶ Besides, the oxazole substituted 2*H*-azirine 4 could be synthesized in 65% yield *via* a two-step reaction.¹⁷

Scheme 6. Further Transformations.

ACS Paragon Plus Environment

To understand the mechanism about this transformation, a series of control experiments were carried out (Scheme 7). Only trace amount of 2a was detected in the presence of 1,1-diphenylethylene indicating present transformation appeared to undergo a radical process (Scheme 7a). Compared with the transformation from 2a to 5a, 1r would transform into the corresponding enamide 5r in 95% yield at 100 °C under argon without any side decarbonylation reaction observed possibly because the steric hinderance of the cyclohexone substitutent is much higher than previous actyl group (Scheme 7b). Note that the conversion of 1r into 5r was difficult to happen at 80 °C (Scheme 4c), but the resultant enamide 5r could catalytically convert to the expected oxazole 2r through oxidative cyclization in very high yield even at 50 °C (Scheme 4d). These results not only showed that the enamide generated from the ring opening of 2-amidodihydrofuran was the intermediate of such transformation, but also indicated that the C–O cleavage involved ring opening step need higher temperature than the aerobic dehydrogenation and the subsequent annulation.

Scheme 7. Control Experiments.

In order to further understand the mechanism, Electron Paramagnetic Resonance (EPR) experiments were performed using 2-methyl-2-nitrosopropane (MNP) as a spin trapping reagent (Figure 1).¹⁸ A mixture of **1a**, Mn(OAc)₃, K₂CO₃ and MNP was stirred under argon at 100 °C for one hour. Then the mixture was detected by EPR spectroscopy, and a strong signal with three Lorentzian lines (g = 2.0060, a (¹⁴N) = 15.70 G) was clearly detected indicating the alkyl radical **B** possibly originated

from the *in situ* generating γ -dicarbonyl enamide was trapped by MNP (Figure 1a). The above signal could also be detected when the reaction was conducted in air at 100 °C for one hour, more interestingly, another signal (g = 2.0055, a (¹⁴N) = 27.03 G) derived from the trapping of peroxy radical **C** with MNP was also observed (Figure 1b). Notably, no signal was detected without manganese catalyst might indicate that carbanion **A** generated from the ring opening of **1a** would transform into corresponding alkyl radical **B** *via* single electron transfer process in the presence of manganese catalyst.¹¹

Based on the above control experiments and EPR studies, a proposed mechanism is drawn in Scheme 8. Initially, the 2-amidodihydrofuran undergoes alkali-induced ring opening to form carbanion **A** which further converts to the alkyl radical **B** in the presence of Mn^{III} catalyst.¹¹ The radical **B** reacts with O₂ to produce a peroxy radical **C**,¹² both of them could be trapped with MNP and observed by EPR. The resultant Mn^{II} could be oxidized by **C** to regenerate Mn^{III} catalytic species with giving the peroxide anion intermediate **D** (Scheme 8, Path A).¹⁹ As observed in previous catalyst optimization (Table 1, entry 10), **D** might be alternatively produced with much slower reaction rate from the reaction of **A** with O₂ (Scheme 8, Path B).¹⁴ Then **D** captures a proton like a base from 2-amidodihydrofuran to form a peroxide **E** with the regeneration of **A**. Subsequently, **E** is transformed into an allene intermediate **F** possibly induced by heat or base,¹³ and eventually converts to the oxazole **2** *via* an intramolecular annulation process.²⁰

Scheme 8. A Plausiblem Mechanism.

Conclusions

In summary, we have developed a novel and efficient methodology to synthesize functionalized oxazoles from easily available 2-amidodihydrofurans. This highly atom-economic transformation employs inexpensive Mn(OAc)₃ as the catalyst and air as the oxidant. The control experiments and EPR studies reveal that present cascade catalytic transformation appears to involve γ -dicarbonyl enamide and allene intermediates through a series of base promoting ring-opening, manganese catalyzed aerobic oxidative dehydrogenation and annulation process. In addition, these functionalized oxazoles could be readily transformed into the corresponding oxazole substituted pyrazoles and 2H-azirines. Present cascade catalytic procedure would inspire new designs on the synthesis of heterocyclic skeletons via intramolecular C-O bond cleavage and formation.

Experimental Section

General Considerations. The ¹H and ¹³C NMR spectra were recorded with 400 MHz spectrometers as solutions in CDCl₃ or MeOD. Chemical shifts are expressed in parts per million (ppm) and are referenced to CHCl₃ ($\delta = 7.26$ ppm for ¹H and $\delta =$ 77.0 ppm for ¹³C) or MeOD ($\delta = 3.34$ ppm for ¹H and $\delta = 49.9$ ppm for ¹³C) as an internal standard.

General procedure to prepare 2-amidodihydrofurans 1.^{9b} To a 50 mL Schlenk tube with a stir bar was added enamides (1 mmol), 1,3-dicarbonyl compounds (2 mmol), Mn(OAc)₃2H₂O (804 mg, 3 mmol) and 10 mL of MeCN. The mixture was stirred under argon at 80 °C for 6 h, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (PE/EA = 2:1) to afford the desired 2-amidodihydrofurans 1.

Ethyl 5-acetamido-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (*1a*)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.31 (m, 5 H), 6.44 (bs, 1 H), 4.13 (q, *J* = 7.1 Hz, 2 H), 3.67 (d, *J* = 15.3 Hz, 1 H), 3.11 (d, *J* = 15.3 Hz, 1 H), 2.33 (s, 3 H), 1.99 (s, 3 H), 1.24 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.5, 165.7, 165.5, 142.9, 128.7, 128.4, 124.5, 101.6, 95.2, 59.5, 42.9, 24.0, 14.3, 13.9.

Ethyl 5-acetamido-2-methyl-5-(p-tolyl)-4,5-dihydrofuran-3-carboxylate (1b)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2 H), 7.18 (d, *J* = 8.0 Hz, 2 H), 6.48 (br, 1 H), 4.11 (q, *J* = 7.0 Hz, 2 H), 3.61 (t, *J* = 15.2 Hz, 1 H), 3.08 (d, *J* = 15.3 Hz, 1 H), 2.34 (s, 3 H), 2.31 (s, 3 H), 1.97 (s, 3 H), 1.23 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.6, 165.7, 165.6, 140.0, 138.3, 129.3, 124.4, 101.6, 95.3, 59.5, 42.8, 24.0, 21.0, 14.3, 13.88.

Ethyl 5-acetamido-5-(4-methoxyphenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (1c)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.7 Hz, 2 H), 6.95–6.87 (m, 2 H), 6.20 (bs, 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 3.81 (s, 3 H), 3.69 (d, J = 15.3 Hz, 1 H), 3.12 (dd, J = 15.3, 1.7 Hz, 1 H), 2.32 (s, 2 H), 2.01 (s, 3 H), 1.25 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.5, 165.6, 159.5, 135.0, 125.9, 114.0, 101.7, 95.2, 59.5, 55.3, 42.7, 24.0, 14.3, 13.9.

Ethyl 5-acetamido-5-(4-fluorophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (1d)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 8.7, 5.2 Hz, 2 H), 7.03 (t, J = 8.5 Hz, 2 H), 6.66 (br, 1 H), 4.11 (q, J = 7.1 Hz, 2 H), 3.55 (d, J = 15.3 Hz, 1 H), 3.04 (d, J = 15.1 Hz, 1 H), 2.29 (s, 3H), 1.94 (s, 2 H), 1.23 (t, J = 7.1 Hz, 3 H); ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 169.7, 165.6, 165.4, 162.4 (¹ $J_{CF} = 247.1$ Hz), 138.61, 126.5 (³ $J_{CF} = 8.2$ Hz), 115.4 (² $J_{CF} = 22.0$ Hz), 101.5, 94.8, 59.6, 43.4, 23.8, 14.3, 13.9.

Ethyl 5-acetamido-5-(4-bromophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (1e)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.3 Hz, 2 H), 7.31 (d, J = 8.3 Hz, 2 H), 6.38 (br, 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 3.55 (d, J = 15.4 Hz, 1 H), 3.07 (d, J = 15.5 Hz, 1 H), 2.31 (s, 3 H), 1.99 (s, 3 H), 1.25 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.4, 165.6, 165.3, 141.7, 131.8, 126.4, 122.5, 101.6, 94.8, 59.7, 43.5, 24.0, 14.4, 14.0.

*Ethyl 5-acetamido-5-(4-iodophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (***1***f***)**^{9a}: ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.4 Hz, 2 H), 7.18–7.16 (m, 2 H), 6.58 (s, 1 H), 4.12 (q, 7.1 Hz, 2 H), 3.51 (d, *J* = 15.4 Hz, 1 H), 3.04 (dd, *J* = 15.4, 1.7 Hz, 1 H), 2.30 (s, 3 H), 1.96 (s, 3 H), 1.24 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.6, 165.7, 165.3, 142.4, 137.7, 126.5, 101.4, 94.8, 94.1, 59.7, 43.5, 23.9, 14.3, 13.9.

Ethyl 5-acetamido-2-methyl-5-(4-nitrophenyl)-4,5-dihydrofuran-3-carboxylate (1g): ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.7 Hz, 2 H), 7.59 (d, *J* = 8.8 Hz, 2 H), 6.89 (s, 1 H), 4.14 (q, *J* = 7.1 Hz, 2 H), 3.38 (d, *J* = 15.7 Hz, 1 H), 3.05 (dd, *J* = 15.7, 1.7 Hz, 1 H), 2.34 (s, 3 H), 1.99 (s, 3 H), 1.25 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.7, 165.9,

165.1, 149.2, 147.4, 125.6, 123.9, 101.1, 94.2, 59.9, 44.5, 23.7, 14.3, 14.0. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{18}N_2NaO_6$ 357.1057, found 357.1060.

Ethyl 5-acetamido-2-methyl-5-(3-nitrophenyl)-4,5-dihydrofuran-3-carboxylate (1h)^{9b: 1}H NMR (400 MHz, CDCl₃) δ 8.27 (t, *J* = 1.7 Hz, 1 H), 8.17 (d, *J* = 8.1 Hz, 1 H), 7.81–7.76 (m, 1 H), 7.56 (t, *J* = 8.0 Hz, 1 H), 6.77 (bs, 1 H), 4.15 (q, *J* = 7.1 Hz, 2 H), 3.42 (d, *J* = 15.6 Hz, 1 H), 3.10 (dd, *J* = 15.7, 1.8 Hz, 1 H), 2.35 (s, 3 H), 2.01 (s, 3 H), 1.25 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169. 7, 165.9, 165.1, 148.4, 144.5, 130.9, 129.7, 123.1, 120.0, 101.3, 94.1, 60.0, 44.5, 23.8, 14.3, 14.1.

Ethyl 5-acetamido-2-methyl-5-(thiophen-2-yl)-4,5-dihydrofuran-3-carboxylate (1i)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 4.2 Hz, 1 H), 7.13 (d, J = 2.9 Hz, 1 H), 6.99 (dd, J = 5.1, 3.6 Hz, 1 H), 6.41 (bs, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 3.76 (d, J = 15.3 Hz, 1 H), 3.28 (dq, J = 15.4, 1.6 Hz, 1 H), 2.27 (s, 3 H), 2.04–1.96 (m, 3 H), 1.25 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.2, 165.4, 165.0, 146.5, 127.1, 125.7, 124.2, 102.2, 93.6, 59.7, 42.8, 24.0, 14.4, 13.8.

N-(4-acetyl-5-methyl-2-(thiophen-2-yl)-2,3-dihydrofuran-2-yl)acetamide (Ij)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.25 (m, 1 H), 7.11 (d, J = 2.8 Hz, 1 H), 6.97 (dd, J = 5.0, 3.6 Hz, 1 H), 6.76 (bs, 1 H), 3.82 (d, J = 15.0 Hz, 1 H), 3.29 (dd, J = 15.1, 1.6 Hz, 1 H), 2.27 (s, 3 H), 2.16 (s, 3 H), 2.03–1.95 (m, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.3, 169.5, 164.6, 146.3, 127.1, 125.7, 124.2, 111.9, 93.6, 43.4, 29.4, 23.9, 14.7.

Ethyl 5-acetamido-2-methyl-5-(naphthalen-2-yl)-4,5-dihydrofuran-3-carboxylate (**1k**): ¹H NMR (400 MHz, CDCl₃) δ 8.00–7.73 (m, 4 H), 7.51–7.49 (m, 3 H), 6.54 (s, 1 H), 4.12 (q, *J* = 7.1 Hz, 2 H), 3.72 (d, *J* = 15.3 Hz, 1 H), 3.18 (d, *J* = 15.5 Hz, 1 H), 2.39 (s, 3 H), 1.99 (s, 3 H), 1.24 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.6, 165.8, 165.5, 139.9, 133.0, 132.9, 128.9, 128.4, 127.6, 126.6 (two carbons overlap), 123.4, 122.4, 101.7, 95.3, 59.6, 42.9, 24.0, 14.3, 14.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₁NNaO₄ 362.1363, found 362.1369.

N-(*4*-acetyl-5-methyl-2-(naphthalen-2-yl)-2,3-dihydrofuran-2-yl)acetamide (11): ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.83 (m, 4 H), 7.52–7.50 (m, 3 H), 6.50 (s, 1 H), 3.84 (d, *J* = 14.8 Hz, 1 H), 3.24 (d, *J* = 14.8 Hz, 1 H), 2.40 (s, 3 H), 2.18 (s, 3 H), 2.02 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.2, 169.9, 165.5, 139.7, 132.9, 132.8, 128.8, 128.3, 127.5, 126.5 (two carbons overlap), 123.3, 122.3, 111.6, 95.3, 43.4, 29.3, 23.8, 14.8. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₁₉NNaO₃ 332.1257, found 332.1264.

Methyl 5-acetamido-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (Im)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.29 (m, 5 H), 6.45 (bs, 1 H), 3.67 (d, J = 15.2 Hz, 1 H), 3.65 (s, 3 H), 3.09 (dd, J = 15.2, 1.5 Hz, 1 H), 2.32 (s, 3 H), 1.97 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.6, 166.0, 165.9, 142.9, 128.7, 128.5, 124.4, 101.3, 95.3, 50.8, 42.8, 24.0, 13.9.

Tert-butyl 5-acetamido-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (1n)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.29 (m, 5 H), 6.38 (bs, 1 H), 3.58 (d, J = 15.4 Hz, 1 H), 3.06 (dd, J = 15.4, 1.7 Hz, 1 H), 2.29 (s, 3 H), 1.98 (s, 3 H), 1.45 (s, 9 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.6, 165.0, 164.6, 142.9, 128.6, 128.2, 124.5, 102.8, 94.8, 79.7, 43.5, 28.3, 23.9, 13.9.

Benzyl 5-acetamido-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (10): ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2 H), 7.36–7.23 (m, 7 H), 6.69 (s, 1 H), 5.11 (s, 2 H), 3.52 (d, J = 15.3 Hz, 1 H), 3.05 (dd, J = 15.4, 1.6 Hz, 1 H), 2.31 (s, 3 H), 1.92 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.7, 166.4, 165.0, 141.6, 136.2, 131.7, 128.4, 128.0 (two carbons overlap), 126.3, 122.3, 101.1, 94.9, 65.5, 43.4, 23.8, 14.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₂₁NNaO₄ 374.1363, found 374.1365.

 $N-(4-acetyl-5-methyl-2-phenyl-2,3-dihydrofuran-2-yl)acetamide (1p)^{9b}: {}^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 7.53-7.30 (m, 5 \text{ H}), 6.56 (br, 1 \text{ H}), 3.75 (d, J = 14.8 \text{ Hz}, 1 \text{ H}), 3.13 (d, J = 14.8 \text{ Hz}, 1 \text{ H}), 2.34 (s, 3 \text{ H}), 2.16 (s, 3 \text{ H}), 1.99 (s, 3 \text{ H}); {}^{13}\text{C}\{{}^{1}\text{H}\}\text{NMR} (100 \text{ MHz, CDCl}_3) \delta 194.2, 169.7, 165.3, 142.8, 128.8, 128.6, 124.4, 111.8, 95.2, 43.4, 29.4, 24.0, 14.8.$

N-(*5*-*ethyl*-2-*phenyl*-4-*propionyl*-2,3-*dihydrofuran*-2-*yl*)*acetamide* (*1q*): ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.29 (m, 5 H), 6.39 (s, 1 H), 3.81 (d, *J* = 14.6 Hz, 1 H), 3.15 (dd, *J* = 14.9, 1.6 Hz, 1 H), 2.46–2.39 (m, 2 H), 2.37 (s, 3 H), 2.24 (q, *J* = 7.3 Hz, 2 H), 1.13 (t, *J* = 7.5 Hz, 3 H), 1.05 (t, *J* = 7.2 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 197.3, 173.2, 164.8, 143.0, 128.8, 128.5, 124.4, 110.7, 95.2, 43.1, 34.6, 29.9, 14.7, 9.1, 7.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₇H₂₁NNaO₃ 310.1414, found 310.1417.

N-(*4*-oxo-2-phenyl-2,3,4,5,6,7-hexahydrobenzofuran-2-yl)acetamide (**1r**)^{9b}: ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.33 (m, 5 H), 6.80 (bs, 1 H), 3.52 (d, *J* = 14.8 Hz, 1 H), 3.00 (d, *J* = 14.8 Hz, 1 H), 2.57–2.51 (m, 2 H), 2.42–2.24 (m, 2 H), 2.13–2.03 (m, 2 H), 1.98 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.3, 175.4, 169.8, 142.4, 128.8, 128.6, 124.4, 112.4, 98.6, 39.6, 36.3, 23.9, 23.6, 21.6.

N-(2-(4-fluorophenyl)-4-oxo-2,3,4,5,6,7-hexahydrobenzofuran-2-yl)acetamide (**Is**): ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1 H), 7.40–7.28 (m, 2 H), 7.06–6.95 (m, 2 H), 3.37 (d, *J* = 15.1 Hz, 1 H), 2.85 (d, *J* = 15.1 Hz, 1 H), 2.54–2.51 (m, 2 H), 2.32–2.24 (m, 2 H), 2.10–2.01 (m, 2 H), 1.91 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 195.5, 175.9, 170.3, 162.3 (d, ¹*J*_{CF} = 247.6 Hz), 138.1, 126.3 (³*J*_{CF} = 8.2 Hz), 115.4 (²*J*_{CF} = 21.8 Hz), 111.9, 98.2, 40.2, 36.2, 23.5 (two carbons overlap), 21.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆FNNaO₃ 312.1006, found 312.1010.

N-(6,6-dimethyl-4-oxo-2-phenyl-2,3,4,5,6,7-hexahydrobenzofuran-2-yl)acetamide (1t): ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.28 (m, 5 H), 6.55 (s, 1 H), 3.58 (d, *J* = 14.9 Hz, 1 H), 3.03 (d, *J* = 14.9 Hz, 1 H), 2.49–2.36 (m, 2 H), 2.28–2.16 (m, 2

H), 2.00 (s, 3 H), 1.18 (s, 3 H), 1.11 (s, 3 H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 194.6, 174.1, 169.6, 142.6, 128.9, 128.8, 124.3, 111.1, 98.7, 50.8, 39.3, 37.4, 34.2, 28.9, 28.4, 24.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₈H₂₁NNaO₃ 322.1414, found 322.1412.

Tert-butyl 5-acetamido-5-(4-bromophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (1u): ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 8.6 Hz, 2 H), 6.61 (s, 1 H), 3.43 (d, J = 15.6 Hz, 1 H), 3.00 (dd, J = 15.4, 1.3 Hz, 1 H), 2.27 (s, 3 H), 1.96 (s, 3 H), 1.45 (s, 9 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.5, 164.8, 164.6, 141.8, 131.7, 126.4, 122.2, 102.8, 94.4, 80.0, 44.1, 28.3, 23.9, 14.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₈H₂₂BrNNaO₄ 417.0546, found 417.0552.

Benzyl 5-acetamido-5-(4-bromophenyl)-2-methyl-4,5-dihydrofuran-3-carboxylate (1v): ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2 H), 7.36–7.23 (m, 7 H), 6.69 (s, 1 H), 5.11 (s, 2 H), 3.52 (d, J = 15.3 Hz, 1 H), 3.05 (dd, J = 15.4, 1.6 Hz, 1 H), 2.31 (s, 3 H), 1.92 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.7, 166.4, 165.0, 141.6, 136.2, 131.7, 128.4, 128.0 (two carbons overlap), 126.3, 122.3, 101.1, 94.9, 65.5, 43.4, 23.8, 14.0. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H_{20Br}NNaO₄ 452.0468, found 452.0476.

Ethyl 2-methyl-5-phenyl-5-propionamido-4,5-dihydrofuran-3-carboxylate (1w): ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.27 (m, 5 H), 6.61 (s, 1 H), 4.09 (q, *J* = 7.1 Hz, 2 H), 3.62 (d, *J* = 15.2 Hz, 1 H), 3.05 (d, *J* = 15.2 Hz, 1 H), 2.31 (s, 3 H), 2.18 (q, *J* = 7.4 Hz, 2 H), 1.21 (t, *J* = 7.1 Hz, 3 H), 1.08 (t, *J* = 7.4 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 173.3, 165.7, 165.5, 143.0, 128.6, 128.3, 124.3, 101.4, 95.1, 59.5, 43.0, 29.7, 14.3, 13.9, 9.01. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₇H₁₉NNaO₅ 340.1155, found 340.1159.

N-(4-benzoyl-2,5-diphenyl-2,3-dihydrofuran-2-yl)acetamide (1x)^{9a}: ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.48 (m, 4 H), 7.44–7.34 (m, 3 H), 7.31 (d, *J* = 7.4 Hz, 2 H), 7.25–7.16 (m, 2 H), 7.10–7.07 (m, 4 H), 6.67 (bs, 1 H), 4.01 (d, *J* = 15.8 Hz, 1 H), 3.57 (d, *J* = 15.9 Hz, 1 H), 2.05 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 193.4, 169.7, 163.2, 143.1, 139.0, 131.2, 129.9, 129.7, 129.3, 129.0, 128.9, 128.7, 127.7, 127.6, 124.6, 111.7, 94.9, 45.5, 24.1.

General procedure to prepare oxazole 2 from 2-amidodihydrofurans 1. To a 35 mL tube (total volume 50 mL) with a stir bar was added 2-amidodihydrofuran (0.2 mmol), $Mn(OAc)_3 2H_2O$ (0.02 mmol, 5.4 mg), K_2CO_3 (0.1 mmol, 14 mg) and 2 mL of MeCN. The mixture was stirred at 100 °C for 18 h, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (PE/EA = 6:1) to afford the desired oxazoles **2**.

Ethyl 3-hydroxy-2-(2-methyl-4-phenyloxazol-5-yl)but-2-enoate (2a): 45 mg of **2a** was obtained from **1a** (57.8 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 78%; R_f = 0.20 (6:1 PE/EA); slightly yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1 H), 7.66–7.64 (m, 2 H), 7.39–7.32 (m, 2 H), 7.30–7.22 (m, 1 H), 4.16 (q, *J* = 7.1 Hz, 2 H), 2.51 (s, 3 H), 1.88 (s, 3 H), 1.08 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.3, 171.8, 160.8, 139.7, 137.2, 132.0, 128.5, 127.5, 125.9, 93.0, 61.1, 19.9, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₄ 288.1230, found 288.1229.

Ethyl 3-hydroxy-2-(2-methyl-4-(p-tolyl)oxazol-5-yl)but-2-enoate (2b): 32 mg of **2b** was obtained from **1b** (60.6 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 53%; R_f = 0.34 (6:1 PE/EA); yellow solid; m.p. 59 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.48 (s, 1 H), 7.54 (d, *J*=8.2 Hz, 2 H), 7.16 (d, *J*=8.0 Hz, 2 H), 4.16 (q, *J* = 7.1 Hz, 2 H), 2.50 (s, 3 H), 2.34 (s, 3 H), 1.86 (s, 3 H), 1.10 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.2, 171.9, 160.7, 139.2, 137.2, 137.2, 129.2, 129.1, 125.8, 93.1, 61.1, 21.2, 19.8, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO₄ 302.1387, found 302.1383.

Ethyl 3-hydroxy-2-(4-(4-methoxyphenyl)-2-methyloxazol-5-yl)but-2-enoate (2c): 41 mg of **2c** was obtained from **1c** (63.8 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 65%; R_f = 0.22 (6:1 PE/EA); slightly yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 13.47 (s, 1 H), 7.58 (d, *J* = 8.9 Hz, 2 H), 6.89 (d, *J* = 8.9 Hz, 2 H), 4.16 (q, *J* = 7.1 Hz, 2 H), 3.81 (s, 3 H), 2.49 (s, 3 H), 1.86 (s, 3 H), 1.11 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.3, 171.9, 160.6, 159.0, 138.6, 137.0, 127.2, 124.6, 113.9, 93.0, 61.1, 55.2, 19.9, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO₅ 318.1336, found 318.1320.

Ethyl 2-(4-(4-fluorophenyl)-2-methyloxazol-5-yl)-3-hydroxybut-2-enoate (2d): 37 mg of 2d was obtained from 1d (61.4 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 60%; R_f = 0.37 (6:1 PE/EA); slightly yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1 H), 7.78–7.40 (m, 2 H), 7.15–6.88 (m, 2 H), 4.15 (q, *J* = 7.1 Hz, 2 H), 2.49 (s, 3 H), 1.87 (s, 3 H), 1.08 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 171.7, 162.2 (d, ¹*J* _{CF} = 247.2 Hz), 160.8, 139.4 (d, ⁵*J* _{CF} = 1.5 Hz), 136.4, 128.2 (d, ⁴*J* _{CF} = 3.3 Hz), 127.7 (d, ³*J* _{CF} = 8.0 Hz), 115.5 (d, ²*J* _{CF} = 21.6 Hz), 92.8, 61.1, 19.9, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₇FNO₄ 306.1136, found 306.1126.

Ethyl 2-(4-(4-bromophenyl)-2-methyloxazol-5-yl)-3-hydroxybut-2-enoate (2e): 46 mg of 2e was obtained from 1e (73.6 mg, 0.2 mmol). Purified by column chromatography (4:1 PE/EA), yield 63%; R_f = 0.29 (4:1 PE/EA); yellow solid; m.p. 73 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1 H), 7.55–7.50 (m, 2 H), 7.48–7.43 (m, 2 H), 4.15 (q, *J* = 7.1 Hz, 2 H), 2.49 (s, 3 H), 1.87 (s, 3 H), 1.09 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 171.5, 160.9, 140.0, 136.3, 131.6,

131.0, 127.5, 121.4, 92.7, 61.2, 19.9, 14.1, 14.0; HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₆H₁₇BrNO₄ 366.0335, found 366.0301.

Ethyl 3-hydroxy-2-(4-(4-iodophenyl)-2-methyloxazol-5-yl)but-2-enoate (2f): 62 mg of 2f was obtained from 1f (83 mg, 0.2 mmol). Purified by column chromatography (4:1 PE/EA), yield 75%; R_f = 0.34 (4:1 PE/EA); white solid; m.p. 69 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.49 (s, 1 H), 7.68–7.66 (d, J = 8.6 Hz, 2 H), 7.50–7.32 (m, 2 H), 4.15 (q, J = 7.1 Hz, 2 H), 2.50 (s, 3 H), 1.87 (s, 3 H), 1.09 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 171.5, 160.9, 140.2, 137.6, 136.3, 131.5, 127.6, 93.0, 92.7, 61.2, 19.9, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₇INO₄ 414.0197, found 414.0193.

Ethyl 3-hydroxy-2-(2-methyl-4-(4-nitrophenyl)oxazol-5-yl)but-2-enoate (2g): 28 mg of **2g** was obtained from **1g** (66.8 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 42%; R_f = 0.24 (6:1 PE/EA); yellow solid; m.p. 108 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.56 (s, 1 H), 8.32–8.16 (m, 2 H), 7.92–7.70 (m, 2 H), 2.53 (s, 3 H), 1.91 (s, 3 H), 1.07 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.8, 171.2, 161.4, 146.7, 142.2, 138.5, 135.5, 126.4, 123.9, 92.5, 61.4, 20.0, 14.04, 13.98; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₇N₂NaO₆ 355.0901, found 355.0904.

Ethyl 3-hydroxy-2-(2-methyl-4-(3-nitrophenyl)oxazol-5-yl)but-2-enoate (2h): 29 mg of **2h** was obtained from **1h** (66.8 mg, 0.2 mmol). Purified by column chromatography (4:1 PE/EA), yield 43%; R_f = 0.28 (4:1 PE/EA); slightly yellow solid; m.p. 113 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.56 (s, 1 H), 8.55 (t, J = 1.9 Hz, 1 H), 8.11 (ddd, J = 8.2, 2.2, 0.7 Hz, 1 H), 7.96–7.88 (m, 1 H), 7.52 (t, J = 8.0 Hz, 1 H), 7.26 (s, 1 H), 4.17 (q, J = 7.1 Hz, 2 H), 2.53 (s, 3 H), 1.90 (s, 3 H), 1.07 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.9, 171.3, 161.3, 148.6, 141.2, 135.4, 133.9, 131.4, 129.4, 122.1, 120.9, 92.3, 61.3, 20.0, 14.04, 13.97; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₇N₂O₆ 333.1081, found 333.1097.

Ethyl 3-hydroxy-2-(2-methyl-4-(thiophen-2-yl)oxazol-5-yl)but-2-enoate (2i): 30 mg of **2i** was obtained from **1i** (59 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 51%; R_f = 0.40 (6:1 PE/EA); brown oil; ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 13.60 (s, 1 H), 7.27–7.23 (m, 2 H), 7.03 (dd, J = 5.1, 3.6 Hz, 1 H), 4.18 (q, J = 7.1 Hz, 2 H), 2.50 (s, 3 H), 1.93 (s, 3 H), 1.14 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 180.1, 171.7, 161.1, 138.7, 134.4, 133.7, 127.5, 125.0, 124.0, 92.0, 61.2, 19.8, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₆NO₄S 294.0795, found 294.0807.

4-Hydroxy-3-(2-methyl-4-(thiophen-2-yl)oxazol-5-yl)pent-3-en-2-one (2j): 25 mg of 2j was obtained from 1j (53 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 47%; R_f = 0.28 (6:1 PE/EA); yellow solid; m.p. 102 °C; ¹H NMR (400 MHz, CDCl₃) δ 17.04 (s, 1 H), 7.29 (dd, *J* = 3.6, 1.1 Hz, 1 H), 7.28–7.26 (m, 1 H), 7.05 (dd, *J* = 5.1, 3.6 Hz, 1 H),

2.53 (s, 3 H), 1.99 (s, 6 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 194.1, 161.7, 139.9, 134.1, 133.8, 127.7, 125.4, 124.2, 102.0, 23.6, 14.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₃H₁₄NO₃S 264.0689, found 264.0686.

Ethyl 3-hydroxy-2-(2-methyl-4-(naphthalen-2-yl)oxazol-5-yl)but-2-enoate (2k): 44 mg of 2k was obtained from 1k (67.8 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 66%; R_f = 0.32 (6:1 PE/EA); slightly yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 13.56 (s, 1 H), 8.23 (s, 1 H), 7.90–7.83 (m, 1 H), 7.83–7.78 (m, 2 H), 7.72 (dd, J = 8.6, 1.7 Hz, 1 H), 7.51–7.42 (m, 2 H), 4.18 (q, J = 7.1 Hz, 2 H), 2.56 (s, 3 H), 1.90 (s, 3 H), 1.08 (t, J = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 171.8, 160.9, 140.1, 137.2, 133.4, 132.6, 129.4, 128.3, 128.1, 127.6, 126.2, 126.0, 125.0, 123.6, 93.1, 61.2, 19.9, 14.1, 14.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₀NO₄ 338.1387, found 338.1392.

4-Hydroxy-3-(2-methyl-4-(naphthalen-2-yl)oxazol-5-yl)pent-3-en-2-one (2l): 44 mg of 21 was obtained from 11 (61.8 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 71%; R_f = 0.28 (6:1 PE/EA); slightly yellow solid; m.p. 92 °C; ¹H NMR (400 MHz, CDCl₃) δ 17.06 (s, 1 H), 8.26 (d, *J* = 0.8 Hz, 1 H), 7.89–7.85 (m, 1 H), 7.85–7.77 (m, 2 H), 7.73 (dd, *J* = 8.6, 1.7 Hz, 1 H), 7.52–7.43 (m, 2 H), 2.58 (s, 3 H), 2.00 (s, 6 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 193.8, 161.5, 141.4, 137.4, 133.5, 132.8, 128.8, 128.5, 128.3, 127.6, 126.4, 126.3, 125.1, 123.2, 103.3, 23.8, 14.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₁₇NNaO₃ 330.1101, found 330.1100.

Methyl 3-hydroxy-2-(2-methyl-4-phenyloxazol-5-yl)but-2-enoate (2m): 41 mg of **2m** was obtained from **1m** (55 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 75%; R_f = 0.24 (6:1 PE/EA); slightly yellow solid; m.p. 72 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.38 (s, 1 H), 7.67–7.65 (m, 2 H), 7.37–7.33 (m, 2 H), 7.28–7.24 (m, 1 H), 3.70 (s, 3 H), 2.51 (s, 3 H), 1.85 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.4, 172.2, 160.9, 139.5, 137.2, 131.8, 128.6, 127.5, 125.8, 92.7, 52.1, 19.8, 14.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NO₄ 274.1074, found 274.1064.

Tert-butyl 3-hydroxy-2-(2-methyl-4-phenyloxazol-5-yl)but-2-enoate (2n): 25 mg of **2n** was obtained from **1n** (63.4 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 40%; R_f = 0.44 (6:1 PE/EA); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 13.67 (s, 1 H), 7.66–7.64 (m, 2 H), 7.37–7.33 (m, 2 H), 7.27–7.25 (m, 1 H), 2.50 (s, 3 H), 1.90 (s, 3 H), 1.27 (s, 9 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 178.7, 171.3, 160.4, 140.3, 136.8, 132.3, 128.4, 127.3, 126.0, 94.1, 82.3, 27.9, 20.0, 14.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO₄ 316.1543, found 316.1541.

Benzyl 3-hydroxy-2-(2-methyl-4-phenyloxazol-5-yl)but-2-enoate (20): 50 mg of **20** was obtained from **10** (70.2 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 72%; *R_f*= 0.28 (6:1 PE/EA); slightly yellow solid; m.p. 72 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.35 (s, 1 H), 7.69–7.59 (m, 2 H), 7.37–7.30 (m, 2 H), 7.30–7.20 (m, 4 H), 7.09–7.06 (m, 2 H), 5.15 (s, 2 H), 2.50 (s, 3 H), 1.89 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.8, 171.5, 160.9, 139.5, 137.4, 135.4,

131.8, 128.6, 128.4, 128.0, 127.6, 127.4, 126.0, 92.9, 66.4, 19.9, 14.1; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{19}NNaO_4$ 372.1206, found 372.1208.

4-Hydroxy-3-(2-methyl-4-phenyloxazol-5-yl)pent-3-en-2-one (**2p**): 35 mg of **2p** was obtained from **1p** (51.8 mg, 0.2 mmol). Purified by column chromatography (4:1 PE/EA), yield 68%; R_f = 0.29 (4:1 PE/EA); brown solid; m.p. 46 °C; ¹H NMR (400 MHz, CDCl₃) δ 16.98 (s, 1 H), 7.69–7.67 (m, 2 H), 7.41–7.33 (m, 2 H), 7.31–7.25 (m, 1 H), 2.53 (s, 3 H), 1.96 (s, 6 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 193.7, 161.3, 141.0, 137.4, 131.4, 128.8, 127.9, 125.7, 103.2, 23.7, 14.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NO₃ 258.1125, found 258.1128.

5-*Hydroxy*-4-(2-*methyl*-4-*phenyloxazol*-5-*yl*)*hept*-4-*en*-3-*one* (2*q*): 30 mg of 2q was obtained from 1q (57.4 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 53%; R_f = 0.50 (6:1 PE/EA); slightly yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 17.02 (s, 1 H), 7.71–7.69 (m, 2 H), 7.41–7.33 (m, 2 H), 7.30–7.26 (m, 1 H), 2.85 (q, J = 7.6 Hz, 2 H), 2.42–2.10 (m, 2 H), 1.94 (s, 3 H), 1.39 (t, J = 7.6 Hz, 3 H), 1.01 (t, J = 7.4 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 198.4, 192.1, 165.6, 140.7, 137.2, 131.5, 128.7, 127.8, 125.7, 102.6, 30.1, 23.2, 21.9, 11.3, 8.9; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₀NO₃ 286.1438, found 286.1440.

2-(2-Methyl-4-phenyloxazol-5-yl)cyclohexane-1,3-dione (2r): 50 mg of 2r was obtained from 1r (54.2 mg, 0.2 mmol). Purified by column chromatography (19:1 DCM/MeOH), yield 93%; R_f = 0.21 (1:1 DCM/MeOH); slightly yellow solid; m.p. 196 °C; ¹H NMR (400 MHz, MeOD) δ 7.56–7.54 (m, 2 H), 7.37–7.30 (m, 2 H), 7.26–7.22 (m, 1 H), 2.58 (t, *J* = 6.4 Hz, 4 H), 2.48 (s, 3 H), 2.14–2.04 (m, 2 H); ¹³C{¹H}NMR (100 MHz, MeOD) δ 193.8, 162.5, 142.6, 137.5, 133.7, 129.2, 128.1, 127.1, 106.4, 35.6, 22.0, 13.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₆NO₃ 270.1125, found 270.1100.

2-(4-(4-Fluorophenyl)-2-methyloxazol-5-yl)cyclohexane-1,3-dione (2s): 55 mg of 2s was obtained from 1s (57.8 mg, 0.2 mmol). Purified by column chromatography (19:1 DCM/MeOH), yield 96%; R_f = 0.17 (1:1 DCM/MeOH); slightly yellow solid; m.p. 212 °C; ¹H NMR (400 MHz, MeOD) δ 7.62–7.55 (m, 2 H), 7.10–6.99 (m, 2 H), 2.53 (t, *J* = 6.4 Hz, 4 H), 2.46 (s, 3 H), 2.09–2.03 (m, 2 H); ¹³C{¹H}NMR (100 MHz, MeOD) δ 192.5, 163.5 (¹*J*_{CF} = 245.1 Hz), 162.9, 141.2, 137.3, 130.0 (⁴*J*_{CF} = 3.2 Hz), 129.1 (d, ³*J*_{CF} = 8.0 Hz), 116.0 (d, ²*J*_{CF} = 21.8 Hz), 106.7, 34.9, 21.8, 13.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₄FNNaO₃ 310.0850, found 310.0853.

5,5-Dimethyl-2-(2-methyl-4-phenyloxazol-5-yl)cyclohexane-1,3-dione (2t): 54 mg of 2t was obtained from 1t (59.8 mg, 0.2 mmol). Purified by column chromatography (15:1 DCM/MeOH), yield 91%; R_f = 0.24 (15:1 DCM/MeOH); slightly yellow solid; m.p. 191 °C; ¹H NMR (400 MHz, MeOD) δ 7.55–7.53 (m, 2 H), 7.35–7.29 (m, 2 H), 7.28–7.20 (m, 1 H), 2.48 (s, 3 H),

2.47 (s, 4 H), 1.16 (s, 6 H); ¹³C{¹H}NMR (100 MHz, MeOD) δ 190.0, 163.3, 139.8, 138.9, 133.2, 129.4, 128.6, 127.4, 106.3, 47.9, 32.9, 28.5, 13.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₈H₁₉NNaO₃ 320.1257, found 320.1255.

Tert-butyl 2-(4-(4-bromophenyl)-2-methyloxazol-5-yl)-3-hydroxybut-2-enoate (2u): 39 mg of **2u** was obtained from **1u** (79.2 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 49%; R_f = 0.28 (6:1 PE/EA); slightly yellow solid; m.p. 78 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.66 (s, 1 H), 7.55–7.51 (m, 2 H), 7.49–7.46 (m, 2 H), 2.49 (s, 3 H), 1.89 (s, 3 H), 1.28 (s, 9 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 178.9, 171.1, 160.6, 140.7, 135.9, 131.6, 131.3, 127.5, 121.2, 93.8, 82.5, 27.9, 20.0, 14.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀BrNO₄ 416.0468, found 416.0465.

Benzyl 2-(4-(4-bromophenyl)-2-methyloxazol-5-yl)-3-hydroxybut-2-enoate (2v): 54 mg of 2v was obtained from 1v (86 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 63%; R_f = 0.28 (6:1 PE/EA); slightly yellow solid; m.p. 96 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.37 (s, 1 H), 7.51–7.46 (m, 2 H), 7.44–7.38 (m, 2 H), 7.28–7.20 (m, 3 H), 7.09–7.03 (m, 2 H), 5.14 (s, 2 H), 2.49 (s, 3 H), 1.90 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.9, 171.2, 161.0, 139.8, 136.5, 135.3, 131.7, 130.8, 128.4, 128.1, 127.6, 127.5, 121.5, 92.7, 66.5, 20.0, 14.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₈BrNNaO₄ 450.0311, found 450.0333.

Ethyl 2-(2-ethyl-4-phenyloxazol-5-yl)-3-hydroxybut-2-enoate (2w): 39 mg of **2w** was obtained from **1w** (60.6 mg, 0.2 mmol). Purified by column chromatography (6:1 PE/EA), yield 65%; R_f = 0.45 (6:1 PE/EA); slightly yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 13.48 (s, 1 H), 7.67–7.65 (m, 2 H), 7.37–7.33 (m, 2 H), 7.27–7.23 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2 H), 2.84 (q, *J* = 7.6 Hz, 2 H), 1.87 (s, 3 H), 1.38 (t, *J* = 7.6 Hz, 3 H), 1.08 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 179.1, 171.8, 165.1, 139.5, 136.9, 132.1, 128.5, 127.4, 126.0, 93.1, 61.0, 21.9, 19.9, 13.9, 11.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₇H₁₉NNaO₄ 324.1206, found 324.1201.

(2-*Methyl-5-phenyl-1H-pyrrol-3-yl)(phenyl)methanone* (**2x**): 45 mg of **2x** was obtained from **1x** (76.6 mg, 0.2 mmol). Purified by column chromatography (4:1 PE/EA), yield 86%; R_f = 0.36 (4:1 PE/EA); slightly yellow solid; m.p. 206 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1 H), 7.89–7.81 (m, 2 H), 7.56–7.52 (m, 1 H), 7.50–7.41 (m, 4 H), 7.37–7.33 (m, 2 H), 7.24–7.19 (m, 1 H), 6.68 (d, *J* = 2.8 Hz, 1 H), 2.62 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 192.5, 140.4, 137.5, 131.6, 131.3, 129.7, 129.02, 128.96, 128.1, 126.7, 123.8, 121.2, 109.2, 13.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₈H₁₅NO 284.1046, found 284.1051.

General procedure for further transformations.

5-(3,5-Dimethyl-1H-pyrazol-4-yl)-2-methyl-4-phenyloxazole (3): To a 15 mL tube with a stir bar was added **2p** (51 mg, 0.2 mmol) and hydrazine hydrate (40 mg, 0.8 mmol) and THF (2 mL). Then the mixture was stirred at 70 °C for 12 h, cooled to

The Journal of Organic Chemistry

room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography to afford the corresponding pyrazole **3** (45 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 10.32 (s, 1 H), 7.60–7.55 (m, 2 H), 7.30 (t, *J* = 7.4 Hz, 2 H), 7.25–7.21 (t, *J* = 7.3 Hz, 1 H), 2.54 (s, 3 H), 2.13 (s, 6 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 160.9, 144.3, 138.9, 136.1, 132.1, 128.4, 127.4, 126.1, 107.1, 14.1, 11.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₅N₃O 276.1107, found 276.1106.

1-(3-Methyl-2-(2-methyl-4-phenyloxazol-5-yl)-2H-azirin-2-yl)ethanone (4): **2p** (51 mg, 0.2 mmol) and ammonium formate (50 mg, 0.8 mmol) and EtOH (4 mL) were introduced into a 15 mL tube with a stir bar, and the mixture was stirred at 90 °C for 12 h. After the reaction was completed, it was cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography to give the corresponding enamine. Then the enamine and DCE (2 mL) was added to a 15 mL tube with a stir bar. The mixture was cooled to 0 °C, followed by the PhI(OAc)₂ (77 mg, 0.24 mmol). Then the mixture was stirred at room temperature for 6 h, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column filtered, and evaporated. The residue was purified by column chromatography to give the corresponding to brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography to provide the corresponding 2*H*-azirine **4** (33 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.3 Hz, 2 H), 7.41 (t, *J* = 7.5 Hz, 2 H), 7.36–7.32 (m, 1 H), 2.50 (s, 3 H), 2.45 (s, 3 H), 2.10 (s, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 203.8, 161.1, 157.8, 143.0, 139.6, 131.0, 128.8, 128.5, 126.9, 39.4, 28.0, 14.1, 12.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₅N₂O₂ 255.1128, found 255.1125.

General procedure to prepare 5a from 1a: To a 50 mL Schlenk tube with a stir bar was added 2-amidodihydrofuran 1a (58 mg, 0.2 mmol), K₂CO₃ (55 mg, 0.4 mmol) and 2 mL of MeCN. The mixture was stirred under argon at 100 °C for 18 h. After the reaction was completed, it was cooled to room temperature, then poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (PE/EA = 2:1) to afford the enamine 5a (22 mg, 44% yield). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.27 (m, 6 H), 5.94 (t, *J* = 7.1 Hz, 1 H), 4.17 (q, *J* = 7.1 Hz, 2 H), 3.18 (d, *J* = 7.1 Hz, 2 H), 2.13 (s, 3 H), 1.28 (t, *J* = 7.1 Hz, 3 H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 171.9, 168.3, 137.2, 136.4, 128.4, 128.3, 125.9, 116.0, 61.0, 34.0, 23.4, 14.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₁₈NO₃ 248.1281, found 248.1282. One isomer was confirmed by XRD, CCDC 1401603.

General procedure to prepare 5r from 1r: To a 100 mL Schlenk tube with a stir bar was added 2-amidodihydrofuran **1r** (271 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol) and 10 mL of MeCN. The mixture was stirred under argon at 100 °C for 18 h, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄,

filtered, and evaporated. The residue was purified by column chromatography (PE/EA) to afford the enamine **5r** (257 mg, 95% yield). *N-(2-(2,6-dioxocyclohexyl)-1-phenylvinyl)acetamide*: ¹H NMR (400 MHz, MeOD) δ 7.49 (d, *J* = 7.5 Hz, 2 H), 7.25 (t, *J* = 7.6 Hz, 2 H), 7.15 (t, *J* = 7.3 Hz, 1 H), 6.44 (s, 1 H), 2.44 (t, *J* = 6.3 Hz, 4 H), 2.01 (s, 3 H), 1.93 (t, *J* = 6.2 Hz, 2 H); ¹³C{¹H}NMR (100 MHz, MeOD) δ 194.1, 170.7, 140.5, 133.1, 128.9, 127.5, 126.8, 117.0, 61.5, 36.8, 23.2, 22.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₃ 272.1281, found 272.1283.

Acknowledgment

We gratefully acknowledge the Chinese Academy of Sciences and the National Natural Science Foundation of China (21133011, 21373246, and 21522309) for generous financial support. We also thank Prof. Longmin Wu of Lanzhou University for his generous help on EPR experiment.

Supporting Information

Full ¹H and ¹³C{¹H} NMR spectra of the new starting materials **1g**, **1k**, **1l**, **1o**, **1q**, **1s**, **1t**, **1u**, **1v** and **1w** and final products **2**, **3**, **4**, **5** and X-ray crystallographic data for **2u** and **5a**. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

References

- For selected reviews on the C–O bond cleavage in the presence of metal catalyst, see: (a) Yu, D.-G.; Li, B.-J.; Shi, Z.-J.
 Acc. Chem. Res. 2010, 43, 1486. (b) Cornella, J.; Zarate, C.; Martin, R. *Chem. Soc. Rev.* 2014, 43, 8081.
- (a) Pankova, A. S.; Stukalov, A. Y.; Kuznetsov, M. A. Org. Lett. 2015, 17, 1826. (b) Jones, R. C. F.; Chatterley, A.; Marty, R.; Owton, W. M.; Elsegood, M. R. J. Chem. Commun. 2015, 51, 1112. (c) Y. Zheng, C. Yang, D. Z. Negrerie, Y. Du, K. Zhao, Tetrahedron Lett. 2013, 54, 6157. (d) Keni, M.; Tepe, J. J. J. Org. Chem. 2005, 70, 4211.
- For selected reviews on the oxazoles, see: (a) Palmer, D. C.; Taylor, E. C. *The Chemistry of Heterocyclic Compounds Oxazoles: Synthesis, Reactions, and Spectroscopy,* Wiley, New Jersey, 2004, vol. 60. (b) Wipf, P. *Chem. Rev.* 1995, 95, 2115. (c) Wasserman, H. H.; McCarthy, K. E.; Prowse, K. S. *Chem. Rev.* 1986, 86, 845. (d) Turchi, I. J.; Dewar, M. J. S. *Chem. Rev.* 1975, 75, 389.
- For selected recent examples on the synthesis of oxazoles, see: (a) Peng, H.; Akhmedov, N. G.; Liang, Y.-F.; Jiao, N.; Shi, X. J. Am. Chem. Soc. 2015, 137, 8912. (b) Ma, Y.; Yan, Z.; Bian, C.; Li, K.; Zhang, X.; Wang, M.; Gao, X.; Zhang, H.; Lei, A. Chem. Commun. 2015, 51, 10524. (c) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2015, 17, 4070. (d) Zheng, J.; Zhang, M.; Huang, L.; Hu, X.; Wu, W.; Huang, H.; Jiang, H. Chem. Commun. 2014, 50, 3609. (e) Zheng, M.; Huang, L.; Huang, H.; Li, X.; Wu, W.; Jiang, H. Org. Lett. 2014, 16, 5906.

- (a) Lechel, T.; Gerhard, M.; Trawny, D.; Brusilowskij, B.; Schefzig, L.; Zimmer, R.; Rabe, J. P.; Lentz, D.; Schalley, C. A.; Reissig, H.-U. *Chem. Eur. J.* 2011, *17*, 7480. (b) Ferreira, P. M. T.; Castanheira, E. M. S.; Monteiro, L. S.; Pereira, G.; Vilaça, H. *Tetrahedron.* 2010, *66*, 8672. (c) Misra, N. C.; Ila, H. *J. Org. Chem.* 2010, *75*, 5195. (d) Lechel, T.; Lentz, D.; Reissig, H.-U. *Chem. Eur. J.* 2009, *15*, 5432. (e) Ferreira, P. M. T.; Monteiro, L. S.; Pereira, G. *Eur. J. Org. Chem.* 2008, 4676. (f) Martin, R.; Cuenca, A.; Buchwald, S. L. *Org. Lett.* 2007, *9*, 5521. (g) Schuh, K.; Glorius, F. *Synthesis.* 2007, *15*, 2297.
- (a) Zheng, Y.; Li, X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2012, 77, 10353. (b) Cheung, C. W.;
 Buchwald, S. L. J. Org. Chem. 2012, 77, 7526. (c) Wendlandt, A. E.; Stahl, S. S. Org. Biomol. Chem. 2012, 10, 3866.
- For an excellent review on transition-metal catalyzed aerobic oxidative reaction, see: Shi, Z.; Zhuang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
- For selected examples on synthesis of oxazoles from allenes, see: (a) Yu, X.; Xin, X.; Wan, B.; Li, X. J. Org. Chem.
 2013, 78, 4895. (b) Hu, Y.; Yi, R.; Wu, F.; Wan, B. J. Org. Chem. 2013, 78, 7714.
- Recently, we developed an interesting C–O bond cleavage of 2-amidodihydrofurans using acid catalysts, see: (a) Zhao, J.;
 Li, P.; Xia, C.; Li, F. *Chem. Eur. J.* 2015, *21*, 16383. (b) Li, P.; Zhao, J.; Xia, C.; Li, F. *Org. Lett.* 2014, *16*, 5992.
- For an excellent review on copper-catalyzed aerobic reactions, see: Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. *Chem. Rev.* 2013, *113*, 6234.
- For selected examples on manganese catalyst, see: (a) He, R.; Jin, X.; Chen, H.; Huang, Z.-T.; Zheng, Q.-Y.; Wang, C.; J. Am. Chem. Soc. 2014, 136, 6558. (b) He, R.; Huang, Z.-T.; Zheng, Q.-Y.; Wang, C. Angew. Chem. Int. Ed. 2014, 53, 4950. (c) Wang, C. Synlett. 2013, 24, 1606. (d) Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264. (e) Mondal, M.; Bora, U. RSC Adv. 2013, 3, 18716. (f) Snider, B. B. Chem. Rev. 1996, 96, 339.
- For selected examples on alkyl radical trapped by O₂, see: (a) Liu, J.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K.; Lei, A. *Angew. Chem. Int. Ed.* 2015, 54, 1261. (b) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. *Angew. Chem. Int. Ed.* 2013, *52*, 7156. (c) Lu, Q.; Zhang, J.; Zhao, G.; Wang, H.; Lei, A. *J. Am. Chem. Soc.* 2013, *135*, 11481.
- Kalaitzakis, D.; Triantafyllakis, M.; Alexopoulou, I.; Sofiadis, M.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2014, 53, 13201.
- 14. Liang, Y.-F.; Jiao, N. Angew. Chem. Int. Ed. 2014, 53, 548.

- (a) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693. (b) Yip, S. F.; Cheung, H. Y.; Zhou, Z.; Kwong, F. Y. Org. Lett.
 2007, 9, 3469. (c) Hennessy, E. J.; Buchwald, S. L. Org. Lett. 2002, 4, 269.
- 16. Moyano, S.; Barbera, J.; Diosdado, B. E.; Serrano, J. L.; Elduque, A.; Gimenez, R. J. Mater. Chem. C. 2013, 1, 3119.
- 17. Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. Org. Lett. 2009, 11, 2643.
- 18. For a review on spin trapping, see: Janzen, E. G. Acc. Chem. Res. 1971, 4, 31.
- 19. Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059.
- 20. The allene intermediate was difficult to be observed owing to the rapid intramolecular annulation.