

Available online at www.sciencedirect.com

Polyhedron 26 (2007) 3857-3864

Highly active ferrocenylamine-derived palladacycles for carbon–carbon cross-coupling reactions

Hong-Xing Wang *, Hong-Fei Wu, Xiao-Li Yang, Nan Ma, Li Wan

Department of Chemistry, College of Sciences, Tianjin University, Tianjin 300072, PR China

Received 13 February 2007; accepted 13 April 2007 Available online 5 May 2007

Abstract

{[(*N*-Methyl-*N*-*p*-R-benzyl)amino]benzyl}ferrocenes **4a**-**c** (R = H(a), OCH₃(b), CH₃(c)) were synthesized by *N*-methylation of the corresponding *sec*-amines **3a**-**c** with the reagent CH₃I-*t*-BuOK. Treatment of **4a**-**c** with Na₂PdCl₄ in the presence of NaOAc produced a pair of palladacycles σ -Pd[(η^5 -C₅H₅)Fe(η^5 - C₅H₃CH(C₆H₅)N(CH₃)CH₂-C₆H₄-R)]Cl(PPh₃) **5a**-**c** (R = same as before) consisting of *R*_N*R*_P and *S*_N*S*_P configurations. The structure of **5a** was determined by single crystal X-ray analysis. High catalytic activities of **5a**-**c** for the Suzuki coupling of aryl chlorides with phenylboronic acid and the Heck reaction of bromobenzene with styrene were observed. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Ferrocene; Amine; Palladacycles; Crystal; Carbon-carbon cross-coupling

1. Introduction

Functionalized biaryls are a class of important intermediates in the synthesis of natural products possessing biological activities [1]. These biaryls can be obtained by Suzuki coupling of functionalized aryl halides and phenylboronic acid, catalyzed by palladium-phosphine complexes such as Pd(PPh₃)₄, Pd(PPh₂)Cl₂, Pd(OAc)₂/PPh₃, etc. [2] or by the recently emerged N-heterocyclic carbene (NHC)-palladium complexes [3]. However, cyclopalladated complexes (also called palladacycles) as alternative catalysts have also been proven to be efficient in such couplings [4,5]. In addition, these palladacycles have been already used successfully in the Heck reaction, which gives a variety of olefins [4,6]. Previous researches on Suzuki coupling catalyzed by palladacycles containing nitrogen-donor atoms focused mainly on imines [5a,5b,5c,5d,5e,5f,5l], oximes [5g,5h], etc., and most of the palladacycles were found to be active to the Carvl-Br or Carvl-I bond, although several examples were also reported to be efficient to the Caryl-Cl bond [5a,5c,5d,5h,5l]. To our best knowledge, research on the Suzuki coupling catalyzed by amine-derived palladacycles, particularly for activation of the Carvi-Cl bond, are still scarce [5a,5i]. Thus it is essential to exploit the new type of amine-derived palladacycles to activate aryl chlorides, because of the low costs and easilv purchased substrates. Several years ago we initiated a program, the synthesis of cyclometallated ferrocenylamines and their applications in carbon-carbon bond formation. It was observed that cyclopalladation or platination of {[(*N*-methyl-*N*-benzyl or phenyl)amino]methyl} ferrocenes always produced a pair of racemic metallocycles consisting of $R_N R_P$ and $S_N S_P$ configurations [7]. Most importantly, when a variety of phenyls are attached directly to the nitrogen in the ferrocenylamines, the corresponding palladacycles are thermally unstable and thus cannot be used as catalysts in carbon-carbon cross-coupling [7a]. In order to evaluate the catalytic efficiency of amine-derived palladacycles in this coupling, in this paper, we will present herein the synthesis of three palladacycles derived from {[(N-methyl-N-benzyl)amino]benzyl} ferrocenes and their catalysis in the Suzuki coupling of aryl chlorides with

^{*} Corresponding author. Tel.: +86 022 27892355; fax: +86 022 27403475.

E-mail address: hongxing_wang@hotmail.com (H.-X. Wang).

^{0277-5387/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2007.04.030

phenylboronic acid. In addition, the Heck reaction of bromobenzene with styrene catalyzed by these palladacycles, as mentioned above, will also be discussed.

2. Results and discussion

2.1. Synthesis of ferrocenylamines **4a–c** and their cyclopalladated complexes **5a–c**

The preparation of *tert*-ferrocenylamines **4a–c** is shown in Scheme 1. Condensation of benzoylferrocene and 4 equiv. of benzylamine catalyzed by titanium tetrachloride [8] in toluene produced the dark-red ferrocenylketimines **2a–c** in good yields. Reduction of **2a–c** with LiAlH₄-AlCl₃ [9] in THF gave *sec*-amines **3a–c**, respectively in moderate yields. An attempt at the synthesis of **4a–c** from **3a–c** by our earlier used protocol, i.e. using aqueous HCHO, NaC-NBH₃ in HOAc, [10] was unsuccessful due to the easier debenzylation of the former reactant [9,11] under such reaction conditions. Thus, CH₃I was chosen as the methylation reagent and *t*-BuOK as the base to synthesize **4a–c** from **3a–c** (Scheme 1). **4a–c** were finally obtained as orange solids in yields of 50–65%.

The synthesis of palladacycles 5a-c is outlined in Scheme 2. Treatment of 4a-c with 1 equiv. of Na₂PdCl₄– PPh₃ in methanol produced red-brown solids 5a-c in 70–80% yields after purification by column chromatography (see Section 4). Similar to our earlier obtained palladacycles [7a,7b,7c], 5a-c are very stable in air and easily soluble in CH₂Cl₂, CHCl₃, ethyl acetate, acetone and benzene, but are insoluble in ethanol and hexane.

Compounds 2–5 were characterized by elemental analysis, IR and ¹H NMR. Elemental analyses of 2–5 are in good agreement with their proposed formula. The IR and ¹H NMR spectra of 2–4 are very similar to those observed in imines, *sec*-amines and *tert*-amines derived from the starting materials formylferrocene and benzylamines [7b,7c]. The IR spectra of 5a–c show two medium absorption bands at $v \sim 1100$ and 1000 cm^{-1} , implying that each of these palladacycles contains a free cyclopentadienyl (Cp) ring [12]. The ¹H NMR spectra of 5a–cclearly demonstrate that the chemical shifts of N–CH₃ are located downfield ($\delta \sim 2.80$ ppm) compared to those of the free *tert*-amines 4a–c ($\delta \sim 1.99$ ppm). This change can be rationalized by N–Pd coordination, which decreases the electron density

Scheme 2. (i) $Na_2PdCl_4/NaOAc/CH_3OH$. (ii) PPh_3/CH_3OH . R = H (a), 4-OCH₃ (b), 4-CH₃ (c).

of the N atom and causes the δ -values of N–CH₃ to shift downfield. In addition, the satellites of H20–H24 in the phenyl ring all exhibit their unique AA'XX' splitting patterns (except **5a**), indicating that palladacycles **5a–c** are formed *via* the activation of the C_{Ferrocenyl}–H bond rather than the C_{phenyl}–H bond [13].

Since the nitrogen atom in **4a**–c connects directly to three different groups and a rapid N-inversion [14] exists, after the coordination of the nitrogen atom with palladium, the forms of the N–Pd coordinated intermediates (Fig. 1) can be simplified as two kinds, i.e., one has a R_N configuration, and another has the opposite, regardless of the chirality of C11. Accordingly, the following activation of the C–H bond in the Cp ring will produce theoretically four isomeric palladacycles (two pairs of racemes, *i.e.*, R_NR_P and S_NS_P , S_NR_P and R_NS_P). Similar to our earlier observations [7], only one pair of raceme R_NR_P and S_NS_P was found to dominate in these reactions, the other pair of raceme R_NS_P and S_NR_P was observed in trace amounts and can be easily removed by

Fig. 1. The possible activation modes of C–H bonds in the Cp ring for N–Pd coordinated intermediates (left: R_N , right: S_N).

Scheme 1. (i) RC₆H₄CH₂NH₂/TiCl₄/toluene, reflux. R = H (a), 4-OCH₃ (b), 4-CH₃ (c). (ii) LiAlH₄/AlCl₃/THF. (iii) CH₃I/t-BuOK, THF.

3859

chromatography. This stereoselective C–H bond activation is probably attributed to the preferred N–Pd orientations in the intermediates (Fig. 1), which allow the palladium atom to approach preferably to the C2–H or C5–H bond and then activate each of them. To some extent, the preferred N–Pd orientations in these intermediates are relevant to the geometries of the *tert*-ferrocenylamines [15]. In addition, zero optical rotations of **5a–c** measured at the given conditions ($\lambda = 5893$ Å, CH₂Cl₂, 293 K) also indicate that these palladacycles consist of racemes.

The structure of **5a** was determined by single crystal Xray analysis (Fig. 2, $S_N S_P$). Crystallographic data for **5a** are given in Table 1, selected bond lengths and angles are listed in Table 2. X-ray diffraction studies demonstrates that **5a** consists of the discrete molecule {Pd[(η^5 -C₅H₅) Fe(η^5 -C₅H₃CHPhN(CH₃)CH₂C₆H₅)](PPh₃)Cl} separated

Fig. 2. X-ray crystal structure of 5a (H atoms are all omitted for clarity).

Table 1

Crystanographic data for sa	
Compound	5a
Empirical formula	C43H39ClFeNPPd
Formula weight	798.42
Crystal dimensions (mm)	$0.28 \times 0.22 \times 0.20$
Crystal system, space group	monoclinic, $P2(1)/n$
a (Å)	10.716(8)
b (Å)	17.638(1)
c (Å)	19.259(2)
α (°)	90
β (°)	94.153(1)
γ (°)	90
$V(\text{\AA}^3)$	3631(5)
Ζ	4
$\rho_{\rm calc} ({\rm g} {\rm cm}^{-3})$	1.461
$\mu (\mathrm{mm}^{-1})$	1.044
θ Range for data collection	$2.23 \leqslant \theta \leqslant 24.08^{\circ}$
Limiting indices	$-10 \leqslant h \leqslant 12,$
	$-20 \leqslant k \leqslant 20, -21 \leqslant l \leqslant 22$
Reflections collected/unique $[R_{int}]$	19259/6383 [0.0375]
Data/restraints/parameters	6383/0/434
Final R_1 , wR_2	0.0323, 0.0768
Largest difference in peak and hole ($e \text{ Å}^{-3}$)	0.542 and -0.345

Table 2	
Selected bond lengths	and angles for 5a

Bond lengths (Å)			
Pd(1)-P(1)	2.2401(1)	C(1)-C(2)	1.431(4)
Pd(1)-Cl(1)	2.3920(2)	N(1)-C(11)	1.524(4)
C(2) - C(11)	1.520(4)	N(1)-C(19)	1.499(4)
Bond angles (°)			
C(1) - Pd(1) - N(1)	82.18(1)	C(18)-N(1)-C(19)	107.5(2)
N(1) - Pd(1) - Cl(1)	91.24(7)	C(1) - Pd(1) - P(1)	91.67(9)
C(11) - N(1) - Pd(1)	109.92(2)	C(1)-Pd(1)-Cl(1)	173.25(8)
C(19) - N(1) - C(11)	110.2(2)	P(1)-Pd(1)-Cl(1)	94.51(5)
C(18) - N(1) - C(11)	112.1(2)	C(2)-C(1)-Pd(1)	114.15(2)

by van der Waals contacts. The palladium atom is in a slightly distorted square-planar environment, bonded to Cl(1), P(1), N(1) and C(1). The deviation of each atom from the mean plane is Pd(1), -0.1015; Cl(1), -0.0489; P(1), 0.1071; N(1), 0.1149; C(1), -0.0716 Å, respectively. **5a** contains a bicycle, which is formed by the substituted Cp ring of the ferrocenyl fragment and a five-membered palladacycle with an envelope-like conformation. The N(1)-Pd(1) bond length of 2.224(3) Å is slightly longer than those observed in cyclopalladated [(N,N-dimethylamino)methyl]ferrocene (FcN, 2.170 Å) [16] and $[({N-methyl-N-4-nitrobenzyl}$ amino)methyl]ferrocene (BFcN, 2.195 Å) [7c]. In addition, the PPh₃ moiety in **5a** adopts a *trans*-configuration to N(1). with a N(1)-Pd(1)-P(1) bond angle of $167.53(7)^{\circ}$, which is slightly less than that in cyclopalladated BFcN $(169.00(9)^{\circ})$. The Pd(1)–C(1) bond length of 2.002(3) Å is nearly the same as those observed in cyclopalladated FcN (1.983(1) Å) and BFcN (1.988(4) Å). The average C-C bond length (1.418 Å) in the ferrocenyl moiety is very close to the reported values of other ferrocene derivatives [17]. The Fe-C (Cp ring) bond lengths range from 2.036 to 2.082 Å. The eclipsed two Cp rings are planar and nearly parallel (interplanar angle of 2.2°).

2.2. Suzuki coupling

Before investigation of the Suzuki coupling for aryl chlorides, the coupling of bromobenzene and phenylboronic acid catalyzed by 5a-c (under the conditions K₂CO₃, THF) was studied. The coupling results showed that 100% of biphenyl was obtained, indicating that palladacycles 5a-c are excellent catalysts for activation of the C_{phenyl}-Br bond. To examine the catalytic efficiency of 5 for the coupling of aryl chlorides, a quick survey of solvents including dioxane, toluene, THF and DMF/H₂O was made (Table 3). Table 3 revealed that using K_2CO_3 as the base and 0.1 mol% of **5a** as the catalyst the coupling reaction in dioxane gave the best results (Entry 1, 89%, Table 3). We further investigated the effect of the bases, e.g., K₂CO₃, Cs₂CO₃, K₃PO₄ and *t*-BuOK in the same reaction (Table 3). It was found that K_2CO_3 was better than the others (Entries 4-7). Therefore, K₂CO₃ was ultimately chosen as the base for this system.

Table 3 Influence of solvents and bases on the Suzuki coupling of chlorobenzene with phenyl-boronic acid^a

\bigtriangledown	$-Cl + (HO)_2B$	base solvent	\mathbf{h}
Entry	Solvent	Base	Yield (%) ^b
1	dioxane	K ₂ CO ₃	89.1
2	toluene	K_2CO_3	45.9
3	THF	K_2CO_3	51.3
4	DMF/H ₂ O	K_2CO_3	36.2
5	dioxane	Cs ₂ CO ₃	67.6
6	dioxane	K_3PO_4	15.0
7	dioxane	t-BuOK	26.7

^a Reaction conditions: catalyst *rac*-**5a** (0.1 mol%), PhCl (1 mmol), PhB(OH)₂ (1.5 mmol), base (2 mmol), solvent (10 cm³), reflux, 10 h.

^b Determined by GC, based on PhCl, average of two runs.

Under the optimized conditions as mentioned above, the relative activities of 5a-c for the Suzuki coupling of aryl chlorides and phenylboronic acid were studied (Table 4). When the reactions were carried out at 100 °C for 10 h, 5a-c all exhibited good activity with the loading as low as 0.1 mol % (Entries 1–3). However, when 0.01% of 5a was used, the coupling yield was lower (Entry 4, 22.3%). Under the optimized reaction conditions (K₂CO₃, dioxane, 100 °C, 10 h) phenylboronic acid could couple efficiently with the aryl chlorides ranging from electron-donating to electron-withdrawing groups (Entries 5–10). In particular, for 4-CH₃C₆H₅Cl the coupling yield was up to 98.0% (Entry 6). Even for the bulky 2,4-dinitrophenyl chloride, its coupling with phenylboronic acid was also achieved and the resulting biaryl yield was moderate.

2.3. Heck reaction

We initially examined the Heck reaction of chlorobenzene with styrene catalyzed by **5a–c**. Unfortunately the product yields were much lower (yield < 3%), and these results were consistent with the another group's observations [6]. Later we paid attention to the reaction of bromobenzene with styrene, and the results are summarized in Table 5. It was found that using DMF as the solvent and K₂CO₃ as the base at 140 °C for 7 h, an excellent yield of product could be obtained when the loading of palladacycle **5b** was as low as 0.1 mol% (Entry 6). Similar to the Suzuki coupling, when 0.01% of catalyst was used, the coupling yield was lower (Entry 8, 39%).

3. Conclusions

tert-Ferrocenylamines were easily synthesized by *N*-methylation of the corresponding *sec*-amines with CH₃I. Treatment of these *tert*-amines with Na₂PdCl₄ afforded racemic palladacycles with a σ Pd-C_{sp}², Ferrocenyl bond. These palladacycles have been proven to

be highly efficient catalysts for the Suzuki coupling of aryl chlorides with phenylboronic acid and the Heck reaction of bromobenzene with styrene under the given conditions.

4. Experimental

4.1. Materials and instruments

Benzoylferrocene, enzylamines, TiCl₄, LiAlH₄, AlCl₃, CH₃I, *t*-BuOK, NaOAc, PPh₃ were obtained commercially and were used without further purification. Na₂PdCl₄ was prepared in our laboratory. All of the solvents were purified with standard methods prior to use. Melting points were obtained on a Yanaco micro melting point apparatus and were uncorrected. Elemental analyses were measured on a Carlo Erba 1106 Elemental analyzer. ¹H NMR spectra were obtained with Bruker AV-400 spectrometer using CDCl₃ as the solvent and TMS as the internal standard. IR spectra were recorded on a BIO-RAD 3000 spectrophotometer.

4.2. Preparation of ferrocenylketimines (2)

General procedure: **2a–c** were prepared according to the literature method [8].

4.2.1. { $(\eta^5 - C_5 H_5)Fe(\eta^5 - C_5 H_4 C(C_6 H_5) = NCH_2 C_6 H_5)$ } (2a)

Yield: (80%); a dark-red liquid; *Anal.* Calc. for $C_{24}H_{21}FeN$: C, 76.00; H, 5.58; N, 3.69. Found, C, 76.08; H, 5.69; N, 3.90%. FT-IR (KBr): 3084(w), 3027(w), 2856(w), 1614(vs), 1494(s), 1453(m), 1343(m), 1289(s), 1181(m), 1106(s), 1026(s), 1003(s), 822(s), 703(s) cm⁻¹. ¹H NMR (CDCl₃): δ 3.81 (bs, 2H, H2, H5), 4.08 (bs, 2H, H3, H4), 4.14 (s, 5H, η^5 -C₅H₅), 4.50 (s, 2H, H18), 7.45–7.89 (m, 10H, Ph).

4.2.2. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4C(C_6H_5) = NCH_2C_6H_4 - OCH_3 - 4)$ } (2b)

Yield: (76%); a dark-red liquid; *Anal.* Calc. for $C_{25}H_{23}FeNO$: C, 73.36; H, 5.66; N, 3.42. Found, C, 73.25; H, 5.73; N, 3.19%. FT-IR (KBr): 3088(w), 3022(w), 2909(w), 1611(vs), 1511(vs), 1462(s), 1291(s), 1245(vs), 1173(m), 1101(s), 1035(s), 818(s), 702(s) cm⁻¹. ¹H NMR (CDCl₃): δ 3.82 (s, 3H, OCH₃), 3.87 (bs, 2H, H2, H5), 4.11 (bs, 2H, H3, H4), 4.17 (s, 5H, η^{5} -C₅H₅), 4.55 (s, 2H, H18), 6.99–7.50 (m, 4H, H20, H21, H23, H24), 7.25–7.38 (m, 5H, Ph).

4.2.3. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4C(C_6H_5) = NCH_2C_6H_4CH_3 - 4)$ } (2c)

Yield: (85%); a dark-red liquid; *Anal.* Calc. for $C_{25}H_{23}FeN$: C, 76.35; H, 5.89; N, 3.56. Found: C, 76.21; H, 5.56; N, 3.81%. FT-IR (KBr): 3093(w), 3021(w), 2922(w), 1614(vs), 1515(s), 1480(s), 1290(vs), 1179(w), 1106(s), 1002(s), 820(vs), 703(vs) cm⁻¹. ¹H

Table 4					
Palladacycles-catalyzed	conversion	of aryl	chlorides	to	biaryls ^a

Entry	Aryl halide	Catalyst (mol%)	Product	Yield (%) ^b
1	Cl	<i>rac-</i> 5a (0.1)		89.1
2	CI	<i>rac-</i> 5b (0.1)		86.5
3	CI	<i>rac-</i> 5c (0.1)		85.2
4	Cl	<i>rac-</i> 5a (0.01)		22.3
5	-Cl	<i>rac-</i> 5a (0.1)		91.7
6	-Cl	<i>rac-</i> 5b (0.1)		98.0
7	-Cl	<i>rac-</i> 5c (0.1)		95.1
8	O ₂ N-Cl	<i>rac-</i> 5a (0.1)	O ₂ N	72.4
9	O ₂ N-Cl	<i>rac-</i> 5b (0.1)	O ₂ N	78.7
10	O ₂ N-Cl	<i>rac-</i> 5c (0.1)	O ₂ N	80.6
11	O ₂ N-Cl	<i>rac-</i> 5c (0.1)	O_2N	68.5
12	$\bigvee_{NO_2}^{NO_2} Cl$	<i>rac-5</i> b (0.1)	$\bigvee_{NO_2}^{NO_2}$	45.3

^a Reaction conditions: ArCl (1 mmol), PhB(OH)₂ (1.5 mmol), K₂CO₃ (2 mmol), dioxane (10 cm³), 100 °C, 10 h.

^b Determined by GC, based on aryl chloride used, average of two runs.

NMR (CDCl₃): δ 2.15 (s, 3H, CH₃), 3.85 (bs, 2H, H2, H5), 4.10 (bs, 2H, H3, H4), 4.16 (s, 5H, η^{5} -C₅H₅), 4.53 (s, 2H, H18), 7.13–7.25 (m, 4H, H20, H21, H23, H24), 7.43–7.55 (m, 5H, Ph).

4.3. Preparation of sec-ferrocenylamines (3)

General procedure: 3a-c were prepared with a modification of the 'Cais' method [8]. The difference was the reduction conditions. In our experiment, 3% mmol of AlCl₃ was used as the catalyst and THF as the solvent.

4.3.1. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH(C_6H_5)NHCH_2C_6H_5)$ } (3a)

Yield: (77%); an orange solid; m.p. 68–70 °C. Anal. Calc. for $C_{24}H_{23}FeN$: C, 75.60; H, 6.08; N, 3.67. Found: C, 75.63; H, 6.25; N, 3.82%. FT-IR (KBr): 3328(s), 3084(m), 3022(m), 2948(m), 2857(m), 1598(m), 1493(vs),

$Br + CH = CH_2 \xrightarrow{\text{base}} CH = CH = CH_2$					
Entry	Solvent	Catalyst (mol%)	T (°C)	Base	Yield (%) ^b
1	1,4-dioxane	<i>rac</i> - 5b (0.1)	80	K ₂ CO ₃	3.0
2	1,4-dioxane	<i>rac</i> -5b(1)	100	K_2CO_3	5.0
3	toluene	<i>rac</i> - 5b (1)	100	K_2CO_3	3.0
4	DMF	rac-5b(0.1)	100	K_2CO_3	22.0
5	DMF	<i>rac</i> -5b(1)	140	K_2CO_3	100
6	DMF	rac-5b(0.1)	140	K_2CO_3	100
7	DMF	rac-5b(0.1)	140	t-BuOK	87.0
8	DMF	rac-5b(0.01)	140	K_2CO_3	39.0
9	DMF	rac-5a(0.1)	140	K_2CO_3	96.0
10	DMF	rac-5c(0.1)	140	K ₂ CO ₃	98.0

Table 5	
The Heck reaction of bromobenzene wi	ith styrene ^a

^a All reactions were carried out with 1 mmol of PhBr, 1.5 mmol of styrene and 2 mmol of base in 10 cm³ of solvent for 7 h.

^b Determined by GC, based on PhBr, average of two runs.

1452(vs), 1283(m), 1197(m), 1105(vs), 1022(s), 996(s), 820(vs), 699(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 2.17 (s, 1H, NH), 3.58–3.80 (q, 2H, H18) 4.06 (s, 1H, H11), 4.04 (s, 5H, η^5 -C₅H₅), 4.30 (bs, 2H, H2, H5), 4.48 (bs, 2H, H3, H4), 7.23–7.43 (m, 10H, Ph).

4.3.2. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH(C_6H_5)NHCH_2C_6H_4 - OCH_3 - 4)$ } (**3b**)

Yield: (72%); a yellow solid; m.p. 57–60 °C. *Anal.* Calc. for C₂₅H₂₅FeNO: C, 73.00; H, 6.13; N, 3.41. Found: C, 73.09; H, 6.31; N, 3.55%. FT-IR (KBr): 3324(m), 3083(m), 3022(m), 2954(s), 2827(m), 1610(vs), 1512(vs), 1452(s), 1300(m), 1247(vs), 1174(s), 1105(vs), 1036(s), 1001(s), 821(vs), 700(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 2.17 (s, 1H, NH), 3.51–3.74 (q, 2H, H18), 3.82 (s, 3H, OCH₃), 4.04 (s, 5H, η^5 -C₅H₅), 4.05 (s, 1H, H11), 4.30 (bs, 2H, H2, H5), 4.46 (bs, 2H, H3, H4), 6.90–7.41 (m, 4H, H20, H21, H23, H24), 7.23–7.34 (m, 5H, Ph).

4.3.3. $\{(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH(C_6H_5)NHCH_2C_6H_4 - CH_3 - 4)\}$ (3c)

Yield: (81%); a yellow solid; m.p. 93–94 °C. *Anal.* Calc. for $C_{25}H_{25}FeN$: C, 75.96; H, 6.37; N, 3.54. Found: C, 75.89; H, 6.15; N, 3.90%. FT-IR (KBr): 3324(m), 3073(m), 3013(m), 2924(m), 2821(m), 1597(m), 1508(vs), 1451(s), 1333(m), 1179(m), 1104(vs), 1021(s), 996(s), 817(vs), 699(vs) cm⁻¹. ¹H NMR (CDCl₃) δ 2.17 (s, 1H, NH), 2.14 (s, 3H, CH₃), 3.54–3.76 (q, 2H, H18), 4.04 (s, 5H, η^5 -C₅H₅), 4.05 (s, 1H, H11), 4.30 (bs, 2H, H2, H5), 4.47 (bs, 2H, H3, H4), 7.12–7.21 (m, 4H, H20, H21, H23, H24), 7.41–7.53 (m, 5H, Ph).

4.4. Synthesis of tert-ferrocenylamines (4)

General procedure: To a stirred solution of **3** (2 mmol) in 20 cm³ of THF was added CH_3I (3 mmol) in 5 cm³ THF and *t*-BuOK (3 mmol). The mixture was kept in the dark at room temperature and stirred for 48 h. TLC monitored the reaction progress until it was complete.

The solvent was removed under reduced pressure and 30 cm^3 of water was then added. The mixture was extracted with diethyl ether $(3 \times 20 \text{ cm}^3)$ and separated. The extracts were combined, dried over Na₂SO₄ and removed to give crude products which were purified by column chromatography (silica gel, ethyl acetate/hexane = 1:5, v/v) to afford **4a–c**.

4.4.1. { $(\eta^{5}-C_{5}H_{5})Fe(\eta^{5}-C_{5}H_{4}CH(C_{6}H_{5})N(CH_{3})CH_{2}-C_{6}H_{5})$ } (4a)

Yield: (58%); an orange solid; m.p. 64–66 °C. *Anal.* Calc. for C₂₅H₂₅FeN: C, 75.96; H, 6.37; N, 3.54. Found: C, 75.88; H, 6.60; N, 3.81%. FT-IR (KBr): 3081(s), 3019(s), 2957(s), 2783(s), 1596(s), 1493(vs), 1452(vs), 1366(m), 1286(m), 1106(vs), 1002(vs), 818(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 1.95 (s, 3H, H25), 3.22–3.51 (q, 2H, H18), 3.79 (s, 5H, η^5 -C₅H₅), 4.13 (s, 1H, H11), 4.11 (bs, 2H, H2, H5), 4.34 (bs, 2H, H3, H4), 7.19–7.52 (m, 10H, Ph).

4.4.2. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4 CH(C_6H_5)N(CH_3)CH_2 - C_6H_4OCH_3 - 4)$ } (**4b**)

Yield: (50%); an orange solid; m.p. 72–73 °C. *Anal.* Calc. for C₂₆H₂₇FeNO: C, 73.42; H, 6.40; N, 3.29. Found: C, 73.37; H, 6.58; N, 3.36%. FT-IR (KBr): 3088(m), 3024(m), 2953(s), 2831(m), 2775(m), 1605(vs), 1510(vs), 1452(vs), 1296(m), 1242(vs), 1106(vs), 1002(vs), 818(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 1.98 (s, 3H, H25), 3.23–3.51 (q, 2H, H18), 3.85 (s, 3H, OCH₃), 3.81 (s, 5H, η^{5} -C₅H₅), 4.14 (s, 1H, H11), 4.13 (bs, 2H, H2, H5), 4.36 (bs, 2H, H3, H4), 6.91–7.42 (m, 4H, H20, H21, H23, H24), 7.26– 7.35 (m, 5H, Ph).

4.4.3. { $(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_4CH(C_6H_5)N(CH_3)CH_2 - C_6H_4CH_3 - 4)$ } (4c)

Yield: (65%); an orange solid; m.p. 70–72 °C. *Anal.* Calc. for $C_{26}H_{27}$ FeN: C, 76.29; H, 6.65; N, 3.42. Found: C, 76.23; H, 6.43; N, 3.60%. FT-IR (KBr): 3091(m), 3023(m), 2956(s), 2776(m), 1600(m), 1513(vs), 1452(vs), 1286(m), 1106(vs), 1002(vs), 805(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 1.99 (s, 3H, H25), 2.35 (s, 3H, CH₃), 3.24–3.52 (q, 2H, H18), 3.83 (s, 5H, η^{5} -C₅H₅), 4.16 (s, 1H, H11), 4.15 (bs, 2H, H2, H5), 4.38 (bs, 2H, H3, H4), 7.13–7.22 (m, 4H, H20, H21, H23, H24), 7.44–7.55 (m, 5H, Ph).

4.5. Synthesis of cyclopalladated tert-ferrocenylamines (5)

General procedure: To a stirred solution of 4 (1 mmol), sodium acetate (82 mg, 1 mmol) in 30 cm³ of methanol was added dropwise a solution of Na₂PdCl₄ (0.29 g, 1 mmol) in 15 cm³ of methanol. The mixture was stirred for 4 h at room temperature under argon and TLC monitored the reaction's progress. Then PPh₃ (0.41 g, 1.5 mmol) was added and the mixture was stirred for another 30 min. The solvent was removed in vacuo, and the residues were purified by column chromatography (silica gel, ethyl acetate/hexane = 1:2, v/v) to give **5**.

4.5.1. $[PdCl(PPh_3) \{ (\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_3CH(C_6H_5)N - (CH_3)CH_2C_6H_5) \}] (5a)$

Yield: (72%); a red solid; m.p. > 193 °C (dec.). Anal. Calc. for C₄₃H₃₉ClFeNPPd: C, 64.68; H, 4.92; N, 1.75. Found: C, 64.60; H, 4.89; N, 1.82%. FT-IR (KBr): 3054(w), 2955(w), 2922(w), 1486(m), 1450(m), 1435(vs), 1095(s), 999(s), 823(m), 752(s), 701(vs) cm⁻¹. ¹H NMR(CDCl₃): δ 2.88 (m, 2H, H18), 3.21 (s, 3H, H25), 4.84 (s, 1H, H11), 3.85 (s, 5H, η^{5} -C₅H₅), 3.76 (d, 1H, H5), 4.08 (m, 1H, H4), 4.16 (d, 1H, H3), 7.73–7.82 (m,10H, 2Ph), 7.35–7.54 (m, 15H, PPh₃).

4.5.2. $[PdCl(PPh_3)\{(\eta^5 - C_5H_5)Fe(\eta^5 - C_5H_3CH(C_6H_5)N - (CH_3)CH_2C_6H_4OCH_3 - 4)\}]$ (5b)

Yield (80%); a red solid; m.p. > 189 °C (dec.). Anal. Calc. for C₄₄H₄₁ClFeNOPPd: C, 63.79; H, 4.99; N, 1.69. Found: C, 63.72; H, 4.81; N, 1.96%. FT-IR (KBr): 3045(w), 2954(w), 1512(vs), 1454(m), 1435(vs), 1246(s), 1178(s), 1100(s), 995(m), 816(s), 747(s), 702(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 2.79 (s, 3H, H25), 3.24 (m, 2H, H18), 3.43 (s, 3H, OCH₃), 3.73 (s, 5H, η^5 -C₅H₅), 3.74 (m, 1H, H5), 3.80 (m, 1H, H4), 3.95 (d, 1H, H3), 4.96 (s, 1H, H11), 6.90–7.05 (m, 4H, H20, H21, H23, H24), 7.39–7.66 (m, 15H, PPh₃), 7.70–7.85 (m, 5H, Ph).

4.5.3. $[PdCl(PPh_3)\{(\eta^5-C_5H_5)Fe(\eta^5-C_5H_3CH(C_6H_5)N-(CH_3)CH_2C_6H_4CH_3-4)\}]$ (5c)

Yield (70%); a red solid; m.p. > 172 °C (dec.). Anal. Calc. for C₄₄H₄₁ClFeNPPd: C, 65.04; H, 5.09; N, 1.72. Found: C, 65.12; H, 4.85; N, 1.65%. FT-IR (KBr): 3051(w), 2954(w), 2920(w), 1484(s), 1455(s), 1437(vs), 1185(m), 1103(s), 1002(m), 823(m), 751(s), 693(vs) cm⁻¹. ¹H NMR (CDCl₃): δ 2.43 (s, 3H, CH₃), 2.79 (s, 3H, H25), 3.21 (m, 2H, H18), 3.50 (s, 5H, η^5 -C₅H₅), 5.16 (s, 1H, H11), 3.73 (m, 1H, H5), 3.82 (d, 1H, H3), 4.10 (m, 1H, H4), 7.13–7.22 (m, 4H, H20, H21, H23, H24), 7.39–7.56 (m, 15H, PPh₃), 7.70–7.85 (m, 5H, Ph).

4.6. General procedure for the Suzuki coupling

Palladacycles 5 (0.1 mmol%), aryl chlorides (1.0 mmol), phenylboronic acid (1.5 mmol), K_2CO_3 (2 mmol), dioxane (10 cm³) were added to a 25 cm³ round-bottomed flask and the mixture was heated at 100 °C for 10 h. Upon cooling, the reaction mixture was poured into water and extracted with CH₂Cl₂, concentrated and purified by flash chromatography on silica gel. The purity of the compounds was checked by GC and yields are based on aryl chlorides.

4.7. General procedure for the Heck reaction

Palladacycles **5** (0.1 mmol%), bromobenzene (1.0 mmol), styrene (1.5 mmol), K_2CO_3 (2 mmol), DMF (10 cm³) were added to a 25 cm³ round-bottomed flask and the mixture was heated at 140 °C for 7 h. Upon cooling, the reaction mixture was poured into water and extracted with CH₂Cl₂, concentrated and purified by flash chromatography on silica gel. The purity of the compounds was checked by GC and yields are based on bromobenzene.

4.8. X-ray crystallographic study of 5a

Crystals of **5a** were grown at room temperature by slow evaporation of a mixture of hexane and ethyl acetate over a period of one week. A single crystal of this complex was mounted on a Bruker SMART CCD diffractometer equipped with monochromated graphite Mo K α ($\lambda =$ 0.71073 Å) radiation at ambient temperature (T = 293 K) using the ω -2 θ multi-scans technique for data collection. Semi-empirical absorption corrections were applied using the SABABS program [18]. The structure was solved by direct methods and refined by the full-matrix least-squares procedure on F^2 using the SHELX suite of programs [19]. The values of R_1 were given based on F_0 with a typical threshold of $F^2 \ge 2\sigma(F^2)$. The weighted *R*-factors *wR* were based on F^2 with calc. $w = 1/[\sigma^2(F_0^2) + (0.0000P)^2 + 0.0827P]$ where $P = (F_0^2 + 2F_c^2)/3$ for 5a. Crystallographic data for 5a are summarized in Table 1. Selected bond lengths and angles for 5a are presented in Table 2.

5. Supplementary material

CCDC 603093 contains the supplementary crystallographic data for **5a**. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving. html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Acknowledgements

We are indebted to the Natural Science Foundation of Tianjin Metropolitan Council (Project No. 033609011) and the State Key Laboratory of Elemento-organic Chemistry, Nankai University, People's Republic of China for financial support of this project.

References

- (a) S. Yonezawa, T. Komurasaki, K. Kawada, T. Tsuri, M. Fuji, A. Kugimiwa, N. Haga, S. Mitsumori, M. Inagaki, T. Nakadani, Y. Tamura, S. Takechi, T. Taishi, M. Ohatani, J. Org. Chem. 63 (1998) 5831;
 - (b) D.E. Zembower, H. Zhang, J. Org. Chem. 63 (1998) 9300;
 - (c) G. Lin, A. Zhang, Tetrahedron 56 (2000) 7163;
 - (d) S. Kumar, J. Chem. Soc., Perkin Trans. 1 (1998) 3157;
 - (e) G.R. Gree, I.S. Mann, M.V. Mullane, A. Mckillop, Tetrahedron 54 (1998) 9875;
 - (f) H. Koyama, T. Kamikawa, Tetrahedron Lett. 38 (1997) 3973;
 - (g) G. Bringmann, R. Gotaz, P.A. Keller, R. Walter, M.R. Boyd, F. Lang, A. Garcia, J.J. Walsh, I. Tellitu, K.V. Bhaskar, T.R. Kelly, J. Org. Chem. 63 (1998) 1090;

(h) K.C. Nicolaou, A.E. Koumbis, M. Takayagagi, S. Natarajan, N.F. Jain, T. Bando, H. Liu, R. Hughes, Chem. Eur. J. 5 (1999) 2622.

- [2] (a) L. Yin, J. Liebscher, Chem. Rev. 107 (2007) 133;
 (b) J.P. Corbet, G. Mignani, Chem. Rev. 106 (2006) 2651;
 (a) P. P. Padford, C.S. L. Cazin, D. Helder, Coard, Chem. Rev. 24
- (c) R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283.
 [3] (a) E. Peris, R.H. Crabtree, Coord. Chem. Rev. 248 (2004) 2239;
- (b) O. Navarro, N. Marion, J. Mei, S.P. Nolan, Chem. Eur. J. 12 (2006) 5142;
 - (c) O. Navarro, N. Marion, Y. Oonishi, R.A. Kelly, S.P. Nolan, J. Org. Chem. 71 (2006) 685;
- (d) F.E. Hahn, M.C. Jahnke, T. Pape, Organometallics 26 (2007) 150.
 [4] (a) N.T.S. Phan, M. van der Sluys, C.W. Jones, Adv. Synth. Catal. 348 (2006) 609;
 - (b) J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527;
 - (c) L.F. Tietze, H. Ila, H.P. Bell, Chem. Rev. 104 (2004) 3453;
 - (d) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102 (2002) 1359;
 - (e) A. Zapf, M. Beller, Chem. Commun. (2005) 431;
 - (f) A. Suzuki, Chem. Commun. (2005) 4759;
 - (g) I.P. Beletskaya, A.V. Cheprakov, J. Organomet. Chem. 689 (2004) 4055.
- [5] (a) R.B. Bedford, C.S.J. Cazin, Chem. Commun. (2001) 1540;
 - (b) R.C. Huang, K.H. Shaughnessy, Organometallics 25 (2006) 4105;(c) J.L. Zhang, L. Zhao, M.P. Song, T.C.W. Mak, Y.J. Wu, J. Organomet. Chem. 691 (2006) 1301;
 - (d) J.F. Gong, G.Y. Liu, C.X. Du, Y. Zhu, Y.J. Wu, J. Organomet. Chem. 690 (2005) 3963;
 - (e) I.J.S. Fairlamb, A.R. Kapdi, A.F. Lee, G. Sanchez, G. Lopez, J.L. Serrano, L. Garcia, J. Perez, E. Perez, J. Chem. Soc., Dalton Trans. (2004) 3970;

(f) J. Ruiz, C. Vicente, N. Cutillas, J. Perez, J. Chem. Soc., Dalton Trans. (2005) 1999;

(g) D.A. Alonso, C. Najera, M.C. Pacheco, J. Org. Chem. 67 (2002) 5588;

(h) D.A. Alonso, C. Najera, M.C. Pacheco, Org. Lett. 2 (2000) 1823;

(i) R.B. Bedford, C.S.J. Cazin, S.J. Coles, T. Gelbrich, M.B. Hursthouse, V.J.M. Scordia, J. Chem. Soc., Dalton Trans. (2003) 3350;

(j) S.W. Lee, J. Organomet. Chem. 691 (2006) 1347;

(k) C.L. Chen, Y.H. Liu, S.M. Peng, S.T. Liu, Organometallics 24 (2005) 1075;

(1) C. Xu, J.F. Gong, Y.H. Zhang, Y. Zhu, Y.J. Wu, Australian J. Chem. 60 (2007) 190.

- [6] (a) M. Ohff, A. Ohff, D. Milstein, Chem. Commun. (1999) 357;
 - (b) F. Yang, Y.M. Zhang, R. Zheng, J. Tang, M.Y. He, J. Organomet. Chem. 651 (2002) 146;

(c) K. Takenaka, M. Minakawa, Y. Uozumi, J. Am. Chem. Soc. 127 (2005) 12273;

(d) X.J. Gai, R. Grigg, M.I. Ramzan, V. Sridharan, S. Collard, J.E. Muir, Chem. Commun. (2000) 2053;

- (e) M. Nowotny, U. Hanefeld, H. van Koningsveld, T. Maschmeyer, Chem. Commun. (2000) 1877;
- (f) C. Rocaboy, J.A. Gladysz, New J. Chem. 27 (2003) 39;
- (g) C.C. Cassol, A.P. Umpierre, G. Machado, S.I. Wolke, J. Dupont, J. Am. Chem. Soc. 127 (2005) 3298;
- (h) S.G. Fiddy, J. Evans, M.A. Newton, T. Neisius, R.P. Tooze, R. Oldman, Chem. Commun. (2003) 2682;
- (i) B.L. Shaw, S.D. Perera, E.A. Staley, Chem. Commun. (1998) 1361;(j) M.R. Eberhard, Org. Lett. 13 (2004) 2125;
- (k) D.E. Bergbreiter, S. Furyk, Green Chem. 6 (2004) 280.
- [7] (a) H.X. Wang, Y.J. Li, R.Q. Gao, H.F. Wu, F.Y. Geng, R. Jin, Inorg. Chem. Commun. 9 (2006) 685;
 (b) H.X. Wang, H.F. Wu, R.Q. Gao, X.L. Yang, L. Wan, W.Q. Zhang, R. Jin, Inorg. Chem. Commun. 9 (2006) 1235;
 (c) H.X. Wang, H.F. Wu, H.C. Zhou, F.Y. Geng, R.Q. Gao, X.L. Yang, L. Wan, W.Q. Zhang, R. Jin, Inorg. Chim. Acta 359 (2006) 4114;
 (d) H.X. Wang, H.F. Wu, H.C. Zhou, R. Jin, R.Q. Gao, F.Y. Geng, J. Xu, Y.J. Li, W.Q. Zhang, Polyhedron 25 (2006) 2530.
- [8] M. Cais, P. Ashkenazi, S. Dani, J. Gottlieb, J. Organomet. Chem. 124 (1997) 49.
- [9] H.X. Wang, R.Q. Gao, X.L. Yang, L. Wan, H.F. Wu, F.Y. Geng, R. Jin, Polyhedron 26 (2007) 1037.
- [10] R.F. Borch, A.I. Hassid, J. Org. Chem. 37 (1972) 1673.
- [11] M.A. Carroll, A.J.P. White, D.A. Widdowson, D.J. Williams, J. Chem. Soc., Perkin Trans. 1 (2000) 1551.
- [12] M. Rosenblum, R.B. Woodward, J. Am. Chem. Soc. 80 (1958) 5443.
- [13] (a) R. Bosque, C. Lopez, J. Sales, J. Organomet. Chem. 498 (1995) 147;

(b) C. Lopez, J. Sales, X. Solans, R. Zquiak, J. Chem. Soc., Dalton Trans. (1992) 2321;

(c) R. Bosque, C. Lopez, J. Sales, X. Solans, M. Font-Bardia, J. Chem. Soc., Dalton Trans. (1994) 735.

- [14] V.I. Sokolov, L.L. Troitskaya, T.A. Sorokina, Izv. Akad. Nauk SSSR. (1971) 2612.
- [15] (a) H.X. Wang, Y.J. Li, R. Jin, J.R. Niu, H.F. Wu, H.C. Zhou, J. Xu, R.Q. Gao, F.Y. Geng, J. Organomet. Chem. 691 (2006) 987;
 (b) H.F. Wu, H.X. Wang, J. Xu, F.Y. Geng, R.Q. Gao, X.L. Yang, Anal. Sci. 22 (2006) 197.
- [16] C. Lopez, R. Bosque, X. Solans, M. Font-Bardia, New. J. Chem. 22 (1998) 977.
- [17] T.H. Allen, O. Kennard, Chem. Des. Autom. News 8 (1993) 146.
- [18] G.M. Sheldrick, SADABS, University of Göttingen, 1996.
- [19] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Programs for Crystal Structure Solution and Refinement, University of Göttingen, 1997.