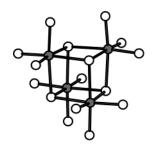


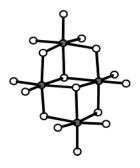
The Reactions of Tellurium Tetrahalides with Triphenylphosphine under Ambient Conditions

Sari M. Narhi,† Raija Oilunkaniemi,*,† Risto S. Laitinen,*,† and Markku Ahlgrén‡

Departments of Chemistry, P.O. Box 3000, FIN-90014 University of Oulu, Finland, and University of Joensuu, P.O. Box 111, FIN-80101 Joensuu, Finland

Received February 17, 2004


The reactions of tellurium tetrahalides and triphenylphosphine in tetrahydrofuran have been carried out under ambient conditions and afford $\{(Ph_3PO)_2H\}_2[Te_2X_{10}][X = CI(1), Br(2)]$ and $\{(Ph_3PO)_3(OH_3\})_2[TeI_6](4)$. The X-ray structures of 1 and 2 show that they are isostructural and contain discrete $[Te_2X_{10}]^{2-}$ anions exhibiting octahedral coordination around both tellurium atoms with one shared edge and {Ph₃POH···OPPh₃}+ cations that show strong hydrogen bonds (the O···O distances are 2.399 and 2.404 Å for 1 and 2, respectively). The compound 4 is built up with discrete octahedral hexaiodotellurate anions and {(Ph₃PO)₃(OH₃)}⁺ cations. The reaction of TeBr₄ and PPh₃ also results in the formation of formally zwitterionic Ph₂PO(CH₂)₄TeBr₄ (3). This reaction involves an unprecedented THF ring opening in which the oxygen atom becomes bonded to the phosphorus atom of triphenylphosphine and the carbon atom at the other end of the five-atomic chain becomes bonded to the tellurium atom of TeBr₄. The ring opening of the solvent THF is also taking place in the reaction involving tellurium tetraiodide, as indicated by the formation of C₄H₈TeI₂ (5). The reaction may initially lead to Ph₃PI₂ that reacts with THF yielding Ph₃PO and ICH₂(CH₂)₂-CH₂I. The latter species reacts with elemental tellurium producing 5. Depending on the conditions upon crystallization, two polymorphs of C₄H₈Tel₂ (5a and 5b) are observed. While the molecular structures of the two forms are virtually identical, their packing and intermolecular contacts are different. Two further minor products (6a and 6b) were isolated in the reaction of Tel₄ and PPh₃: Both are formally 1:1 adducts of 5 and Tel₄, but they differ considerably in their structures. 6a can be formulated as $\{C_4H_8Tel^+\}_2[Te_2l_{10}^{2-}]$ and 6b as $\{C_4H_8Tel^+\}_2(Tel_3^+)_2(I^-)_4$. The latter compound exhibits framework similar to that of the tetramers in γ - and δ -Tel₄.


Introduction

Tellurium forms tetrahalides with all four halogen elements. Especially TeCl₄, TeBr₄, and TeI₄ have seen considerable research activity because of their structural versatility and potential utility as synthons in many chemical reactions. The bonding in these compounds eludes simple description, and concepts like hypervalence, multicenter bonding, charge-transfer interactions, and secondary bonding have been evoked in the understanding of their structural and chemical properties (for a recent review of chalcogen halides, see ref 1).

The early electron diffraction studies suggested that TeCl₄-(g) is a monomer displaying a Ψ -tbp structure with point

group $C_{2\nu}$. In the solid state TeCl₄^{3,4} and TeBr₄⁵ display a tetrameric cubane-like structure **I** in which the terminal Te-X bonds are shorter than those involving the triply bridging halogen atoms. The structure can be understood either as covalently bound (Te₄X₁₆) molecules or in terms of the ionic formulation [(TeX₃⁺X⁻)₄].^{3,6} The tellurium lone pairs show stereochemical activity directed toward the center of the cubane structure.

^{*} Authors to whom correspondence should be addressed. R.O.: e-mail, raija.oilunkaniemi@oulu.fi; tel, (3588) 553-1686; fax, (3588) 553-1608. R.S.L.: e-mail, risto.laitinen@oulu.fi; tel, (3588) 553-1611; fax, (3588) 553-1608.

[†] University of Oulu.

[‡] University of Joensuu.

⁽¹⁾ Krebs, B.; Ahlers, F.-P. Adv. Inorg. Chem. 1990, 35, 235.

Scheme 1

TeI₄ differs from TeCl₄ and TeBr₄ by having five different polymorphs $(\alpha - \epsilon)$ that can simultaneously be crystallized from the methanol solution of TeI₄ containing HI.⁶ The orthorhombic δ -TeI₄ is the thermodynamically stable polymorph at normal conditions.⁷ It shows another tetrameric structure (II) that can be formulated as $[(TeI_3^+I^-)_2(TeI_4)_2]$. The TeX₆ octahedra in **II** are less distorted than in the cubane structure (I). It has been suggested, that the formation of the structure type II is a consequence of a smaller electronegativity difference between tellurium and iodine compared to that between tellurium and chlorine or tellurium and bromine, since the cubane structure (I) favors larger charge separation with the formation of more polar bonds. Indeed, orthorhombic β -TeI₄ and monoclinic γ -TeI₄ also exhibit the structure II.6 Trigonal α-TeI₄ shows a continuous 2H-CdI₂ structure that can also be understood in terms of a repeating structural unit similar to II.6 Interestingly, only the thermodynamically least-stable tetragonal ϵ -TeI₄ shows the cubane structure I.6

The tetrameric tellurium tetrachlorides, -bromides, and -iodides undergo a systematic stepwise degradation in the presence of stoichiometric amounts of halides in nonpolar solvents and form oligonuclear halogenotellurates(IV) (see Scheme 1). There are numerous examples of the formation and equilibria between the different anions (for a detailed discussion, see ref 1).

Tellurium tetrahalides can react with both Lewis bases and Lewis acids. There are several examples of adducts where tellurium tetrahalides have acted both as acceptors and as donors (see ref 1 and references therein). This amphoteric behavior can be understood in terms of the partially ionic Te-X bonding. We are interested in the reactivity trends of tellurium tetrahalides TeX_4 (X = Cl, Br, I) and revisited their reactions with Ph_3P in tetrahydrofuran. In an inert atmosphere, the reaction of $TeCl_4$ with Ph_3P has been reported

to afford Ph₃PCl₂ and Te(0),⁸ or TeCl₂, Te(0), and Ph₃PO.⁹ The last product was assumed to be formed upon hydrolysis of Ph₃PCl₂ during the workup of the product mixture. In this work we explored the reactions in air. We found that under these conditions the reaction of TeCl₄ with Ph₃P in tetrahydrofuran affords {(Ph₃PO)₂H}₂[Te₂Cl₁₀] (1) and that of TeBr₄ yields {(Ph₃PO)₂H}₂[Te₂Br₁₀] (2) and Ph₃PO(CH₂)₄-TeBr₄ (3).¹⁰ The reaction of TeI₄ produces mainly {(Ph₃-PO)₃H₃O}₂[TeI₆] (4), but small amounts of C₄H₈TeI₂ (5) and C₄H₈Te₂I₆ (6) were also obtained. The products have been characterized by ¹²⁵Te and ³¹P NMR spectroscopy, as well as by X-ray crystallography.

Experimental Section

General Procedures. All reactions were carried out in air. Ph₃P (Fluka), TeCl₄ (Alfa), TeBr₄ (Aldrich), and TeI₄ (Aldrich) were used without further purification.

Spectroscopic Methods. The ${}^{31}P\{{}^{1}H\}$ and ${}^{125}Te$ spectra were recorded on a Bruker DPX400 spectrometer operating at 161.98 and 126.24 MHz, respectively. The spectra were recorded unlocked. The ${}^{31}P$ chemical shifts are reported relative to 85% H_3PO_4 . For ${}^{125}Te$ a saturated solution of $H_6TeO_6(aq)$ was used as an external reference. The chemical shifts are reported relative to neat Me_2Te [$\delta(Me_2Te) = \delta(H_6TeO_6) + 712$]. All spectra were recorded in THF.

Reaction of TeCl₄ with Ph₃P. Ph₃P (313 mg, 1.19 mmol) was added into a stirred solution of 308 mg (1.14 mmol) of TeCl₄ in 6.0 mL of THF. The reaction mixture was further mixed for 1 h. During this time a black precipitate was obtained. It was removed by filtration, and the solvent was evaporated from the green filtrate. The remaining mixture of pale green crystals and dark oil was washed with diethyl ether. Yield: 322 mg (63%, based on triphenylphosphine.) Anal. Calcd for $C_{72}H_{62}O_4P_4Te_2Cl_{10}$ (1): C 50.13, H 3.62. Found: C 49.82, H 3.45.

Reaction of TeBr₄ with Ph₃P. TeBr₄ (499 mg; 1.12 mmol) was dissolved in 10.0 mL of THF, and 295 mg (1.13 mmol) of Ph₃P was added to the resulting solution. The mixture turned yellow, and a black precipitate was formed. After 1 h the reaction mixture was filtered, the solvent was evaporated from the reddish filtrate, and some hexane was added. The addition of hexane resulted in the formation of orange crystals and reddish brown oil. The crystals

⁽²⁾ Stevenson, D. J.; Schomaker, V. J. Am. Chem. Soc. 1940, 62, 1267.

⁽³⁾ Buss, B.; Krebs, B. *Inorg. Chem.* **1971**, *10*, 2795.

⁽⁴⁾ Alemi, A.; Soleimani, E.; Starikova, Z. A. Acta Chim. Slov. 2000, 47, 89.

⁽⁵⁾ Krebs, B. Nova Acta Leopold. 1985, 59, 131.

^{(6) (}a) Beister, H. J.; Kniep. R.; Schaefer, A. Z. Kristallogr. 1986, 174,
12. (b) Kniep, R.; Beister, H. J.; Wald, D. Z. Naturforsch. 1988, 43,
966

 ^{(7) (}a) Krebs, B.; Paulat, V. Acta Crystallogr. 1976, B32, 1470. (b) Paulat,
 V.; Krebs, B. Angew. Chem. 1976, 88, 28.

⁽⁸⁾ Berry, F. J.; Gunduz, N.; Roshani, M.; Smith, B. C. Commun. Fac. Sci. Univ. Ankara, Ser. B 1975, 22B, 21.

⁽⁹⁾ Albeck, M.; Shaik, S. J. Chem. Soc., Perkin Trans. 1 1975, 1223.

⁽¹⁰⁾ Kunnari, S. M.; Oilunkaniemi, R.; Laitinen, R. S.; Ahlgrén, M. J. Chem. Soc., Dalton Trans. 2001, 3417.

Table 1. Details of the Structure Determination of $\{(Ph_3PO)_2H\}_2[Te_2Cl_{10}]$ (1), $\{(Ph_3PO)_2H\}_2[Te_2Br_{10}]$ (2), $\{(Ph_3PO)_3H_3O\}_2[TeI_6]$ (4), $(CH_2)_4TeI_2$ (5b), and $(CH_2)_4Te_2I_6$ (6a and 6b)^a

	1	2	4	5b	6a	6b
formula	C ₃₆ H ₃₁ O ₂ P ₂ Cl ₅ Te	$C_{36}H_{31}O_2P_2Br_5Te$	$C_{108}H_{96}O_8P_6TeI_6$	$C_8H_{16}Te_2I_4$	C ₄ H ₈ Te ₂ I ₆	$C_4H_8Te_2I_6$
fw	862.40	1084.70	2596.67	875.01	1072.70	1072.70
crystal system	triclinic	triclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$P\overline{1}$	$P\overline{1}$	Pba2	$P2_1/c$	$P2_1/c$	$P2_1/c$
a, Å	11.637(2)	11.837(2)	18.445(4)	9.860(5)	9.387(2)	9.589(2)
b, Å	12.429(3)	12.509(3)	32.344(7)	18.785(5)	9.593(2)	19.365(4)
c, Å	14.026(3)	14.069(3)	17.452(4)	9.639(5)	19.369(4)	9.616(2)
α, deg	72.11(3)	71.90(3)				
β , deg	72.12(3)	72.50(3)		93.972(5)	94.46(3)	98.64(3)
γ, deg	84.09(3)	83.07(3)				
V	1837.2(6)	1887.5(7)	10412(4)	1781(1)	1738.7(6)	1765.2(6)
Z	2	2	4	4	4	4
$\rho_{\rm calcd}$, g cm ⁻³	1.559	1.909	1.657	3.263	4.098	4.036
$\mu(\text{Mo K}\alpha), \text{mm}^{-1}$	1.292	6.196	2.211	10.183	13.976	13.767
F(000)	860	1040	5072	1520	1816	1816
crystal size (mm ³)	$0.30 \times 0.30 \times 0.15$	$0.40 \times 0.20 \times 0.20$	$0.10 \times 0.10 \times 0.10$	$0.20 \times 0.20 \times 0.10$	$0.20 \times 0.15 \times 0.12$	$0.25 \times 0.15 \times 0.08$
θ range (deg)	1.72-26.00	2.31-26.00	2.48 - 25.00	2.07 - 25.99	2.18-25.99	2.99 - 24.99
reflns collected	13227	23344	42516	23526	27050	19133
unique reflns	6859	6942	15266	3492	3416	3085
$R_{\rm int}$	0.0596	0.0406	0.0689	0.0837	0.0513	0.0630
R_1^b	0.0452	0.0277	0.0473	0.0290	0.0286	0.0544
wR_2^c	0.1254	0.0753	0.0892	0.0705	0.0708	0.1437
GOF on F^2	1.013	0.985	0.979	1.065	1.163	1.239

^a T = 150(2) K. ^b $R_1 = [\Sigma ||F_0| - |F_c||]/[\Sigma |F_0|]$ [$I \ge 2\sigma(I)$]. ^c $wR_2 = \{[\Sigma w(F_0^2 - F_c^2)^2]/[\Sigma w(F_0^2)^2]\}^{1/2}$ [all data].

were washed with acetone. Yield: 217 mg (35%). Anal. Calcd for $C_{72}H_{62}O_4P_4Te_2Br_{10}$ (2): C 39.86, H 2.88. Found: C 39.58, H 2.55.

Reaction of TeI₄ with Ph₃P. The reaction of TeI₄ (705 mg; 1.11 mmol) and Ph₃P (291 mg; 1.11 mmol) was carried out similarly to those of other tellurium tetrahalides. A mixture of three compounds was obtained. $\{(Ph_3PO)_3H_3O\}_2[TeI_6]$ (4) is the most abundant product, and $(CH_2)_4TeI_2$ (5) and $(CH_2)_4Te_2I_6$ (6) are formed in small amounts. 5 and 6 crystallize as two different crystal modifications (5a, 5b and 6a, 6b). The separation and isolation of the three products was attempted by extraction with different solvents. Crystals for X-ray structure determination were obtained in these experiments, but the complete isolation of the products was not successful. 4, 5b, and 6b were obtained from toluene and THF, 5a was obtained from hexane and diethyl ether, and 6a was obtained from toluene.

X-ray Crystallography. Diffraction data for 1-6 were collected on a Nonius Kappa CCD diffractometer using graphite monochromated Mo K α radiation ($\lambda=0.71073$ Å). Crystal data and the details of the structure determinations are given in Table 1. All structures were solved by direct methods using SHELXS-97¹¹ and refined using SHELXL-97.¹² After the full-matrix least-squares refinement of the non-hydrogen atoms with anisotropic thermal parameters, the hydrogen atoms were placed in calculated positions in the aromatic rings of **1**, **2**, and **4** (C-H = 0.95 Å), and in the methylene groups of **5** and **6** (C-H = 0.98 Å). In the final refinement the calculated hydrogen atoms were riding with the carbon atom they were bonded to. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2 times that of the corresponding carbon atom.

The bridging hydrogen atoms in the dimeric cations $\{(Ph_3-PO)_2H\}^+$ of **1** and **2** could be located and refined in the conventional way by using a fixed isotropic thermal parameter of 0.04. The hydrogen atoms of the oxonium ion in the trimeric cation $\{(Ph_3-PO)_3(OH_3)\}^+$ of **4**, however, could not be observed in the final

difference Fourier synthesis. The scattering factors for the neutral atoms were those incorporated with the programs.

Results and Discussion

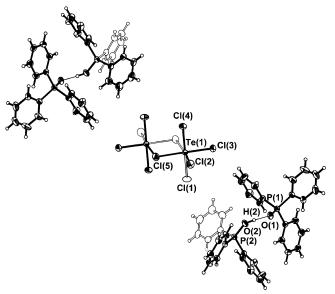
General. The reaction of PPh₃ and TeCl₄ in air affords $\{(Ph_3PO)_2H\}_2[Te_2Cl_{10}]$ (1) in good yield. The precipitation of elemental tellurium was also observed in the course of the reaction. The ¹²⁵Te NMR spectrum of $\{(Ph_3PO)_2H\}_2[Te_2-Cl_{10}]$ (1) shows one resonance at 1540 ppm. It is in agreement with the previously reported value of $[Te_2Cl_{10}]^{2-}$ at 1570 ppm that was recorded in acetonitrile for $[Ni(NCMe)_6][Te_2-Cl_{10}]$. The ³¹P{¹H} spectrum of 1 displayed one resonance in the region 37–47 ppm due to $\{(Ph_3PO)_2H\}^+$. This chemical shift is strongly dependent on the concentration.

Analogously, the reaction of PPh₃ and TeBr₄ yields {(Ph₃-PO)₂H}₂[Te₂Br₁₀] (2). In addition, Ph₃PO(CH₂)₄TeBr₄ (3) is also formed in this reaction, as we have recently reported. ¹⁰ It is interesting to note that the yields of 2 and 3 seem to be dependent on each other. With increasing amount of 3, the yield of 2 becomes smaller. ¹⁴ A typical isolated yield of 2 was 35%, and that of 3 was 13–50% depending on the reaction time. ¹⁰

[(Ph₃PO)₂H]₂[Te₂Br₁₀] (2) exhibits a ¹²⁵Te NMR resonance due to [Te₂Br₁₀]²⁻ at 1200 ppm. The resonance of Ph₃PO-(CH₂)₄TeBr₄ was observed at 1210 in THF (1225 ppm in acetonitrile¹⁰). The assignment was carried out by recording the spectra from solutions obtained by redissolving the pure crystalline products. In the ³¹P{¹H} spectrum of 2, a concentration dependent resonance due to $\{(Ph_3PO)_2H\}^+$ was observed in the region 36–47 ppm. The resonance at 62.6 ppm is due to 3.

⁽¹¹⁾ Sheldrick, G. M. SHELXS-97. Program for Crystal Structure Determination; University of Göttingen: Göttingen, 1997.

⁽¹²⁾ Sheldrick, G. M. SHELXL-97. Program for Crystal Structure Refinement; University of Göttingen: Göttingen, 1997.


⁽¹³⁾ Pietikäinen, J.; Maaninen, A.; Laitinen, R. S.; Oilunkaniemi, R.; Valkonen, J. Polyhedron 2002, 21, 1089.

⁽¹⁴⁾ The relative concentrations of 2 and 3 in the reaction solution were monitored by ³¹P NMR spectroscopy.

Table 2. Selected Bond Lengths (Å) and Angles (deg) in {(Ph₃PO)₂H}₂[Te₂Cl₁₀] (1) and {(Ph₃PO)₂H}₂[Te₂Br₁₀] (2)

	1	2		1	2
Te(1)-X(1)	2.457(1)	2.6467(11)	P(1)-O(1)	1.530(3)	1.523(2)
Te(1)-X(2)	2.332(1)	2.5541(7)	P(2) - O(2)	1.523(3)	1.520(2)
Te(1)-X(3)	2.472(1)	2.6067(8)	O(1)-H(1)	1.092(2)	1.024(2)
Te(1)-X(4)	2.504(1)	2.6744(11)	O(2)-H(2)	0.886(3)	0.966(2)
Te(1)-X(5)	2.609(1)	2.8606(9)			
$Te(1)-X(5)^a$	3.071(1)	2.9683(8)			
X(1)-Te(1)- $X(2)$	87.95(5)	89.90(3)	X(3)-Te(1)-X(5)	179.25(4)	175.39(1)
X(1)-Te(1)-X(3)	90.05(5)	90.47(3)	$X(3)-Te(1)-X(5)^a$	95.22(5)	88.85(3)
X(1)-Te(1)-X(4)	176.20(4)	177.17(1)	X(4)-Te(1)-X(5)	89.02(5)	88.42(3)
X(1)-Te(1)-X(5)	89.67(5)	88.76(3)	$X(4)-Te(1)-X(5)^a$	94.83(5)	92.05(3)
$X(1)-Te(1)-X(5)^a$	88.62(5)	87.74(3)	$X(5)-Te(1)-X(5)^a$	85.47(4)	86.58(3)
X(2)-Te(1)-X(3)	89.18(5)	91.64(3)	$Te(1)-X(5)-Te(1)^a$	94.53(4)	93.42(3)
X(2)-Te(1)-X(4)	88.49(5)	90.28(3)	O(1)-H(1)-O(2)	167.7(2)	163.7(2)
X(2)-Te(1)-X(5)	90.12(5)	92.90(3)	O(2)-H(2)-O(1)	170.0(2)	166.9(2)
$X(2)-Te(1)-X(5)^a$	174.43(3)	177.60(1)	H(1)-O(2)-P(2)	128.3(2)	125.2(2)
X(3)-Te(1)-X(4)	91.22(5)	92.34(3)	H(2)-O(1)-P(1)	129.8(2)	127.2(2)

^a Symmetry operation: -x + 1, -y, -z + 1.

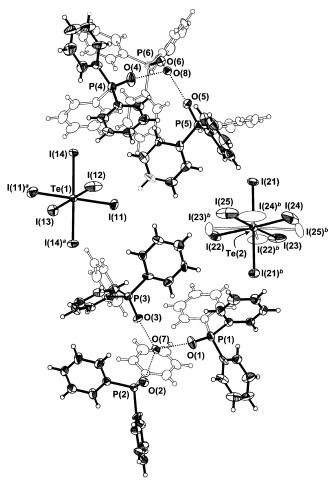
Figure 1. The crystal structure of $\{(Ph_3PO)_2H\}_2[Te_2Cl_{10}]$ (1) indicating the numbering of the atoms. The thermal ellipsoids have been drawn at the 50% probability level. $\{(Ph_3PO)_2H\}_2[Te_2Br_{10}]$ (2) is isostructural with 1.

The reaction of TeI_4 and PPh_3 seems to be somewhat more complicated. After the precipitation of elemental tellurium, $\{(Ph_3PO)_3H_3O\}_2[TeI_6]$ (4) was obtained together with small amounts of $(CH_2)_4TeI_2$ (5) and $(CH_2)_4Te_2I_6$ (6). Only one resonance at 870 ppm was observed in the ¹²⁵Te NMR spectrum of the reaction mixture. It was assigned to $[TeI_6]^{2^-}$. The concentrations of 5 and 6 were probably too low for the detection of the ¹²⁵Te resonances. ¹⁵ Like in the case of other tetrahalides, the ³¹P $\{^1H\}$ NMR spectrum of the reaction mixture of TeI_4 and PPh_3 displayed a concentration dependent resonance at 29-39 ppm that was assigned to the $\{(Ph_3-PO)_2H_3O\}^+$ cation on the basis of the X-ray structure.

 $\{(Ph_3PO)_2H\}_2[Te_2X_{10}]\ (X=Cl,Br).\ \{(Ph_3PO)_2H\}_2[Te_2-Cl_{10}]\ (1)$ and $\{(Ph_3PO)_2H\}_2[Te_2Br_{10}]\ (2)$ are isomorphic. The crystal structure of 1 with the atomic numbering scheme is shown in Figure 1. That of 2 is identical. The selected bond lengths and angles are shown in Table 2.

The structures of 1 and 2 consist of discrete $[Te_2X_{10}]^{2-}$ (X = Cl, Br) anions and $\{(Ph_3PO)_2H\}^+$ cations. The anions are composed of two slightly distorted TeX₆ octahedra sharing an edge. The terminal Te-X bonds lengths are in the ranges 2.332(1)-2.504(1) Å and 2.5541(7)-2.6744(11)Å for 1 and 2, respectively. The bridging bonds lengths in 1 are 2.609(9) and 3.071(1) Å. Those in 2 are 2.8606(9) and 2.9683(8) Å. The bond parameter data are expectedly in accord with those reported previously for various salts containing [Te₂X₁₀]²⁻ anions. ^{13,17} Krebs et al. ^{17a} have noted the decreasing stereochemical influence of the tellurium lone pair, as the halogen becomes heavier. As a consequence, the bonding arrangement involving the bridging halido ligands is more symmetric, and the relative lengths of the bridging Te-X bonds compared to those of the terminal bonds are smaller in 2 than in 1 (see Table 2).

The $\{(Ph_3PO)_2H\}^+$ cation consists of a Ph_3POH^+ cation and a Ph_3PO molecule that are linked together by a strong hydrogen bond [the $O(1)\cdots O(2)$ distances are 2.399 Å and 2.404 Å in **1** and **2**, respectively]. The disordered hydrogen atom lies in two alternative locations with the site occupation factors being 50% in both cases. One of the positions is at the single bond distance from O(1), and the other position is at that from O(2) (see Table 2). Only one of the two alternative positions has been shown in Figure 1. The P-O bond lengths are 1.530(3) and 1.523(3) Å in **1** and 1.523(2) and 1.520(2) Å in **2**. They are somewhat longer than the P-O bonds in $Ph_3PO\cdot H_2O$ [1.483(10)-1.485(2) Å] that does not show as strong hydrogen bonding.


 ${(Ph_3PO)_3OH_3}_2[TeI_6]$ (4). The crystal structure of ${(Ph_3-PO)_3OH_3}_2[TeI_6]$ (4) with the atomic numbering scheme is

⁽¹⁵⁾ The $^{125}\rm{Te}$ chemical shift of (CH₂)₄TeI₂ (5) has been reported at 929.2 ppm in DMSO- d_6^{16a} and 782 ppm in CDCl₃. 16b

^{(16) (}a) Al-Rubaei, A.; Alshirayda, H. A. Y.; Granger, P.; Chapelle, S. J. Organomet. Chem. 1985, 287, 321. (b) García-Montalvo, V.; Marcelo-Polo, A.; Montoya, R.; Toscano, R. A.; Hernández-Ortega, S.; Cea-Olivares, R. J. Organomet. Chem. 2001, 623, 74.

^{(17) (}a) Krebs, B.; Büschner, K. Z. Anorg. Allg. Chem. 1980, 463, 56. (b) Hauge, S.; Marøy, K. Acta Chem. Scand. 1998, 52, 445. (c) Hauge, S.; Marøy, K. Acta Chem. Scand. 1999, 53, 992. (d) James, M. A.; Knop, O.; Cameron, T. S. Can. J. Chem. 1992, 70, 1795. (e) Hauge, S.; Marøy, K. Acta Chem. Scand. 1996, 50, 1095. (f) Krebs, B.; Paulat, V. Z. Natursforsch. 1979, 34B, 900. (g) Beck, J.; Hormel, A.; Koch, M. Eur. J. Inorg. Chem. 2002, 2271.
(18) The {(Ph₃PO)₂H}⁺ cation has been characterized on few occasions

⁽¹⁸⁾ The {(Ph₃PO)₂H}⁺ cation has been characterized on few occasion and has been shown to involve a strong hydrogen bond.¹⁹

Figure 2. The crystal structure of $\{(Ph_3PO)_3H_3O\}_2[TeI_6]$ (4) indicating the numbering of the atoms. The thermal ellipsoids have been drawn at the 50% probability level. The disorder of the other anion is displayed.

shown in Figure 2. The bond lengths and angles are presented in Table 3.

The lattice is composed of discrete $[TeI_6]^{2-}$ anions and $\{(Ph_3PO)_3OH_3\}_2\}^+$ cations. The tellurium atoms in both of the two crystallographically independent anions lie in the special positions. The $[TeI_6]^{2-}$ octahedron around Te(1) is composed of four independent iodine atoms [I(11)-I(14)], the octahedral coordination being completed by symmetry (see Figure 2). The octahedron involving Te(2) analogously contains independent iodine atoms I(21)-I(25), the octahedron being completed by symmetry-equivalent atom $I(21)^b$ (the symmetry operation b is -x+1, -y+1, z). The $[TeI_6]^{2-}$ octahedron involving Te(2) is disordered. The symmetry operation -x+1, -y+1, z for the atoms I(22)-I(25) creates another square-planar TeI_4 fragment that is rotated approximately 30° about the common I(21)-Te(2)-I(21)

Table 3. Selected Bond Lengths (Å) and Angles (deg) in $\{(Ph_3PO)_3H_3O\}_2[TeI_6]$ (4)

Te(1)-I(11)	2.9136(6)	P(3)-O(3)	1.510(5)
Te(1)-I(12)	2.9002(12)	P(4) - O(4)	1.503(6)
Te(1)-I(13)	2.9485(11)	P(5) - O(5)	1.493(6)
Te(1)-I(14)	2.9368(5)	P(6) - O(6)	1.491(5)
Te(2)-I(21)	2.9427(5)	$O(7) \cdots O(1)$	2.464(7)
Te(2)-I(22)	2.9400(16)	$O(7)\cdots O(2)$	2.469(7)
Te(2)-I(23)	2.8558(17)	$O(7)\cdots O(3)$	2.458(7)
Te(2)-I(24)	2.8787(17)	$O(8)\cdots O(4)$	2.452(8)
Te(2)-I(25)	2.937318)	$O(8)\cdots O(5)$	2.463(7)
P(1) - O(1)	1.503(6)	$O(8)\cdots O(6)$	2.484(7)
P(2) - O(2)	1.499(5)		
$I(11)-Te(1)-I(11)^a$	179.70(5)	I(21)-Te(2)-I(22)	88.64(4)
I(11)-Te(1)-I(12)	90.15(2)	I(21)-Te(2)-I(23)	89.59(4)
I(11)-Te(1)-I(13)	89.85(2)	I(21)-Te(2)-I(24)	92.27(4)
I(11)-Te(1)-I(14)	90.08(2)	I(21)-Te(2)-I(25)	94.98(4)
$I(11)-Te(1)-I(14)^a$	89.92(2)	I(22)-Te(2)-I(23)	90.02(10)
$I(12)-Te(1)-I(11)^a$	90.15(2)	I(22)-Te(2)-I(24)	176.74(10)
I(12)-Te(1)-I(13)	180.00(5)	I(22)-Te(2)-I(25)	87.42(8)
I(12)-Te(1)-I(14)	90.16(2)	$I(22)-Te(2)-I(21)^b$	91.00(4)
$I(12)-Te(1)-I(14)^a$	90.15(2)	I(23)-Te(2)-I(24)	93.12(9)
I(13)-Te(1)-I(14)	89.84(2)	I(23)-Te(2)-I(25)	174.71(7)
$I(13)-Te(1)-I(14)^a$	89.84(2)	$I(23)-Te(2)-I(21)^b$	90.19(4)
$I(13)-Te(1)-I(11)^a$	89.85(2)	I(24)-Te(2)-I(25)	89.38(12)
$I(14)-Te(1)-I(14)^a$	179.68(5)	$I(24)-Te(2)-I(21)^b$	88.10(4)
$I(11)^a - Te(1) - I(14)^a$	90.08(2)	$I(25)-Te(2)-I(21)^b$	85.23(4)
$I(21)-Te(2)-I(21)^b$	179.58(4)		

^a Symmetry operation: -x + 2, -y + 1, z. ^b Symmetry operation: -x + 1, -y + 1, z.

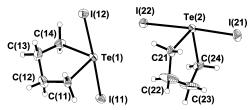
 $I(21)^b$ axis. The site occupation factors of iodine atoms I(22)–I(25) and their symmetry-related counterparts are 50%.

The Te–I bond lengths span a narrow range of 2.867(1)-2.949(1) Å, and the bond angles depict only slightly distorted octahedra (see Table 3 and Figure 2). These values are quite typical for $[TeI_6]^{2-}$, as exemplified by $(Et_4N)_2[TeI_6]$ [2.945(10)–2.948(6) Å]²¹ and $H_2TeI_6 \cdot 8H_2O$ [2.938(1)–2.942(2) Å].²² It has been suggested that in the case of electronegative monatomic ligands the almost ideal octahedral coordination geometry of the 14-electron AX_6E species can be explained by interligand repulsions and that the lone electron pair of tellurium resides in the stereochemically inactive 6s orbital (for a more detailed discussion, see ref 1).

The three Ph_3PO molecules in the cation are linked together by the H_3O^+ ion. While the three hydrogen atoms involving the oxonium ion could not be located, the three short $O\cdots O$ distances involving both O(7) and O(8) of 2.452(8)-2.484(7) Å imply strong hydrogen bonds (see Table 3) like in the case of the $\{(Ph_3PO)_2H\}^+$ cation in 1 and 2 or in the analogous cation $\{(Ph_3PO)_2(OH_3)\}^+$ found in $\{(Ph_3PO)_2(OH_3)\}_2[AuCl_4]^{.23}$ The existence of $\{(Ph_3PO)_3-(OH_3)\}_1^+$ has also been reported previously.

C₄H₈TeI₂ (5). It turned out that the small amounts of 5 that are formed in the reaction of TeI₄ and PPh₃ in THF can be crystallized as two polymorphs, 5a and 5b, depending

^{(19) (}a) Jones, P. G.; Sheldrick, G. M. Acta Crystallogr., Sect. B 1978, 34, 1353. (b) Antipin, M. Yu.; Kalinin, A. E.; Struchkov, Yu. T.; Matrosov, E. J.; Kabachnik, M. I. Kristallografiya 1980, 25, 514. (c) Arens, G.; Sundermeyer, W.; Pritzkow, H. Chem. Ber. 1986, 119, 3631. (d) Carmalt, C. J.; Norman, N. C.; Farrugia, L. J. Polyhedron 1993, 12, 2081. (e) Lane, H. P.; Godfrey, S. M.; McAuliffe, C. A; Pritchard, R. G. J. Chem. Soc., Dalton Trans. 1994, 3249. (f) De Aurajo, M. P.; Queiroz, S. L.; Alzir, A.; Panepuzzi, E. H.; Oliva, G.; Castellano, E. E. Transition Met. Chem. 2002, 27, 110.


^{(20) (}a) Baures, P. W.; Silverton, J. V. Acta Crystallogr., Sect. C 1990, 46, 715. (b) Baures, P. W. Acta Crystallogr., Sect. C 1991, 47, 2715.

⁽²¹⁾ Srivastava, P. C.; Schmidt, H.-G.; Roesky, H. W. Z. Naturforsch. 1995, 50, 695

⁽²²⁾ Katryniok, D.; Kniep, R.; Mootz, D. Z. Anorg. Allg. Chem. 1980, 461,

⁽²³⁾ Jiang, D.-H.; Yang, Y.-H.; Gao, Z.-L.; Sun, S.-X.; Shen, J.-L. Acta Chim. Sin. 1982, 50, 1091.

⁽²⁴⁾ Auerswald, T. H.; Engelhardt, C.; Zentralinst, G. J. Prakt. Chem. 1979, 321, 835.

Figure 3. The molecular structures of $C_4H_8TeI_2$ (**5b**) displaying the two molecules in the asymmetric unit. The thermal ellipsoids have been drawn at the 50% probability level.

Table 4. Selected Bond Lengths (Å) and Angles (deg) in $(CH_2)_4TeI_2$ (5b)

Te(1)-I(11)	2.866 (2)	Te(2)-I(21)	2.8442(9)
Te(1)-I(12)	3.003(2)	Te(2)-I(22)	3.0140(9)
Te(1)-C(11)	2.153(6)	Te(2)-C(21)	2.162(6)
Te(1)-C(14)	2.163(6)	Te(2)-C(24)	2.160(6)
I(11)-Te(1)-I(12)	177.72(2)	I(21)-Te(2)-I(22)	177.21(2)
I(11)-Te(1)-C(11)	89.0(2)	I(21)-Te(2)-C(21)	90.6(2)
I(11)-Te(1)-C(14)	91.3(2)	I(21)-Te(2)-C(24)	89.9(2)
I(12)-Te(1)-C(11)	90.0(2)	I(22)-Te(2)-C(21)	86.8(2)
I(12)-Te(1)-C(14)	86.6(2)	I(22)-Te(2)-C(24)	88.8(2)
C(11)-Te(1)-C(14)	84.7(2)	C(21)-Te(2)-C(24)	84.9(2)

on the crystallizing conditions. Orange-red crystals of 5a were obtained from hexane and diethyl ether, and those of 5b exhibiting deeper red color were obtained from toluene and THF. It has been reported already in the 1930s that C_4H_8 -TeI₂ (5) can exist as two different polymorphs,²⁵ but the crystal structure of only 5a has previously been known.²⁶

The molecular structure of 5b together with the atomic numbering scheme is shown in Figure 3, and the bond lengths and angles are presented in Table 4. Like in 5a, 16b,27 the asymmetric unit in 5b also consists of two crystallographically independent C₄H₈TeI₂ molecules. In both cases the geometries of individual molecules are quite similar. The coordination polyhedron of tellurium is based on a trigonal bipyramid with two iodine atoms occupying the axial positions and the two carbon atoms lying in two equatorial positions. The tellurium lone pair occupies the third equatorial position. As a consequence, the I-Te-I fragment has slightly deviated from linearity, the iodine atoms leaning away from the lone pair [the I-Te-I bond angles in the two independent molecules are 177.72(2)° and 177.21(2)°]. Similarly, the C-Te-C bond angles are rather small $[84.7(2)^{\circ}$ and $84.9(2)^{\circ}]$. The Te-I bond lengths in **5b** are in the range 2.8442(9)-3.0140(9) Å, and the Te-C bond lengths are in the range 2.153(6)-2.163(6) Å. The corresponding values in 5a are 2.875(1)-2.942(1) Å and 2.155(7)-2.163(6) Å, respectively (see Supporting Information). There are a number of related R₂TeI₂ species²⁸ for which the geometry of the tellurium environment is similar. In all species the Te-I bonds are somewhat longer than the single bond, as expected for the axial bonds in trigonalbipyramidal geometry.²⁹

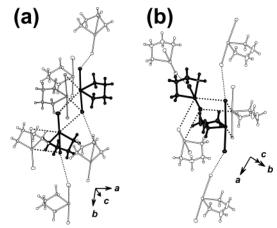


Figure 4. The packing of the molecules in (a) 5a and (b) 5b.

The C₄H₈TeI₂ molecules in both **5a** and **5b** are linked together by Te···I and I···I secondary bonding interactions. The short Te···I intermolecular contacts in **5a** span a range of 3.6483(8)–3.948(1) Å and those in **5b** the range 3.626(2)–3.937(1) Å. These secondary bonds expand the coordination polyhedra of tellurium in both cases to an AX₄Y₂E (X = primary bond, Y = secondary bond, E = lone pair) octahedron and are shown in Figure 4. The differences in the packing of the C₄H₈TeI₂ molecules in the two lattices are also apparent in Figure 4. The short I···I contacts are 3.916(1) and 3.982(1) Å for **5a**, and 3.821(2) and 3.975(1) Å for **5b**. The complete network of Te···I and I···I intermolecular interactions in both **5a** and **5b** is also shown in Figure 4.

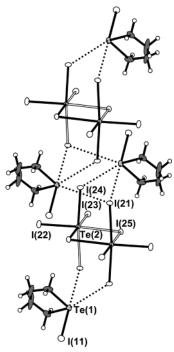
There is a qualitative correlation between the lengths of the Te-I bonds in R₂TeI₂ and the strength of the secondary bonding interactions (see Supporting Information),²⁸ though the bond lengths are also affected by the organic group. McCullough et al.²⁸¹ have correlated the secondary bonds with the color of the crystalline material. In absence of I···I close contacts the crystals appear orange. With increasing influence of the I···I interactions the color becomes deeper red and tends toward purple and black. The slight change of color from orange-red in 5a to deeper red in 5b is consistent

⁽²⁵⁾ Morgan, G. T.; Burstall, F. H. J. Chem. Soc. 1931, 180.

⁽²⁶⁾ Both previous crystal structure determinations of 5a have been carried out at room temperature. 16b. 27 Since the X-ray data of 5b were collected at 150 K, we have also redetermined the crystal structure of 5a at low temperature in order to facilitate the direct comparison of bond parameters between the two forms (see Supporting Information).

⁽²⁷⁾ Srivastava, P. C.; Bajpai, S.; Lath, R.; Butcher, R. J. J. Organomet. Chem. 2000, 608, 96.

^{(28) (}a) Chao, G. Y.; McCullough, J. D. Acta Crystallogr. 1962, 15, 887. (b) Knobler, C.; McCullough, J. D.; Hope, H. Inorg. Chem 1970, 9, 797. (c) Chan, L. Y. Y.; Einstein, F. W. B. *J. Chem. Soc.*, *Dalton Trans.* **1972**, 316. (d) Hope, H.; Knobler, C.; McCullough, J. D. *Inorg.* Chem. 1973, 12, 2665. (e) McCullough, J. D. Inorg. Chem. 1973, 12, 2669. (f) McCullough; J. D. Inorg. Chem. 1975, 14, 1142. (g) Ziolo, R. F.; Gunther, W. H. H. J. Organomet. Chem. 1978, 146, 245. (h) Knobler, C.; Ziolo, R. F. J. Organomet. Chem. 1979, 178, 423. (i) Pritzkow, H. Inorg. Chem. 1979, 18, 311. (j) Singh, H. B.; McWhinnie, W. R.; Hamor, T. A. Jones, R. H. J. Chem. Soc., Dalton Trans. 1984, 23. (k) Alcock, N. W.; Harrison, W. D. J. Chem. Soc., Dalton Trans. 1984, 869. (1) McCullough, J. D.; Knobler, C.; Ziolo, R. F. Inorg. Chem. 1985, 24, 1814. (m) Hu, N.-H.; Jin, Z.-S.; Li, Z.-S. Acta Crystallogr., Sect. C. 1991, 47, 1858. (n) Al-Rubaie, A. Z.; Uemura, S.; Masuda, H. J. Organomet. Chem. 1991, 410, 309. (o) Morkved, E. H.; Faccin, G.; Manfrotto, D.; Kjosen, H.; Becker, J. Y.; Shapiro, L.; Ellern, L.; Bernstein, J.; Khodorkovsky, V. J. Mater. Chem. 1997, 7, 1697. (p) Farran, J.; Alvarez-Larena, A.; Capparelli, M. V.; Piniella, J. F.; Germain, G.; Torres-Castellanos, L. Acta Crystallogr., Sect. C 1998, 54, 995. (q) Schulz Lang, E.; Fernandes, R. M., Jr.; Silveira, E. T.; Abram, U.; Vazquez-Lopez, E. M. Z. Anorg. Allg. Chem. 1999, 625, 1401. (r) Asahara, M.; Tanaka, M. Erabi, T. Wada, M. J. Chem. Soc., Dalton Trans. 2000, 3493.


⁽²⁹⁾ The sum of the covalent radii of tellurium and iodine is $2.70~\text{Å}.^{30}$

⁽³⁰⁾ Emsley, J. The Elements, 3rd ed.; Clarendon Press: Oxford, 1998.

Table 5. Selected Bond Lengths (Å) and Angles (deg) in (CH₂)₄Te₂I₆ (**6a** and **6b**)

	6a	6b		6a	6b
Te(1)-I(11)	2.7338(8)	2.755(2)	Te(2)-I(22)	2.7982(8)	2.767(1)
Te(1)-C(11)	2.141(8)	2.171(14)	Te(2)-I(23)	2.7982(8)	2.777(1)
Te(1)-C(14)	2.152(9)	2.154(18)	Te(2)-I(24)	2.8743(8)	2.783(1)
Te(1)-I(21)	3.3270(9)	3.261(2)	Te(2)-I(25)	3.1514(9)	3.197(1)
Te(2)-I(21)	3.0270(8)	3.328(1)	$Te(2)-I(25)^a$	3.1579(9)	3.249(1)
I(11)-Te(1)-C(11)	96.8(2)	95.0(5)	$I(21)-Te(2)-I(25)^a$	87.10(3)	92.67(3)
I(11)-Te(1)-C(14)	93.3(2)	93.2(5)	I(22)-Te(2)-I(23)	95.35(2)	96.17(4)
C(11)-Te(1)-C(14)	83.7(4)	84.1(6)	I(22)-Te(2)-I(24)	92.56(3)	92.78(4)
I(11)-Te(1)-I(21)	173.83(2)	169.65(5)	I(22)-Te(2)-I(25)	86.55(2)	89.46(4)
I(21)-Te(1)-C(11)	88.3(2)	94.7(5)	$I(22)-Te(2)-I(25)^a$	172.78(2)	177.74(4)
I(21)-Te(1)-C(14)	83.8(2)	84.1(5)	I(23)-Te(2)-I(24)	91.36(2)	93.15(5)
Te(1)-I(21)-Te(2)	124.61(2)	95.22(4)	I(23)-Te(2)-I(25)	177.10(2)	174.09(4
I(21)-Te(2)-I(22)	92.86(4)	86.30(4)	$I(23)-Te(2)-I(25)^a$	91.86(2)	85.87(3)
I(21)-Te(2)-I(23)	87.41(2)	91.78(5)	I(24)-Te(2)-I(25)	86.36(2)	84.76(5)
I(21)-Te(2)-I(24)	174.53(2)	175.06(4)	$I(24)-Te(2)-I(25)^a$	87.62(3)	88.08(3)
I(21)-Te(2)-I(25)	94.70(2)	90.37(4)	$I(25)-Te(2)-I(25)^a$	86.25(2)	88.53(3)

a Symmetry operations: **6a** -x + 1, -y + 2, -z + 1; **6b** -x + 1, -y + 1, -z + 2

Figure 5. The crystal structure of **6a**. The compound can be formulated as $\{C_4H_8TeI^+\}_2[Te_2I_{10}^{2-}]$. The thermal ellipsoids have been drawn at the 50% probability level.

with this scheme, since the I···I contacts are shorter in **5b** than in **5a**. These colors are consistent with the initial report of Morgan and Burstall.²⁵

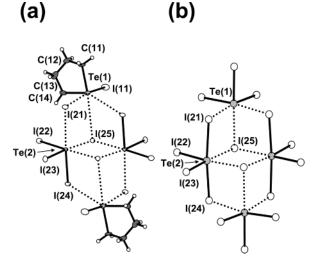
 $C_4H_8Te_2I_6$ (6). There are two distinct forms of $C_4H_8Te_2I_6$ (6a and 6b) that are formed depending on the crystallizing conditions. Though both compounds can formally be considered as 1:1 adducts of TeI_4 and $C_4H_8TeI_2$, their structures differ considerably from that of a simple straightforward adduct. Though superficially similar, the structures of $\bf 6a$ and $\bf 6b$ also differ from each other.

The crystal structure of **6a** is presented in Figure 5 together with the atomic numbering scheme. The most important bond lengths and angles are presented in Table 5. The compound can be formulated as $\{C_4H_8TeI^+\}_2[Te_2I_{10}^{2-}]$. The bond lengths and angles in the $[Te_2I_{10}]^{2-}$ anion are virtually identical to those found in $\{(C_7H_7)(C_2H_5)_3N^+\}_2[Te_2I_{10}^{2-}]$.

The Te(1)–I(11) bond of 2.7338(8) Å found in the $\{C_4H_8-TeI\}^+$ cation is shorter than the Te–I bonds in **5a** or **5b** and is close to the single bond length,²⁹ as expected for the 8-electron AX₃E cation. The I–Te–C bond angles of 93.3(2)° and 96.8(2)° and the C–Te–C bond angle of 83.7(4)° are also consistent with the three-coordinate telluronium cation. The structural differences in **5** and the cation in **6a** can be compared to those observed in $Cl_2TeSeN_2S^{31}$ and (CITeTeN₂S⁺)(Cl⁻).³² The axial Te–Cl bond lengths in the former are 2.403(2) and 2.782(2) Å, and the coordination environment of tellurium is a trigonal bipyramid [Cl–Te–Cl = 173.6(1)°].³¹ In the cationic species, the Te–Cl bond length of 2.336(4) Å is shorter and the coordination is based on the tetrahedron [the bond angles around tellurium span 88.7(4)–101.1(1)°].³²

The Te(1)–I(21) distance of 3.3270(9) Å in **6a** is very long for covalent interaction. It is comparable to the $I_3Te^{+\bullet}$ ··(μ -I⁻) distances of 3.187–3.343 Å found in γ - and δ -TeI₄^{6,7} and somewhat shorter than the $R_3Te^{+\bullet}$ ···I⁻ distances, for instance, in Me₃TeI³³ and Et₃TeI.³⁴

The cations and anions in **6a** are further linked together by weaker $Te(1)\cdots I(21)$ and $Te(1)\cdots I(24)$ contacts of 3.937(1) and 3.887(1) Å, respectively (see Figure 5). There are also several $I\cdots I$ contacts between the $[Te_2I_{10}]^{2-}$ anions in the range 3.609(1)-3.900(1) Å.


The formal presentation of $\bf 6b$ is somewhat more complex. The crystal structure is shown in Figure 6 together with the numbering of the atoms. The bond parameters are presented in Table 5. The interatomic distances in the Te_2I_{10} fragment differ considerably from the corresponding distances in $\bf 6a$ and from those in $\{(C_7H_7)(C_2H_5)_3N^+\}_2[Te_2I_{10}^{2-}]^5$ and do not imply the presence of a discrete $[Te_2I_{10}]^{2-}$ anion. Comparing all bond parameters in $\bf 6b$ with those found in γ - and δ -TeI₄, 6,7 the following inferences can be made.

⁽³¹⁾ Haas, A.; Kasparowski, J.; Pryka, M. Chem. Ber. 1992, 125, 789.

^{(32) (}a) Haas, A.; Kasparowski, J.; Pryka, M. J. Chem. Soc., Chem. Commun. 1992, 1144. (b) Haas, A.; Pryka, M.; Schäfers, M. Chem. Ber. 1994, 127, 1865.

^{(33) (}a) Collins, M. J.; Ripmeester, J. A.; Sawyer, J. F. J. Am. Chem. Soc. 1988, 110, 8583. (b) Zhou, Z.-L.; Huang, Y.-Z.; Tang, Y.; Chen, Z.-H.; Shi, L.-P-; Jin, X.-L.; Yang, Q.-C. Organometallics 1994, 13, 1575.

⁽³⁴⁾ Chadha, R. K.; Drake, J. E. J. Organomet. Chem. 1986, 299, 331.

Figure 6. (a) The crystal structure of **6b**. The compound can be formulated as $\{C_4H_8TeI^+\}_2(TeI_3^+)_2(I^-)_4$. The thermal ellipsoids have been drawn at the 50% probability level. (b) The crystal structure of δ -TeI₄ (adapted from the data taken from ref 7).

Table 6. The Comparison of Te-I Distances in (CH₂)₄Te₂I₆ (**6b**) and in γ - and δ -TeI₄^a

	6b	γ -TeI $_4$ b	δ -TeI $_4$ c
Te(1)-I(21)	3.261(2)	3.252, 3.337	3.231
Te(1)-I(24)	3.900(2)	3.265, 3.343	3.279
Te(1)-I(25)	3.676(2)	3.187, 3.207	3.200, 3.214
Te(2)-I(21)	3.328(1)	2.921, 3.035	2.933
Te(2)-I(22)	2.767(1)	2.743, 2.751	2.766
Te(2)-I(23)	2.777(1)	2.753, 2.785	2.770
Te(2)-I(24)	2.783(1)	2.897, 3.002	2.989
Te(2)-I(25)	3.197(1), 3.249(1)	3.228 - 3.257	3.241, 3.247

^a The tellurium and iodine atoms in γ - and δ -TeI₄ have been renumbered to correspond to the numbering of **6b** (see Figure 5). ^b Reference 6. ^c Reference 7.

It can be seen from Figure 6 that the structural framework of $\bf 6b$ is very similar to that of the tetramers in γ - and δ -TeI₄ 6,7 implying the structure type $\bf II$. Krebs and Ahlers¹ have formulated the (TeI₄)₄ tetramer as (TeI₃⁺)₂(I⁻)₂(TeI₄)₂ based on the interatomic distances. Using the same arguments, $\bf 6b$ can be considered as $\{C_4H_8TeI^+\}_2(TeI_3^+)_2(I^-)_4$ (the ionic and molecular fragments of $\bf 6b$ and the TeI₄ tetramer are indicated in Figure 6). The relevant framework Te–I distances in $\bf 6b$ and in the two polymorphs of TeI₄ are compared in Table 6.

It can be seen from Figure 6 that whereas the TeI_4 exhibits a $(TeI_3)^+$ cation both at the top and bottom of the molecule, **6b** contains two $\{C_4H_8TeI\}^+$ cations in the corresponding locations. The Te(1)-I(11) bond length of 2.755(2) Å in the cation is again close to that of the single bond,²⁹ and the I-Te-C bond angles of $93.2(5)^\circ$ and $95.0(5)^\circ$, as well as the C-Te-C angle of $84.1(6)^\circ$ (see Table 5), indicate a pyramidal telluronium ion.

In both γ - and δ -TeI₄ the two (TeI₃)⁺ cations show close contacts of 3.231-3.279 Å to two TeI₄ molecules.^{6,7} These interatomic distances are in good agreement with the cation—anion contacts in **6a**. The two TeI₄ fragments in γ - and δ -TeI₄ show the expected trigonal-bipyramidal geometry, with the axial Te(2)–I(21) and Te(2)–I(24) bonds [2.921–3.035 Å] longer than the equatorial Te(2)–I(22) and Te(2)–I(23) bonds [2.743–2.785 Å]. It can be seen from Figure 6 that

in **6b** two (TeI₃)⁺ cations can be found in the locations where γ - and δ -TeI₄ contain two TeI₄ molecules. This inference is based on the differences in the corresponding interatomic distances and angles. The three Te–I bonds in question [Te(2)–I(22), Te(2)–I(23), and Te(2)–I(24)] span virtually equal single bond²⁹ lengths of 2.767(1)–2.783(1) Å and are close to those of 2.753–2.789 Å and 2.738–2.773 Å reported for the two (TeI₃)⁺ fragments in γ - and δ -TeI₄, respectively.^{6,7} It should be noted that the axial Te(2)–I(24) in γ - and δ -TeI₄^{6,7} is significantly longer than that in **6b**. Conversely, the Te(2)–I(21) distance that represents the other axial bond of the TeI₄ molecule, and is therefore of comparable length to the Te(2)–I(24) bond in γ - and δ -TeI₄,^{6,7} is significantly longer in **6b** [3.261(2) Å] and can be inferred as the cation—anion distance.

The two types of the cations in **6b** are linked together by two bridging μ_2 – I^- anions and two μ_3 – I^- anions that together build up the framework of the structure type **II**. It can be seen from Table 6 that the Te(2)–I(25) bonds in **6b** and in γ - and δ -TeI₄ are of comparable length, in the range 3.197(1)–3.257 Å. Whereas the long Te(1)–I(25) distance of 3.676(2) Å represents a secondary bonding interaction in **6b**, the corresponding interatomic separation is shorter in γ - and δ -TeI₄ (3.187–3.214 Å).^{6,7} They represent typical cation—anion distances.

We note that the two polymorphs of Me_2TeI_2 also show significantly differing structures. α - Me_2TeI_2 is composed of discrete molecules,³⁵ while β - Me_2TeI_2 is ionic and contains $(Me_3Te)^+$ cations and $[MeTeI_4]^-$ anions.³⁶

Reaction Pathways. The reactions between tellurium tetrahalides and triphenylphosphine in tetrahydrofuran in air are very versatile. Early reports under an inert atmosphere have suggested that, in the case of $TeCl_4$ and Ph_3P , Ph_3PCl_2 and $Te(0)^8$ or Ph_3PO , $TeCl_2$, and $Te(0)^9$ are formed. In the latter case, the formation of Ph_3PO was explained by the hydrolysis of Ph_3PCl_2 . We have observed that under ambient conditions the reactions of $TeCl_4$ or $TeBr_4$ and Ph_3P afford $\{(Ph_3PO)_2H\}_2[Te_2X_{10}]$ [X = Cl (1), Br (2)] in good yields. The main product in the reaction involving TeI_4 is $\{(Ph_3PO)_3(OH_3)\}_2[TeI_6]$ (4).³⁷

The cations in **1**, **2**, and **4** that consist of Ph₃PO molecules linked into dimeric or trimeric units by bridging H⁺ or H₃O⁺ cations, respectively, are probably produced by hydrolysis of Ph₃PX₂ due to atmospheric moisture, as suggested by Arens et al.^{19c} and Lane et al.^{19e} The formation of various

⁽³⁵⁾ Chan, L. Y. Y.; Einstein, F. W. B. J. Chem. Soc., Dalton Trans. 1972, 316.

 ⁽³⁶⁾ Einstein, F.; Trotter, J.; Williston, C. S. J. Chem. Soc. A 1967, 2018.
 (37) For comparison, we also tested the reaction of TeCl₄ and PPh₃ in an argon atmosphere. After the dark precipitate was filtered off, two resonances could be observed in the ³¹P NMR spectrum of the remaining solution. The resonance at 66.5 ppm is probably due to

remaining solution. The resonance at 66.5 ppm is probably due to Ph₃PCl₂. ³⁸ The second resonance falls within the range assigned to 1 and indicates that even traces of adventitious water play a role in the reaction.

(38) (a) Wiley, G. A.; Stine, W. R. *Tetrahedron Lett.* 1967, 2321. (b) Dillon,

 ^{(38) (}a) Wiley, G. A.; Stine, W. R. Tetrahedron Lett. 1967, 2321. (b) Dillon,
 K. B.; Lynch, R. J.; Reeve, Waddington, T. C. J. Chem. Soc., Dalton Trans. 1976, 1243. (c) Godfrey, S. M.; McAuliffe, C. A.; Pritchard,
 R. G.; Sheffield, M. Chem. Commun. 1996, 2521. (d) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, M.; Thompson, G. M. J. Chem. Soc., Dalton Trans. 1997, 4823.

anions from tellurium tetrahalides and the structural relationships between them have been explained by Krebs and Paulat, 17f and are depicted in Scheme 1. It is not quite clear what factors determine the product distribution and isolation of the actual anions. The 125Te NMR spectra of different reaction solutions only indicate the presence of one type of anion in each case. This has also been recently observed for the reaction of Te and SO₂Cl₂. ¹³ Different chlorotellurate anions are produced depending on the solvent, but only one type of anion is observed in every case.

We have recently observed that in the case of TeBr₄ the reaction with PPh3 in THF results also in the opening of the tetrahydrofuran ring with the formation of Ph₃PO(CH₂)₄TeBr₄ (3) that is formally zwitterionic. 10 The ring opening is probably initiated by the attack of PPh3 at the THF oxygen in the same fashion as the reaction of PPh3 with elemental sulfur.³⁹ The open-chain intermediate reacts with TeBr₄ to afford 3.10

Anderson and Freenor⁴⁰ have established that Ph₃PBr₂ also effects a THF ring opening and produces Ph₃PO and BrCH₂(CH₂)₂CH₂Br in good yield. It is reasonable to assume that TeI₄ reacts with PPh₃ and affords elemental tellurium and Ph₃PI₂ in an analogous manner to TeCl₄. 8,9 Ph₃PI₂ then reacts with THF and produces Ph₃PO and ICH₂(CH₂)₂CH₂I. The reaction between the elemental tellurium and ICH₂(CH₂)₂-CH₂I leads to the formation of (CH₂)₄TeI₂ (5), as reported by Morgan and Burstall.²⁵

The formation of 6a and 6b can most conveniently be viewed as a simple interaction between (CH₂)₄TeI₂ (5) and TeI₄. It is possible that the structural and bonding differences between the two forms originate only upon crystallization of the two species.

Conclusions

The reaction of tellurium tetrachloride and triphenylphosphine has been reported to form elemental tellurium and Ph₃- PCl₂, 8 or Te(0), TeCl₂, and Ph₃PO. 9 In this contribution we have shown that under ambient conditions the reactions afford $\{(Ph_3PO)_2H\}_2[Te_2X_{10}]$ [X = Cl (1), Br (2)] and ${(Ph_3PO)_3OH_3}_2[TeI_6]$ (4). Compounds 1 and 2 are isostructural and contain discrete [Te₂X₁₀]²⁻ anions and dimeric {Ph₃POH···OPPh₃}⁺ cations. Compound **4** contains octahedral hexaiodotellurate anions and trimeric {(Ph₃PO)₃- (OH_3) ⁺ cations.

In addition to the products mentioned above, TeBr₄ and PPh₃ afford zwitterionic Ph₃PO(CH₂)₄TeBr₄ (3). This reaction involves an unprecedented THF ring opening in which the oxygen atom is bonded to phosphorus and the carbon atom is bonded to tellurium. A THF ring opening is probably also effected in the formation of the side product (CH₂)₄TeI₂ (5) during reaction of TeI4 and PPh3. This product can be crystallized as two different polymorphs 5a and 5b that differ only in the packing of the molecules. 5 can be explained to be formed from elemental tellurium and ICH₂(CH₂)₂CH₂I. Tellurium is produced in the initial reaction of TeI₄ and PPh₃. The latter product is obtained as a consequence of the attack of Ph₃PI₂ at the THF molecule resulting also in the formation of Ph₃PO. Most Ph₃PO, however, is probably produced by the influence of atmospheric moisture.

The reaction of TeI₄ and PPh₃ leads upon crystallization to the formation of two different forms of (CH₂)₄Te₂I₆ (6a and **6b**) that can both formally be considered as 1:1 adducts of TeI₄ and (CH₂)₄TeI₂. They are superficially similar, but their structures differ from each other. 6a can be formulated as $\{(CH_2)_4TeI^+\}_2[Te_2I_{10}^{2-}]$ and **6b** as $\{(CH_2)_4TeI^+\}_2(TeI_3^+)_2$ -(I⁻)₄. Though the interatomic distances vary, the structural framework of **6b** is very similar to that of the tetramers in γ - and δ -TeI₄.

Acknowledgment. Financial support from the Academy of Finland and the Ministry of Education in Finland (Graduate School of Inorganic Materials Chemistry) is gratefully acknowledged.

Supporting Information Available: Seven X-ray crystallographic files in CIF format, two tables containing crystal data and selected bond lengths and angles of 5a, and a figure illustrating the effect of intermolecular I···I and I···Te interactions on the corresponding Te-I bond lengths in R₂TeI₂. This material is available free of charge via the Internet at http://pubs.acs.org.

IC049789V

⁽³⁹⁾ Bartlett, P. D.; Meguerian, G. J. Am. Chem. Soc. 1956, 78, 3710.

⁽⁴⁰⁾ Anderson, A. G.; Freenor, F. J. J. Org. Chem. 1972, 37, 626.