

Available online at www.sciencedirect.com

Inorganica Chimica Acta 358 (2005) 1545-1556

Inorganica Chimica Acta

www.elsevier.com/locate/ica

Degradation and modification of metallaboranes. Part 4: Synthesis and characterization of a series of hybrid bimetallaborane clusters of the type $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7-3-(BH_2PPh_2))$ $C_xH_yPPh_2RuCl_2(p-cym)]$

Paul McQuade, Rudolph E.K. Winter, Nigam P. Rath, Lawrence Barton *

Department of Chemistry, Biochemistry and the Center for Molecular Electronics, University of Missouri - St. Louis, St. Louis, MO 63121, USA

Received 6 August 2004; accepted 4 October 2004 Available online 28 October 2004

This paper is dedicated to a nice man, Professor F. Gordon A. Stone in honor of his 80th birthday and a career which defined organometallic chemistry

Abstract

Reactions between a series bidentate phosphines, with the general formula $PPh_2(CH_2)_nPPh_2$, and the air stable hexaborane(10) analogue [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_5H_9] (1), afford species of the type [{(PPh_3)_2(CO)OsB_4H_7}-3-{BH_2PPh_2(CH_2)_n(PPh_2)}] (2) which contain a pendent PPh_2 group. In solution **2** can undergo an intramolecular substitution reaction to form the species [{(PPh_3)(CO)OsB_4H_7}-\eta^2-3,2-{BH_2PPh_2(CH_2)_n(PPh_2)}] (4). In spite of this, chemistry at the pendent PPh_2 group may be studied and herein are reported the results of reactions of **2** with the organometallic reagent [(*p*-cym)RuX_2]_2 (X = Cl, I) to afford hybrid bimetallaborane clusters of the type [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_4H_7-3-(BH_2PPh_2)C_xH_yPPh_2RuCl_2(*p*-cym)] (5) The species obtained include [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_4H_7-3-(BH_2 dppe Ru(*p*-cym)Cl_2)] (5b), [2,2,2-(PPh_3)_2(CO)-*2-nido*-OsB_4H_7-3-(BH_2 dpph Ru(*p*-cym)Cl_2)] (5c), [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_4H_7-3-(BH_2 dpph Ru(*p*-cym)Cl_2)] (5d) and [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_4H_7-3-(BH_2 dpph Ru(*p*-cym)Cl_2)] (5c), [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_4H_7-3-(BH_2 dppe Ru(*p*-cym)Cl_2)] (5d) and [2,2,2-(PPh_3)_2(CO)-*nido*-2-OsB_4H_7-3-(BH_2 dppe Ru(*p*-cym)L_2)] (6d). Species 5d was also prepared from the reaction between **1** and the known compound · [dppx Ru(*p*-cym)Cl_2. Species 5a-5d and 6 were characterized by elemental analysis, high resolution mass spectrometry and NMR spectrometry; the latter a

© 2004 Elsevier B.V. All rights reserved.

Keywords: Boron hydrides; Metallaboranes; Ruthenium; Phosphines; NMR spectroscopy

1. Introduction

We recently described reactions of bidentate bases with the metallahexaborane $[2,2,2-(PPh_3)_2(CO)-nido-OsB_5H_9$ (1) [1]. Such reactions between small metallaboranes and bidentate bases have not received much attention, although reactions with simple bases have attracted increased interest in recent years [2]. These reaction with base might be expected to lead to adducts with more open structures [3], however they actually tend to proceed either by degradation of the cluster framework or by initial rearrangement of the cluster followed by degradation. An example of this is given in Scheme 1,

^{*} Corresponding author. Tel.: +3145265334; fax: +3145165342. *E-mail address:* lbarton@umsl.edu (L. Barton).

which shows the reactions of bidentate phosphines with 1 and subsequent rearrangement of the product [1a]. In this reaction one end of the ligand attaches to one of the basal boron atoms in the cage and, after rearrangement, the phosphine moiety remains attached to an exopolyhedral BH₂ group bonded to a basal boron atom in an osmapentaborane cage. The other end of the phosphine ligand remains uncoordinated and is therefore amenable to further chemistry. This process, which has been shown to be reversible, forms species of the type $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7-3-(BH_2 \cdot PPh_2C_xH_vP Ph_2$ (2) from 1. Further chemistry may occur involving loss of phosphine-borane to afford the lower homologue species $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_8]$ (3) or intramolecular substitution to form products of type 4, as shown in Scheme 1. The latter species [{(PPh₃)(CO) OsB_4H_7 - η^2 - 3,2 - { $BH_2PPh_2(CH_2)_n(PPh_2)$ }] (4) is formed by replacement of a PPh₃ group on Os by the pendant PPh₂ group on the cage and its formation may be precluded by the use of bidentate phosphines with less flexible backbones [1c] However, chemistry may be conducted at the pendent PPh₂ group, as we demonstrated previously [1a], and this paper describes the formation of some hybrid systems, one of which is illustrated in Fig. 1, either by direct reaction with species of type 2 or by reaction of mono-functionalized bidentate phosphines with 1.

2. Experimental

2.1. General procedures

Volatile materials were manipulated using a standard high vacuum line, and dry box techniques were used for

Fig. 1. Proposed structure for $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7\cdot 3-(BH_2\cdot dppe\cdot Ru(p-cym)Cl_2)]$ (5a) showing the numbering system.

nonvolatile air sensitive materials [4]. Solvents used were reagent grade and were dried before use. Products were isolated by radial chromatography (Harrison Research, Palo Alto, CA) under a dry N₂ atmosphere using a 25 cm diameter circular plate coated with 0.1 cm of silica gel (EM Science), made from aqueous slurries followed by drying at 70 °C. NMR spectroscopy was carried out on a Bruker ARX 500 spectrometer operating at 500.1 MHz for proton, 160.5 MHz for boron-11, and at 202.5 MHz for phosphorus-31 and on a Varian Unity Plus 300 spectrometer operating at 96.2 MHz for ¹¹B, 299.9 MHz for ¹H and 121.4 MHz for ³¹P nuclei. Chemical shifts are reported in ppm for CDCl₃ solutions, unless otherwise stated, to low field (high frequency) of $Et_2O \cdot BF_3$ for ¹¹B, of SiMe₄ for ¹H and of 85% H₃PO₄ for ³¹P. Mass spectra were measured on a JEOL MStation JMS700 and elemental analyses were carried out by Atlantic Microlabs Inc., Norcross, GA.

2.2. Starting materials and reagents

 B_5H_9 was obtained from laboratory stock, and distilled on a high vacuum line before use. [2,2,2-

Scheme 1.

1547

 $(PPh_3)_2(CO)$ -nido-2-OsB₅H₉] (1) was prepared according to the literature method [5]. 1,4-Dibromo benzene (Eastman Organic) was used as received and α, α' dibromo-*p*-xylene (Eastman) was sublimed before use. RuCl₃.XH₂O (Alfa) and $R(-)-\alpha$ -Phellandren C₁₀H₁₆, (Fluka) were used as received. The phosphines $[(PPh_2)_2(CH_2)_3]$ (dppp), obtained from Strem, $[(PPh_2)_2(CH_2)_3]$ (dppe) and $[(PPh_2)_2(CH_2)_6]$ (dpph), both obtained from Aldrich, were used as received. $[PPh_2CH_2C_6H_4CH_2PPh_2]$ (dppx) [6] was prepared according to literature methods and $PPh_2CH_2C_6H_4CH_2PPh_2 \cdot Ru(p-cym)Cl_2$ $\{dppx \cdot Ru(p$ cym)Cl₂} as described previously [7] from dppx and $[Ru(p-cym)Cl_2]_2$. The latter was prepared from RuCl₃.XH₂O and R(-)- α -Phellandren [8] and [Ru(pcym)I₂]₂ was prepared by adding NaI to a saturated aqueous solution of $[Ru(p-cym)Cl_2]_2$ [9]. $[{(PPh_3)_2(CO)OsB_4H_7}-3-(BH_2 \cdot dppe)]$ (2a)] and $[{(PPh_3)_2(CO)OsB_4H_7}-3-(BH_2 \cdot dppp)]$ (2b) [1a], and $[{(PPh_3)_2(CO)OsB_4H_7}-3-(BH_2 \cdot dppx)]$ (2d) [1c] were prepared as described previously.

2.3. Preparation of $[2,2,2-(PPh_3)_2(CO)$ -nido-2-OsB₄H₇-3-(BH₂·dppe·Ru(p-cym)Cl₂)] (5a), $[2,2,2-(PPh_3)_2(CO)$ nido-2-OsB₄H₇·3-(BH₂·dppP-Ru(p-cym)Cl₂)] (5b) and $[2,2,2-(PPh_3)_2(CO)$ -2-nido-OsB₄H₇-3-(BH₂·dpph·Ru (p-cym)Cl₂)] (5c)

The procedures and results for 5a, 5b and 5c were very similar so details are only given for 5a. A one necked 50 mL round bottom flask containing a stir bar was charged with 52 mg (0.065 mmol) of $(PPh_3)_2(CO)OsB_5H_9$ and 80 mg (0.20 mmol) of dppe. Freshly distilled CH₂Cl₂ (20 mL), was added and the solution stirred for 12 h. at room temperature. 150 mg (0.25 mmol) of $[Ru(p-cym)Cl_2]_2$ was then added and the solution stirred for a further 10 min. After concentrating the solution to 1 mL, it was applied to the radial chromatograph using CH₂Cl₂ as the mobile phase. A single fraction was obtained which gave a yellow solution containing $(PPh_3)_2(CO)OsB_4H_8$ (3) and $[2,2-(PPh_3)(CO)-nido-2-OsB_4H_7-3,2-(BH_2 \cdot dppe)]$ (4). PPh₃ was also present in this fraction, and is formed in the conversion of [2,2,2-(PPh₃)₂(CO)-*nido*-2- $OsB_4H_7-3-(BH_2 \cdot dppe)$] 2a to [2,2-(PPh₃)(CO)-nido-2- OsB_4H_7 -3,2-(BH_2 ·dppe)] 4a, illustrated in Scheme 1.¹ A trace amount of [2,2,2-(PPh₃)₂(CO)-nido-2-OsB₄H₇-3-(BH₂·PPh₃)] was also observed produced by subsequent reaction of PPh₃ with $(PPh_3)_2(CO)OsB_5H_9$ [1a,2a]. CH₃CN was then slowly added to the eluent until a red band was detected. The red solution obtained from this band was reduced to dryness on a rotary evaporator giving 32 mg (33% yield based on

 $[(PPh_3)_2(CO)O_5B_5H_9])$ of a red solid which was characterized as [2,2,2-(PPh₃)₂(CO)-nido-2-OsB₄H₇-3-(BH₂·dp $pe \cdot Ru(p-cym)Cl_2$ (5a). Attempts to grow crystals of 5a suitable for X-ray diffraction were unsuccessful; generally these attempts produced only amorphous red spheres. The methods employed included slow diffusion of C_6H_{14} into a C_6H_6/CH_2Cl_2 solution containing 5a at 5 °C, slow diffusion of Et₂O into a CDCl₃ solution containing 5a at -20 °C. In addition to these methods slow evaporation of a CH_2Cl_2/C_6H_{14} solution of **5a** at -20 °C was also attempted. Crystallization experiments had to be carried out at lowered temperature due to the slow degradation of 5a in solution at room temperature, and we ascribed this slow degradation as the reason for our inability to obtain crystal structures of the hybrid clusters. ¹H NMR (CDCl₃): *p*-cymene, (δ in ppm) 0.96 (d, J = 7.04 Hz, 3H, CHMe₂), 0.93 (d, J = 7.02 Hz, 3H, CHMe₂), 1.80 (s, 3H, Me), 2.52 (sept, J = 6.95 Hz, 1H, CHMe2), 4.99 (d, J = 5.93 Hz, 1H, $MeC_6H_4CHMe_2$), 5.14 (d, J = 6.05Hz, 1H. $MeC_6H_4CHMe_2$), 5.19 (overlapping pair of d, 2H, $MeC_6H_4CHMe_2$; PPh₂CH₂CH₂PPh₂, (δ in ppm) 2.85 (m, 2H, $CH_2PPh_2 \cdot Ru(p-cym)Cl_2$), 2.34 (m, 2H, BH₂·PPh₂CH₂), 6.96-7.81 (m, 50H, Ph, this also includes Phenyl protons on PPh3 groups which are coordinated to Os center). The remaining ¹H data along with ³¹P and ¹¹B can be found in Table 1 [10]. Elemental Anal.: 5a for C₇₃H₇₇B₅P₄Cl₂O₁Os₁Ru₁, Calc. C, 58.05; H, 5.14. Found: C, 57.68; H, 5.21%. LRMS: FAB (3-NBA and CsI). Calc. for ${}^{12}C_{73}{}^{1}H_{77}{}^{11}B_4{}^{10}B_1$ ${}^{31}P_2{}^{35}Cl_2{}^{16}O_1{}^{192}Os_1{}^{102}Ru_1{}^{133}Cs_1 [M + Cs]^+ 1644.25,$ obs. 1644 [11]. The mass envelope for the observed spectrum for 5a matches that calculated from known isotopic abundances of the constituent elements and is given as supplementary material.

 $37 \text{ mg} (43\% \text{ yield based on} [(PPh_3)_2(CO)OsB_5H_9] \text{ of the}$ solid $[(PPh_3)_2(CO)OsB_4H_7 \cdot 3 - (BH_2 \cdot dppp \cdot Ru(p - 2))]$ red cym)Cl₂)] (5b) was obtained in a similar process using 45 mg (0.56 mmol) 1, 90 mg (0.22 mmol) dppp and 160 mg (0.26 mmol) [Ru(p-cym)Cl₂)]₂. Again extensive attempts to grow crystals suitable for X-ray analysis were unsuccessful. ¹H NMR (CDCl₃): *p*-cymene, (δ in ppm) 0.76 $(d, J = 6.87 \text{ Hz}, 3\text{H}, \text{CH}Me_2), 0.75 (d, J = 6.99 \text{ Hz}, 3\text{H},$ CHMe₂), 1.82 (s, 3H, Me), 2.50 (m, 1H, CHMe2), 5.04 (d, J = 6.01 Hz, 1H, MeC₆H₄CHMe₂), 5.02 (d, J = 5.96Hz, 1H, $MeC_6H_4CHMe_2$), 5.21 (d, J = 5.68 Hz, 2H, $MeC_6H_4CHMe_2$; $PPh_2CH_2CH_2CH_2PPh_2$, (δ in ppm) 2.66 (m, 1H, CH₂PPh₂·Ru(p-cym)Cl₂), 2.50 (m, 1H, $CH_2PPh_2 \cdot Ru(p-cym)Cl_2)$, 1.34 (m, 1H, $CH_2CH_2CH_2)$, $1.22 (m, 1H, CH_2CH_2CH_2) 2.16 (m, 1H, BH_2 \cdot PPh_2CH_2),$ $2.07 (m, 1H, BH_2 \cdot PPh_2CH_2), 6.92-7.79 (m, 50H, Ph)$. The remaining NMR data are listed in Table 1. Elemental Anal.: **5b** for $C_{74}H_{79}B_5P_4Cl_2O_1Os_1Ru_1$, Calc. C, 58.30; H, 5.22. Found: C, 56.43; H, 5.78%. LRMS: FAB (3-NBA and CsI). Calc. for ${}^{12}C_{74}{}^{1}H_{79}{}^{11}B_{4}{}^{10}B_{1}{}^{31}P_{2}{}^{35}Cl_{2}$ ${}^{16}O_{1}{}^{192}Os_{1}{}^{102}Ru_{1}{}^{133}Cs_{1}$ [M + Cs]⁺ 1658.27, obs. 1658.

¹ Identified from NMR spectra. See reference [10].

Table 1

¹¹B, ¹H and ³¹P NMR (δ in ppm) data for [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂·dppe·Ru(*p*-cym)Cl₂)] (**5a**), [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂·dppp·Ru(*p*-cym)Cl₂)] (**5b**), [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂·dppe·Ru(*p*-cym)Cl₂)] (**5b**), [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂·dppa·Ru(*p*-c $cym)I_2)](6)$

Species	[Compou	ind 5a] ^a	[Compou	und 5b] ^a	[Compound 5c] ^a [Compo		[Compou	d 5d] ^a [Compound 6] ^a		und 6] ^a
	$^{31}P{^{1}H}$ +13.85m +9.86d J = 8.36 Hz +22.28br ^c +22.28br ^c		${}^{31}P{}^{1}H{}$ +13.58t J = 9.84 Hz +8.66d J = 9.86 Hz +18.48br +23.98d J = 1.90 Hz		$^{31}P\{^{1}H\}$ +13.93quint J = 9.70 Hz + 9.10d J = 8.56 Hz +18.81br +24.05s		$^{31}P{^{1}H}$ +13.88t J = 10.59 Hz +9.15d J = 9.86 Hz +22.67br +29.06d J = 4.88 Hz		${}^{31}P{}^{1}H}$ +13.91m +9.50d J = 9.41 Hz +23.45d J = 27.25 Hz +18.00d J = 31.38 Hz	
Mode/atom	$^{11}\mathbf{B}$	${}^{1}H{}^{11}B{}$	$^{11}\mathbf{B}$	${}^{1}H{}^{11}B{}$	$^{11}\mathbf{B}$	${}^{1}H{}^{11}B{}$	$^{11}\mathbf{B}$	${}^{1}H{}^{11}B{}$	$^{11}\mathbf{B}$	${}^{1}H{}^{11}B{}$
4 3 5 1 6',6	+8.95 +8.95 -16.20 -29.10 -38.03	+5.27 d +1.16 +0.087 +1.43, +1.55	+9.18 9.18 -15.95 -29.54 -38.65	+5.33 d +1.26 -0.040 +1.44, +1.29	+8.53 8.53 -16.47 -30.05 -38.30	+5.33 d +1.10 +0.018 +1.39, +1.59	+8.14 +8.14 -14.98 -29.41 -36.55	+5.30 d +1.23 -0.13 +1.33, +1.52	+8.27 +8.27 15.35 29.29 -37.76	+5.34 d +1.21 +0.00 +1.58, +1.44
H(3,4) H(4,5) H(2,5) H(2,3) ^e		-1.67 -2.36 -10.41 -9.36d J = 41.01 Hz		-1.82 -2.40 -10.41 -9.55d <i>J</i> = 45.01 Hz		-1.71 -2.31 -10.45 -9.18d <i>J</i> = 41.67 Hz		-1.57 -2.32 -10.39 -9.24d J = 42.01 Hz		-1.65 -2.32 -10.41 -9.37d J = 43.11 Hz

^a CDCl₃, 298 K.
^b P(2) is coupling with both P(1) and P(3). P(1) is only coupling with P(2).
^c Signals due to P(3) and P(4) overlap.
^d Site of BH₂(PPh₂) substituent.
^e Doublets due to ²J(³¹P⁻¹H)*trans* coupling.

Additional mass spectral data for **5b** are given as supplementary material.

Similarly 23 mg (47% yield) of 5c was obtained from the reaction of 25 mg (0.031 mmol) of 1 with 100 mg (0.22 mmol) of dpph and 165 mg (0.27 mmol) of freshly prepared [Ru(p-cym)Cl₂]₂. The resulting product mixture was worked up as described for 5a to afford the red solid [2,2,2-(PPh₃)₂(CO)-nido-2-OsB₄H₇-3-(BH₂·dp $ph \cdot Ru(p-cym)Cl_2$ (5c). Again attempts to produce crystals suitable for X-ray diffraction proved unsuccessful. ¹H NMR (CDCl₃): *p*-cymene, (δ in ppm) 0.78 (d, J = 6.89 Hz, 3H, CHMe₂), 0.77 (d, J = 6.81 Hz, 3H, CHMe₂), 1.92 (s, 3H, Me), 2.52 (sept, J = 6.96 Hz, 1H, CHMe2), 5.06 (m, 2H, MeC₆H₄CHMe₂), 5.24 (d, J = 5.62 Hz, 2H, MeC₆H₄CHMe₂); PPh₂(CH₂)₆PPh₂, (δ in ppm) 2.42 (m, 2H, $CH_2PPh_2 \cdot Ru(p-cym)Cl_2$), 0.90 (m, 2H, $CH_2CH_2PPh_2 \cdot Ru(p-cym)Cl_2$), 1.00–1.42 (m, CH₂CH₂CH₂CH₂CH₂CH₂CH₂), 6H, 2.22 (m, 1H. BH₂·PPh₂CH₂), 1.95 (m, 1H, BH₂·PPh₂CH₂), 6.95-7.91 (m, 50H, Ph). The remaining NMR data are found in Table 1. Elemental Anal.: 5c for C_{77.5}H₈₆B₅P₄ $Cl_3O_1Os_1Ru_1$, i.e., **5c** containing 0.5 moles CH_2Cl_2 , Calc. C, 57.85; H, 5.39. Found: C, 57.40; H, 5.44%. LRMS: FAB (3-NBA and CsI). Calc. for ${}^{12}C_{77}{}^{1}H_{85}{}^{11}B_{4}{}^{10}B_{1}{}^{31}P_{2}{}^{35}Cl_{2}{}^{16}O_{1}{}^{192}Os_{1}{}^{102}Ru_{1}{}^{133}Cs_{1}$ [M + Csl⁺ 1700.31, obs. 1700. Additional mass spectral data for 5c are given in Table 3 in the supplementary material.

2.4. Preparation of $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7-3-(BH_2\cdot dppx \cdot Ru(p-cym)Cl_2)]$ (5d)

To a 50 mL 2-necked round bottom flask containing 45 mg (0.056 mmol) of $(PPh_3)_2(CO)OsB_5H_9$ in the dry box was added 100 mg (0.21 mmol) of dppx. 20 mL of CH₂Cl₂ was added on the vacuum line and the mixture stirred at ambient temperature for 12 h. Then 160 mg (0.22 mmol) of $[Ru(p-cym)Cl_2]_2$ was added under N₂ flow and the mixture was stirred for 10 min. during which time a brown precipitate formed. Exposure to air and filtration through a 1 cm plug of celite afforded a red clear solution. The solution was then concentrated to 1 mL under reduced pressure and applied to the radial chromatograph using CH_2Cl_2 as the mobile phase. The single fraction initially obtained gave a yellow solution which proved to be $[(PPh_3)_2(CO)OsB_4H_8]$ along with traces of phosphine boranes. Slow elution with CH₃CN allowed isolation of a red band which afforded 41 mg (46% yield based on $[(PPh_3)_2(CO)OsB_5H_9)]$ of a red solid that was characterized as [2,2,2-(PPh₃)₂(CO) $nido-2-OsB_4H_7-3-(BH_2 \cdot dppx \cdot Ru(p-cym)Cl_2)$] (5d). Attempts to grow crystals suitable for X-ray diffraction again proved unsuccessful. ¹H NMR (CDCl₃): p-cymene, (δ in ppm) 0.87 (apparent t, J = 6.67 Hz, 6H, $CHMe_2$), 1.81 (s, 3H, Me), 2.48 (sept, J = 6.67 Hz, 1H, CHMe2), 5.11 (m, 2H, MeC₆H₄CHMe₂), 5.23 (m, 2H, MeC₆H₄CHMe₂); PPh₂CH₂C₆H₄PPh₂, (δ in ppm)

3.42 (m, 1H, $BH_2 \cdot PPh_2CH_2$), 3.66 (m, 1H, $BH_2 \cdot PPh_2CH_2$), 3.83 (d, ${}^2J_{H-P} = 8.96$ Hz, $CH_2PPh_2 \cdot R$ u(p-cym)Cl₂), 6.11 (d, J = 7.58 Hz, $CH_2C_6H_4CH_2$), 6.39 (11 (d, J = 7.58 Hz, $CH_2C_6H_4CH_2$)), 7.02–7.82 (m, 50H, Ph). The remaining ¹H data along with ³¹P and ¹¹B can be found in Table 1. Elemental *Anal.*: **5d** for $C_{79}H_{81}B_5P_4Cl_2O_1Os_1Ru_1$, Calc. C, 59.68; H, 5.14%. Found: C, 59.55; H, 5.59%. LRMS: FAB (3-NBA and CsI). [M + Cs]⁺: 1720.28, obs. 1720. The mass envelope for the observed spectrum for **5d** matches that calculated from known isotopic abundances of the constituent elements, as illustrated in Supp Table 4.

2.5. Alternative preparation of $[2,2,2-(PPh_3)_2(CO)$ -nido- 2-OsB₄H₇-3-(BH₂·dppx·Ru(p-cym)Cl₂)] (5d) from 1 and [dppx·Ru(p-cym)Cl₂]

A 50 mL round bottom flask was charged with 45 mg of [dppx·Ru(p-cym)Cl₂] (58 mmol) and 51 mg (1.1eq) of $(PPh_3)_2(CO)OsB_5H_9$; 15 mL of CH_2Cl_2 was added and the mixture refluxed for 17 h. The solvent was then removed and the ³¹P, ¹H and ¹¹B NMR spectrum of the crude product indicated the presence of 5d along with decomposition products. Purification was effected using radial chromatography by dissolution of the product mixture in the minimum volume of CH_2Cl_2 and application to a 1 mm plate where elution with CH₂Cl₂ removed the non-ruthenium containing species. Addition of 10% CH₃CN to the CH₂Cl₂ resulted in the formation a red band, and addition of a further 10% CH₃CN allowed isolation of a third band. The first and third bands consisted of 1 along with some impurities and a red non-boron containing substances, respectively. The second band afforded 49 mg (54% yield) of the red solid [2,2,2-(PPh₃)₂(CO)-nido-2- OsB_4H_7 -3-($BH_2 \cdot dppx \cdot Ru(p-cym)Cl_2$)] (5d). Attempts to grow crystals suitable for X-ray diffraction proved unsuccessful but NMR spectra were identical to those described in the previous section.

2.6. Preparation of $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7-3-(BH_2\cdot dppe \cdot Ru(p-cym)I_2)]$ (6)

In a process analogous to that for the preparation of **5b**, the product mixture from the reaction between 60 mg (0.075 mmol) of 1, 62 mg (0.16 mmol) of dppe and 157 mg (0.16 mmol) of $[Ru(p-cym)I_2]_2$ in CH₂Cl₂ was applied to the radial chromatograph using CH₂Cl₂ as the mobile phase. Three bands were detected from this separation. The first band afforded a yellow solution which contained species 3, 4, and 1, along with a trace [2,2,2-(PPh₃)₂(CO)-nido-2-OsB₄H₇-3amount of $(BH_2 \cdot PPh_3)$]. The second band afforded a violet solution identified as [2,2,2-(PPh₃)₂(CO)-nido-2-OsB₄H₇-3- $(BH_2 \cdot dppe \cdot Ru(p - cym)I_2)$ (6). The third band also gave a violet solution and this was shown by NMR

spectroscopy to consist of trace amounts of [dppe·(R $u(p-cym)I_2$ and $[Ru(p-cym)I_2]_2$ starting material. From this separation 49 mg (39% yield, based on $(PPh_3)_2(CO)OsB_5H_9)$, of 6 was obtained. Again attempts to grow crystals suitable from X-ray study were unsuccessful. ¹H NMR (CDCl₃): *p*-cymene, (δ in ppm) 0.86 (d, J = 6.61 Hz, 3H, CHMe₂), 0.85 (d, J = 6.49Hz, 3H, CHMe₂), 2.06 (s, 3H, Me), 3.08 (m, 1H, CHMe2), 4.85 (d, J = 5.81 Hz, 1H, MeC₆H₄CHMe₂), 5.02 (d, J = 6.00 Hz, 1H, MeC₆H₄CHMe₂), 5.15 (d, J = 5.91 Hz, 1H, MeC₆H₄CHMe₂), 5.19 (d, J = 5.74Hz, 1H, MeC₆H₄CHMe₂); PPh₂CH₂CH₂PPh₂, (δ in ppm) 3.08 (m, 2H, $CH_2PPh_2 \cdot Ru(p-cym)I_2$), 2.20 (m, 2H, $BH_2 \cdot PPh_2CH_2$), 6.95–7.90 (m, 50H, Ph). The remaining ¹H data along with ³¹P and ¹¹B can be found Elemental Table 1. Anal.: 13a for in C₇₃H₇₇B₅P₄I₂O₁Os₁Ru₁, Calc. C, 51.78; H, 4.58. Found: C, 51.16; H, 5.10%. LRMS: Fab (3-NBA and CsI). Calc. for $C_{73}H_{78}B_5P_4I_2O_1O_8Ru_1[M + C_8 + H]^+$ 1828.39, obs 1828. The mass envelope for the observed spectrum of 6 matches that calculated from known isotopic abundances of the constituent elements and the data are given in Supplementary Table 5.

2.7. Preparation of $[BH_3 \cdot (PPh_2)(CH_2)_6(PPh_2) \cdot Ru(p-cym)Cl_2]$ (7)

Dpph, 357 mg (0.47 mmol), was dissolved in 15 mL of freshly distilled CH₂Cl₂ in a 50 mL round bottom flask containing a stir bar. A 10 mL solution of CH₂Cl₂ containing 44 mg (0.072 mmol) [Ru(p-cym)Cl₂]₂ was added and the mixture stirred at ambient temperature for 30 min. Passage through a 1 cm silica gel plug gave a colorless filtrate. CH₃CN was then passed through the silica plug resulting in a deep red solution which was transferred to a 2-neck 50 mL flask and reduced to dryness on a rotary evaporator. The flask was then attached to the vacuum line, evacuated, and 20 mL of CH₂Cl₂ condensed in at -196 °C. After warming to -78 °C, 1.3 mL of BH₃ · thf solution (1.3 mmol) was added under a dynamic flow of dry N2, The solution was stirred at this temperature for 15 min and then allowed to warm slowly to room temperature at which time it was exposed to air and passed through a 1 cm plug of silica giving a colorless filtrate. CH₃CN was then poured through the silica plug forming a deep red colored solution which was then reduced to 1 mL in volume and applied to the radial chromatograph using CH2Cl2 as the mobile phase. CH₃CN was then slowly added to the eluent until a red band was detected. The red solution obtained from this band was evacuated to dryness affording 39 mg (69.9%) of a red solid which was characterized as $[BH_3 \cdot (PPh_2)(CH_2)_6(PPh_2) \cdot Ru(p-cym)Cl_2]$ (7). ¹H NMR (CDCl₃): *p*-cymene, (δ in ppm) 0.89 (d, J = 6.96 Hz, 6H, CHMe₂), 1.88 (s, 3H, Me), 2.52 (m, 1H, CHMe₂), 5.08 (d, J = 6.00 Hz, 2H, MeC₆H₄CHMe₂), 5.26 (d,

J = 6.60 Hz, 2H, MeC₆*H*₄CHMe₂); PPh₂(CH₂)₆PPh₂, (δ in ppm) 2.05 (quart, *J* = 5.28 Hz, 2H, BH₃·PPh₂*CH*₂), 1.56 (m, 2H, BH₃·PPh₂CH₂*CH*₂*CH*₂), 1.14 (m, 4H, BH₃·PPh₂CH₂CH₂*CH*₂*CH*₂), 0.99 (m, 2H *CH*₂CH₂·Ru(*p*-cym)Cl₂), 2.52 (m, 2H, *CH*₂PPh₂·Ru(*p*-cym)Cl₂), 7.39–7.81 (m, 20H, Ph); BH₃, (δ in ppm) 0.89 (d, ²*J*_{H-P} = 16.09 Hz, 3H, B*H*₃). ³¹P{¹H} NMR (CDCl₃): (δ in ppm) 15.79 (*br*, BH₃·*P*Ph₂CH₂), 23.96 (s, CH₂*P*Ph₂·Ru(*p*-cym)Cl₂). ¹¹B{¹H} NMR (CDCl₃): (δ in ppm) -39.42 (s, *B*H₃). HRMS: Calc. for ¹²C₄₀¹H₄₉³¹P₂³⁵Cl₁¹¹B₁¹⁰²Ru₁ [M – Cl]⁺ 739.2135, obs. 739.2160, standard deviation 3.4 ppm.

2.8. X-ray structure determination of $[BH_3 \cdot (PPh_2)(CH_2)_6 (PPh_2) \cdot Ru(p-cym)Cl_2]$ (7)

Red irregular crystals of 7 were formed from a CH₂Cl₂/Et₂O solution at 5 °C. A crystal with dimensions $0.38 \times 0.33 \times 0.20$ mm³ was mounted on a glass fiber in a random orientation. Preliminary examination and data collection was performed using a Bruker SMART Charge Coupled Device (CCD), detector system, single crystal X-ray diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$) equipped with a sealed tube X-ray source at -60 °C. Preliminary unit cell constants were determined with a set of 45 narrow frames $(0.3^{\circ} \text{ in } \varpi)$ scans. The data set collected consists of 4028 frames of intensity data collected with a frame width of 0.3° in ϖ and counting time of 30 s/frame at a crystal to detector distance of 4.930 cm. The double pass method of scanning was used to exclude any noise. The collected frames were integrated using an orientation matrix determined from the narrow frame scans. SMART and SAINT software packages [12] were used for data collection and data integration. Analysis of the integrated data did not show any decay. Final cell constants were determined by a global refinement of xyz centroids of 61725 reflections ($5^{\circ} < 2\theta < 56^{\circ}$). Collected data were corrected for systematic errors using SADABS [13] based on the Laue symmetry using equivalent reflections. The integration process yielded 46346 reflections of which 9059 were independent.

Crystal data and intensity data collection parameters are listed in Table 2. Structure solution and refinement were carried out using the SHELXTL-PLUS [14] software package. The structure was solved by the Patterson method and refined successfully in the space group $P\overline{1}$. Full matrix least-squares refinement was carried out by minimizing $\sum w(F_o^2 - F_c^2)^2$. The non-hydrogen atoms were refined anisotropically to convergence. All cage hydrogen atoms were located and refined freely. The other hydrogen atoms were treated using an appropriate riding model (AFIX m3). A projection view of the molecule with non-hydrogen atoms represented by 50% probability ellipsoids, and showing the atom labeling is presented in Fig. 2.

Selected bond lengths and angles are given in Table 3, and a complete list of bond length and angles as well as listings of positional and isotropic displacement coefficients for hydrogen atoms, anisotropic displacement coefficients for the non-hydrogen atoms can be found in the supplementary material.

3. Results

The reaction between the *nido*-ofhexaborane, $(PPh_3)_2(CO)OsB_5H_9$ (1), and bidentate phosphines of the type $PPh_2C_xH_pPPh_2$, affords species 2 as illustrated in Scheme 1. If a solution of [2,2,2-(PPh₃)₂(CO)-nido- $2-O_{s}B_{4}H_{7}-3-(BH_{2}\cdot PPh_{2}C_{x}H_{\nu}PPh_{2})]$ (2a, 2b, 2c) [1a], is allowed to stand rearrangement to species 4, also shown in Scheme 1, proceeds. In this process the distal end of the $BH_2 \cdot PPh_2C_xH_yPPh_2$ moiety, an uncoordinated phosphine, displaces a phosphine ligand on the Os atom to afford $[{(PPh_3)(CO)OsB_4H_7}-\eta^2-3,2-{BH_2 \cdot PPh_2C_x}-\eta^2-3,2-{BH_2 \cdot PPh_2C_x}-\eta^2-3,2-{$ $H_{\nu}PPh_{2}$] (4). The basicity of the pendent phosphine in species of type 2 was demonstrated by the reaction of [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂·PPh₂C₃H₆P- Ph_2] (2b) with BH_3 thf to afford $[2,2,2-(PPh_3)_2(CO)$ $nido-2-OsB_4H_7-3-(BH_2 \cdot PPh_2C_3H_6PPh_2 \cdot BH_3)$] [1a]. To probe the reactivity of this uncoordinated phosphine further in species 2a-2c, it was allowed to react with the species [Ru(p-cym)Cl₂]₂. The dimer of the 16electron ruthenium species is cleaved by phosphines to produce a monomeric species of the type $PR_3 \cdot Ru(p$ cym)Cl₂ [15]. The $(\eta^6$ -p-cym)ruthenium(II) complex was selected because it has been used as a vertex in metallaboranes [16] and there are characteristic ¹H NMR signals for the *p*-cymene group. The latter acts as a good indicator that the final product contains the Ru(pcym)Cl₂ fragment. Further, the chloride present on the ruthenium center can be replaced by larger halide or halide analogue [9] and thereby provide information on the role the halide has on the system.

Stirring a mixture of **1** and excess $[(PPh_2)_2(CH_2)_3]$ (dppe) in CH₂Cl₂ for 12 hours followed by addition of a small excess of $[Ru(p-cym)Cl_2]_2$ affords a red solid in which the distal end of the BH₂·PPh₂C₂H₄PPh₂ moiety has been functionalized to form $[2,2,2-(PPh_3)_2(CO)$ *nido*-2-OsB₄H₇-3-(BH₂·PPh₂C₂H₄PPh₂·Ru(*p*-cym)Cl₂)] (**5a**). The overall yield of this reaction is relatively low (33% yield based on **1**), presumably due to the competing intramolecular reaction **2a** undergoes to produce **4a**. In an effort to preclude this, a different synthetic route was utilized in which one end of the bidentate phosphine was already attached to the Ru(*p*-cym)Cl₂ fragment prior to reaction with **1**. A typical process, utilizing the two approaches, is illustrated in Scheme 2. Surprisingly, this did not increase the yield by more than 25%

Crystal data and structure refinement for 7

5	
Empirical formula	$C_{40}H_{49}BCl_2P_2Ru$
Formula weight	774.51
Temperature (K)	223(2)
Wavelength (Å)	0.71073
Crystal system	triclinic
Space group	$P\overline{1}$
Unit cell dimensions	
a (Å)	10.0759(1)
$b(\mathbf{A})$	12.1798(1)
$c(\dot{A})$	16.0963(1)
α (°)	90.109(1)
β(°)	93.07(1)
γ (°)	106.427(1)
Volume (Å ³)	1891.72(3)
Z	2
Density (calculated) (Mg/m ³)	1.360
Absorption coefficient (mm^{-1})	0.667
F(000)	804
Crystal size (mm ³)	$0.38 \times 0.33 \times 0.20$
θ Range for data collection	1.74-28.00.
Index ranges	$-13 \leq h \leq 13, -16 \leq k \leq 16,$
-	$-21 \ 1 \le 21$
Reflections collected	46346
Independent reflections $[R_{int}]$	9059 [0.04]
Completeness to $\theta = 28.00^{\circ}$	99.0%
Absorption correction	empirical
Maximum and minimum transmission	0.8781 and 0.7855
Refinement method	full-matrix least-squares on F^2
Data/restraints/parameters	9059/3/430
Goodness-of-fit on F^2	1.043
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0270, wR_2 = 0.0617$
<i>R</i> indices (all data)	$R_1 = 0.0358, wR_2 = 0.0658$
Largest differential peak and hole (e $Å^{-3}$)	0.435 and -0.435

and thus only one of these experiments is included in this report. Reasons for the low yields include degradation of the metal-containing species on the silica surface during purification by thin layer chromatography or incomplete removal of product from the silica surface. NMR experiments on the crude reaction mixture indicated that there was essentially quantitative conversion of **2a** to **5a**. The proposed structure of $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7-3-(BH_2 \cdot PPh_2C_2H_4PPh_2 \cdot R$ $u(p-cym)Cl_2)]$ (**5a**) given in Fig. 1 conforms to the elemental analytical and mass spectral data presented

Fig. 2. Structure of $[BH_3 \cdot (PPh_2)(CH_2)_6(PPh_2) \cdot Ru(p-cym)Cl_2]$ (7) with elipsoids drawn at the 50% probability level. H atoms on phenyl rings and their substituents are omitted for clarity.

T-1-1- 2

herein although crystals suitable for X-ray analysis were not available.

The ${}^{31}P{}^{1}H$ NMR spectrum of **5a** at 298 K exhibited three resonances in 2:1:1 area ratio. A broad one assigned to overlapping dppe signals (+22.28 ppm), and two signals from the PPh₃ groups coordinated to the Os center. When cooled to 260 K the signal assigned to the dppe ligand could be resolved into two doublets at +22.21 (J = 35.19 Hz) and +23.15(J = 36.87 Hz) ppm which 2D $^{1}\text{H}-^{31}\text{P}-\text{COSY}$ experiments allowed assignment as the phosphorus atom bound to the BH₂ moiety and that bound to the ruthenium center, respectively. The ¹¹B NMR spectrum of 5a gave the expected 4 peaks in 2:1:1:1 area ratio confirming the presence of five boron atoms. The data are found in Table 1 and correspond well to those for the other osmahexaboranes to which a phosphine is coordinated [1,2a]. Of note is the resonance at -38.03 ppm arising from the BH₂ moiety directly bound to a phosphorus atom of the dppe ligand; in the expected range for phosphine–borane moieties [17]. The ¹H{¹¹B} spectrum of 5a afforded the expected nine resonances of area ratio one assigned to five terminal and four bridging hydrogen atoms. At room temperature two complex multiplets at +2.85 and +2.34 ppm were observed for the methylene protons on the dppe backbone. At 260 K three resonances were observed for these methylene protons in a 1:1:2 area ratio. The first two, at +2.80 and +2.73 ppm, both complex multiplets, were assigned to the methylene protons adjacent to the $PPh_2 \cdot Ru(p-cym)Cl_2$ fragment and the resonance of area ratio two, at +2.29 ppm, was assigned

to the methylene protons adjacent to the $BH_2 \cdot PPh_2$ group.

The resonances for the *p*-cymene ligand were quite interesting and somewhat unexpected and they differed at 298 and 260 K. A schematic representation of the *p*-cymene ligand along with a numbering scheme is shown in Fig. 3. At room temperature two sets of doublets at +0.96 and +0.93 ppm assigned to the two-methyl groups occupying positions 1 and 1' were observed, but at 260 K these signals coalesce to a complex multiplet. The methyne proton at position 2 is observed as the expected septet and the methyl group at position 5 is observed as a singlet at both temperatures. At room temperature an apparent triplet and two doublets in a 2:1:1 ratio are observed for the aromatic protons, assigned to the protons occupying positions 4 and

rable 5								
C -1	1	1:	(Å)	J		(0)	£	
Selected	DODG	ansiances	IAI	ana	anoles	(-)	IOT	(/)

Selected Jona distai			
Ru–P(1)	2.3626(4)	Ru–Cl(1)	2.4270(5)
Ru–Cl(2)	2.4020(4)	P(1)–C(111)	1.8198(19)
P(1)-C(121)	1.8307(18)	P(1)–C(11)	1.8363(18)
P(2)–B(1)	1.923(3)	P(2)–C(211)	1.818(2)
P(2)-C(16)	1.8233(19)	P(2)–C(221)	1.815(2)
C(11)–C(12)	1.521(2)	C(15)-C(16)	1.526(3)
P(1)–Ru–Cl(1)	88.074(16)	P(1)-Ru-Cl(2)	82.895(15)
Cl(1)-Ru-Cl(2)	89.568(17)	C(111)–P(1)–C(121)	103.86(8)
C(111)–P(1)–C(11)	106.68(8)	C(121)–P(1)–C(11)	100.78(8)
C(111)–P(1)–Ru	111.76(5)	C(121)–P(1)–Ru	118.98(6)
C(11)–P(1)–Ru	113.46(6)	C(221)–P(2)–C(211)	106.12(9)
C(221)–P(2)–C(16)	106.45(9)	C(211)-P(2)-C(16)	103.59(9)
C(221)–P(2)–B(1)	111.34(11)	C(211)-P(2)-B(1)	112.21(11)
C(16)-P(2)-B(1)	116.34(11)	C(12)–C(11)–P(1)	120.73(14)
C(15)-C(16)-P(2)	115.69(14)	C(12)-C(13)-C(14)	113.93(16)

4' overlapping, and at 3 and 3', respectively. At 260 K the triplet resolves into two doublets, each of area ratio one; the higher field pair assigned to 4 and 4', and the lower field pair to 3 and 3'; all assignments made on the basis of 2D HH-COSY and HH-ROESY experiments. The NMR data, all of which conform to the structure given in Fig. 1 are listed in Table 1.

Similar results were obtained when using the phosphines $[(PPh_2)_2(CH_2)_3]$ (dppp) and $[(PPh_2)_2(CH_2)_6]$ (dpph), resulting in the formation of **5b** and **5c**, respectively. Mass spectral data were obtained for both and although the elemental analysis for **5b** were not as good as those for **5a** and **5c**, the data obtained from NMR spectroscopy, shown in Table 1, along with mass spectral data confirmed the formulation of **5b**.

Since the NMR spectra for the *p*-cymene ligands in 5a, 5b and 5c were similar in spite of varying the length of the alkyl bridge in the bidentate phosphines, we chose to use the rigid backboned species dppx. Reactions of 1 with phosphines with rigid backbones such as PPh₂XPPh₂ $\{X = 1, 4 - C_6 H_4\}$ (arphos)}, 1.4- $CH_2C_6H_4CH_2$ (dppx), and $Fe(C_5H_4)_2$ (dppf) had previously been examined in our laboratory [1c]. In a typical reaction, dppx was allowed to react with 1 to produce [2,2,2-(PPh₃)₂(CO)-nido-2-OsB₄H₇-3species the $(BH_2 \cdot PPh_2CH_2C_6H_4CH_2PPh_2)$] (2d), which was then treated with $[Ru(p-cym)Cl_2]_2$ to form the red solid [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂·PPh₂CH₂C₆- $H_4CH_2PPh_2 \cdot Ru(p-cym)Cl_2$ (5d). The isolated yield of **5d** obtained (46%) was higher than that for its precursor 2d, presumably because in solution 2d can react further to form the linked cluster system $[\{2,2,2,(PPh_3)_2(CO)\}$ nido-2-OsB₄H₇}₂] (dppx) [1c], however coordination to the metal center in 5d this precludes this formation. It was also found by monitoring the ${}^{31}P{}^{1}H$ NMR spectrum over time that the stability of 5d in solution was higher than that of its precursor 2d.

Species **5a–d** were also prepared by the reaction between **1** and the bidentate phosphine to which a [(pcym)RuCl₂] moiety was coordinated to one end. We only describe that for **5d**, which was formed in 54% yield from **1** and [dppx·Ru(p-cym)Cl₂] (Scheme 2). Spectral data for the cage and the p-cym moiety in **5d** were similar to those for **5a–c**, and are given in Table 1. Similarly, the spectra for the hydrocarbon linker in **5d** are not unusual and are given in the experimental section. The ³¹P resonance for the dppx P atom bonded to the Ru center is observed as a doublet, due to coupling to the other P

Fig. 3. A schematic representation of the *p*-cymene ligand showing the numbering scheme.

center, which is inequivalent. Such coupling is observed for **5a–c** but in this case it represents a 7-bond interaction between the two dppx ligand P atoms (${}^{7}J_{P-P} =$ 4.88 Hz). Coupling of this type has been observed before in similar systems and confirmed by 2D[${}^{31}P-{}^{31}P$]-COSY experiments [1,18].

Since changing the nature of the bidentate phosphines used did not affect the NMR spectroscopic properties of the hybrid system, the next step was to change the halide present on the ruthenium fragment. Thus we replaced the chloride by iodide in the starting [Ru(p $cym)Cl_2l_2$ complex [9] to see if the halide played a role in these systems. The reaction conditions used were similar to those in which 5a was isolated. Briefly dppe was allowed to react with 1 to form [2,2,2-(PPh₃)₂(CO) $nido-2-OsB_4H_7-3-(BH_2 \cdot PPh_2C_2H_4PPh_2)$] (2a), and to this a slight excess of $[Ru(p-cym)I_2]_2$ added. From this reaction mixture a deep red solid, identified as [2,2,2- $(PPh_3)_2(CO)$ -nido-2-OsB₄H₇-3-(BH₂) $\cdot PPh_2C_2H_4P$ - $Ph_2 \cdot Ru(p-cym)I_2$ (6) was isolated in 39% yield. The overall yield is comparable to that obtained for 5a (33%) and we ascribe the slight increase to the ease in which 2d was removed from the silica surface since CH₃CN was not required to aid removal from the surface of the silica, as it was for the isolation of 5a. Spectral data for 6 were quite similar to those for 5a-d, with some subtle differences. The dppe 31 P resonances for **5a** were broad at 298 K but sharpened at 260 K to two doublets, however the spectrum for 6 at 298 K resembled that for 5a at 260 K and did not change appreciably on cooling.

As part of this overall study, we prepared a series of bidentate phosphines which had organotransition metal and borane moieties at each end. This work will be described in detail in the next paper in this series, but herein we describe the structure of the species $[BH_3 \cdot (PPh_2)(CH_2)_6(PPh_2) \cdot Ru(p-cym)Cl_2]$ (7). At -78 °C and under a flow of N2, BH3 · thf was introduced into a CH₂Cl₂ solution of $[C_6H_{12}PPh_2 \cdot Ru(p-cym)Cl_2]$, prepared in situ from dpph and [Ru(p-cym)Cl₂]₂. Essentially a quantitative yield of 7 was obtained as a red solid, although due to adherence of 7 to the silica gel during purification, the isolated yield was 70%. Two peaks of equal area were observed in the ${}^{31}P{}^{1}H{}$ NMR spectrum of 7, the sharper of the two, falling at +23.96 ppm, was assigned to the phosphine directly bound to the ruthenium moiety. The second quite broad peak, observed at +15.79 ppm was assigned to the phosphine bonded to the BH₃ fragment. Coupling between the two P atoms was not observed. The ${}^{11}B{}^{1}H{}$ spectrum of 7 contained a single resonance at -39.42 ppm, typical for a phosphine-borane moiety [6-8]. The ¹H{¹¹B} NMR spectrum of 7 is given in the experimental section and all the protons were fully identified. Of note is the fact that for the p-cym ligand, a single doublet is observed at +0.89 ppm, assigned to the methyl groups at positions

1 and 1' and single doublets were observed for each of the pairs of aromatic protons, 3/3' and 4/4'. All other protons were assigned and all assignment made on the basis of 2D NMR experiments carried out at 303 K.

Red irregular crystals of 7 suitable for X-ray analysis were formed from a CH_2Cl_2/Et_2O solution at 5 °C. The structure resembles that expected for 5a except that the $(PPh_3)_2(CO)OsB_4H_7-BH_2$ moiety has been replaced by a BH₃ group. There are no unexpected features associated with the structure of 7. The environment around P(1), which is coordinated to the Ru moiety, deviates from ideal tetrahedral geometry to a greater degree than that around P(2). For P(1) the angles range from ca. 100.78– 118.98°, and for P(2) the angles range from ca. 103.59-116.34°. The angles around P(1) deviate further from an ideal tetrahedral geometry than they do around P(2) because the Ru moiety is much more sterically encumbering than the BH_3 moiety coordinated to P(2). Small differences can also be seen for the P-C(alkyl) bond lengths. Thus P(1)-C(11) has a bond length of 1.836(2) Å, while for P(2)-C(16) a bond length of 1.823(2) Å is observed and this, perhaps may be ascribed to P(1)donating more electron density to ruthenium than P(2)donates to boron.

4. Discussion

This study has demonstrated that species of the type $[{(PPh_3)_2(CO)OsB_4H_7}-3-{BH_2PPh_2(CH_2)_n(PPh_2)}]$ (2) can be used as substrates for the formation of hybrid systems of the type $[2,2,2-(PPh_3)_2(CO)-nido-2-OsB_4H_7-3-(BH_2PPh_2)C_xH_yPPh_2RuCl_2(p-cym)].$ (5) This is in spite of the tendency for 2 to undergo intramolecular substitution reactions. This latter behavior precluded isolation of crystals suitable for X-ray analysis however NMR spectra, high resolution mass spectrometry and elemental analysis confirmed the structures. Furthermore, a crystal structure determination of the closely related species $[BH_3 \cdot (PPh_2)(CH_2)_6(PPh_2) \cdot Ru(p-cym)Cl_2]$ (7), along with detailed NMR studies supports our conclusions about the identity of **5a–d** and **6**.

Perhaps the most unusual observation was the proton NMR data for the *p*-cym ligands in 5a-d and 6. Since the *p*-cym moiety has a plane of symmetry, it was expected that only 5 resonances would be observed, a singlet for the unique methyl group, a septet for the *i*-propyl proton, a doublet for the methyl groups of the *i*-propyl moiety and two doublets in an AB pattern for the aromatic protons. This however was not the case since in addition to the septet and the singlet, two resonances for each of the methyl groups at positions 1, 1' (see Fig. 3), and two sets of doublets for each of the two pairs of equivalent aromatic protons at positions 3,3' and 4,4' were observed. Altering the chain length of the bidentate phosphine, changing the nature of the chain and also the halogen bonded to the Ru atom did not alter this observation. The only changes we did observe was that for 5d, ${}^{31}P_{-}{}^{31}P$ coupling was observed between the two dppx P atoms; seven bond coupling presumably facilitated by delocalization through the π -cloud of the arene ring, and the effect on the line widths of the resonances for P(3) and P(4) in 6. The effects on the *p*-cym ligand were more profound for 5a than for 5b or 5c, suggesting that the proximity of the *nido*osmaborane cluster increases this influence. Attempts to prepare the dppm ([(PPh₂)₂CH₂]) analogue of 5ad were unsuccessful, so observation of the effect of shortening the length of the alkyl backbone was not possible.

The NMR data obtained for **5a–d** and **6** indicated that only a single species was present in solution and 2D NMR experiments suggested that there were neither anomalous couplings nor short range through-space interactions to account for the observed doubling pattern. The only remaining feature that could have caused these doublings was the *nido*-osmapentaborane cluster tethered at the distal end of the PPh₂C_xH_yPPh₂·Ru(*p*cym)Cl₂ moiety. This hypothesis is further enhanced since this anomalous phenomenon was not observed for **7** which contains a BH₃ group rather than the *nido*-osmapentaborane moiety [(PPh₃)₂(CO)OsB₄H₇ (BH₂)].

The type of behavior observed for the *p*-cymene ligand has been previously reported in the literature in cases where there is asymmetry at the metal center [19]. The only asymmetric feature in the series of species 5a-d and 6 resides in the osmaborane cluster. The appended BH₂ at position 3 on the osmaborane cluster in species of type 2 and those containing monodentate phosphines [1a] exhibit two inequivalent terminal proton resonances for 6 and 6' (see Table 1 and Fig. 1), which feature symmetrical, mirror-image fine structure which we attribute to long range ¹H and ³¹P coupling and which results in an apparent doublet structure. This is consistent with the structure because the two hydrogens are on a prochiral center and are, therefore, diastereotopic thus exhibiting different chemical shifts and splitting each other. Technically the *nido*-osmapentaborane cluster renders the protons on the *p*-cymene ligand diastereotopic, but in some cases the chiral cluster is eleven bonds removed from the *p*-cymene ligand and thus the effect would be expected to be minimal. This is not the case however, as experimental observations portend to the contrary. We mentioned earlier that the NMR spectra obtained for 6 at 298 K were similar to those obtained for 5a at 260 K. This suggested that the halide present at the ruthenium center does play some role in the diastereotopic behavior observed at the *p*-cymene ligand. One possible explanation for this is that in solution the nido-osmapentaborane cluster is associating, via

Fig. 4. Possible solution configurations of 5.

hydrogen bonding, to the halide at the ruthenium center. Thus the *nido*-osmapentaborane cluster finds itself in closer proximity to the ruthenium center, magnifying the effect of this chiral unit on the *p*-cymene ligand. Examples of conformations that could arise from this interaction are shown in Fig. 4. The cartoon type depiction given shows two possible conformations that could exist in solution for species 5a and this could be extended to include the other species in the series. Unfortunately we could not obtain further corroborating evidence such as crystal structure data that would confirm this hypothesis. If this explanation is correct, it would represent one of the first reported examples of a chiral unit causing a diastereotopic effect on a ligand that is up to eleven bonds removed from the chiral moiety.

Acknowledgements

We acknowledge the NSF (Grant No. CHE-9727570), the Missouri Research Board and UM-St. Louis for research grants to LB, and the NSF, the UM-St. Louis Center for Molecular Electronics and the Missouri Research Board for funds that helped purchase the XRD, NMR, and MS facilities. We also thank Mr. Joe Kramer for help with the MS measurements.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version at doi:10.1016/j.ica.2004.10.015.

References

- (a) P. McQuade, K. Hupp, J. Bould, H. Fang, N.P. Rath, R.Ll. Thomas, L. Barton, Inorg. Chem. 38 (1999) 5415;
 (b) P. McQuade, in: M.G. Davidson, A.K. Hughes, T.B. Marder, K. Wade (Eds.), Contemporary Boron Chemistry, Special Publication, vol. 253, Royal Society of Chemistry, 2000, pp. 271–275;
 (c) P. McQuade, R.E.K. Winter, L. Barton, J. Organomet. Chem. 688 (2003) 82.
- [2] (a) L. Barton, J. Bould, H. Fang, K. Hupp, N.P. Rath, C. Gloeckner, J. Am. Chem. Soc. 119 (1997) 631;
 (b) X. Lei, M. Shang, T.P. Fehlner, Organometallics 19 (2000)
 - 5266; (c) L.N. Pangan, Y. Kawano, M. Shimoi, Organometallics 19 (2000) 5575;
 - (d) Y. Kawano, K. Kawakami, M. Shimoi, Chem. Lett. (2001) 1006:
 - (e) L.N. Pangan, Y. Kawano, M. Shimoi, Inorg. Chem. 40 (2001) 1985;
 - (f) R. Macias, T.P. Fehlner, A.M. Beatty, Angew. Chem., Int. Ed. 41 (2002) 3860;

(g) R. Macias, T.P. Fehlner, A.M. Beatty, Organometallics 23 (2004) 2124.

- [3] (a) R.E. Williams, Adv. Inorg. Chem. Radiochem. 18 (1976) 67;
 (b) K. Wade, Adv. Inorg. Chem. Radiochem. 18 (1976) 60;
 (c) R.W. Rudolph, Acc. Chem. Res. 9 (1976) 446.
- [4] D.F. Shriver, M.A. Drezdon, The Manipulation of Air-Sensitive Compounds, John Wiley, New York, 1986.
- [5] J. Bould, M.N. Greenwood, J.D. Kennedy, J. Organomet. Chem. 249 (1983) 11.
- [6] D. Imhof, U. Burckhardt, K.-H. Dahmen, F. Joho, R. Nesper, Inorg. Chem. 36 (1997) 1813.
- [7] P. McQuade, N.P. Rath, L. Barton, Inorg. Chem. 38 (1999) 5468.
- [8] M.A. Bennett, T.-N. Huang, T.W. Matteson, A.K. Smith, Inorg. Synth. 21 (1982) 74.
- [9] R.A. Zelonka, M.C. Baird, Can. J. Chem. 50 (1972) 3063.
- [10] Assignments of the NMR spectra listed in Table 1, were based on detailed analyses previously reported in [1a,1c,5], and on spectra and X-ray structural data for [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₄H₇-3-(BH₂PPh₂Me)] [2a] and for [2,2,2-(PPh₃)₂(CO)-*nido*-2-OsB₅H₉]

found in 5 and in J. Bould, J.D. Kennedy, R.Ll. Thomas, L. Barton, N.P. Rath, Acta Crystallogr. Sect. C. 57 (2001) 1245.

- [11] We found that the use of CsI in FAB Mass Spectrometry substantially simplified the spectra by avoiding overlap of peak envelops. See G. Siuzdak, S.V. Wendeborn, K.C. Nicolaou, Int. J. Mass Spectrom. Ion Proc. 112 (1992) 79.
- [12] Bruker Analytical X-ray Division, Madison, WI, 1998.
- [13] R.H. Blessing, Acta Crystallogr. Sect. A. 51 (1995) 33.
- [14] G.M. Sheldrick, Bruker Analytical X-ray Division, Madison, WI, 1999.
- [15] S.A. Serron, S.P. Nolan, Yu.A. Abramov, L. Brammer, J.L. Petersen, Organometallics 17 (1998) 104.
- [16] (a) See for example: M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, Organometallics 6 (1987) 2254;

(b) J.H. Davis, E. Sinn, R.N. Grimes, J. Am. Chem. Soc. 111 (1989) 4776;

(c) R.Ll. Thomas, A. J.J. Chem. Soc. Dalton Trans. (1997) 631;
(d) R.Ll. Thomas, L. Barton, Inorg. Chim. Acta 289 (1999) 134.

[17] (a) H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Springer Verlag, Heidelberg, 1978, pp. 340–344;

(b) K.C. Nainan, G.E. Ryschewitsch, Inorg. Chem. 8 (1969) 2671.

- [18] (a) K. Gholivand, A.H. Mahmoudkhani, M. Khosravi, Phosphorus, Sulfur Silicon Relat. Elem. 106 (1995) 173;
 (b) R. Macias, N.P. Rath, L. Barton, J. Chem. Soc., Chem. Commun. (1998) 1091.
- [19] (a) For example see: N. Nul, J.H. Nelson, Organometallics 18 (1999) 709;

(b) S. Fernadez, M. Pfeffer, V. Ritleng, C. Sirlin, Organometallics 18 (1999) 2390;

(c) H. Brunner, R. Oeschey, B. Nuber, J. Chem. Soc., Dalton Trans. (1996) 1499;

(d) J.W. Faller, J. Parr, Organometallics 19 (2000) 1829.