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ABSTRACT
A straightforward synthesis of N-alkylated 1-deoxynojirimycin
derivatives modified at the 6-O-position has been described.
The key intermediate in the synthesis of target compounds
was 2,3,4-tri-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol, which
was prepared from 2,3,4,6-tetra-O-benzyl-1,5-dideoxy-1,5-imino-
D-glucitol. Optimal conditions have been established for the
synthesis of the key intermediate by varying reaction param-
eters. Reductive amination and subsequent alkylation of the
6-O-position followed by hydrogenolysis were the main reaction
steps, which gave target compounds 6-O-ethyl-N-octyl-1,5-
dideoxy-1,5-imino-D-glucitol and 6-O-butyl-N-octyl-1,5-dideoxy-
1,5-imino-D-glucitol. This synthetic route is flexible and can be
useful for the synthesis of other lipophilic iminosugar derivatives.

GRAPHICAL ABSTRACT

Introduction

Iminosugars, also known as azasugars, are sugarmimics having an endocyclic nitro-
gen atom instead of an oxygen atom and are potent inhibitors of several types of
sugar processing enzymes, such as glycosidases and glycocyltransferases.[1] Thus,
they have therapeutic potentials against many diseases such as diabetes, viral infec-
tion, Gaucher disease and tumormetastasis.[2–5] The archetypal 1-deoxynojirimycin
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296 M. IFTIKHAR AND Z. FANG

Figure . Structures of several N-alkyltaed--deoxynojirimycin derivatives as drugs approved for clin-
ical usage.

1 and miglitol 2 (Figure 1), which inhibit enzymes including sucrase and maltase
and have been approved as antidiabetic drugs, are representatives in this regard.[6]

Among these polyhydroxylated alkaloids, N-alkylated-1-deoxynojimycin deriva-
tives are especially important due to their usage for treating lysosomal glycosph-
ingolipidose disorders. For example, Zavesca 3, i.e., N-butyl-1-deoxynojirimycin
(NB-DNJ) also commonly known as Miglustat, is an oral drug for the treatment
of Gaucher disease (Figure 1).[7–9]

Glucocerebrosidase (E.C. 3.2.1.45) is an enzyme that hydrolyzes glucocerebro-
side (GlcCer) into glucose and ceramide, while Gaucher disease is caused by the
defective activity of glucocerebrosidase and thus characterized by the accumula-
tion of GlcCer in tissues.[10] Enlarged organs, bone lesions, obesity, abnormalities
of blood glucose level, insulin resistance, and central nervous system impairment
are linked with lysosomal storage disorders.[11] Enzyme replacement therapy (ERT)
is used for the treatment of Gaucher disease, in which recombinant glucocerebrosi-
dase is injected intravenously. Although this method towards Gaucher disease is
direct and effective, its high cost has encouraged the discovery of small molecule-
based pharmacological chaperons.[12] A new approach, namely substrate reduction
therapy (SRT), could reduce the biosynthesis of GlcCer by partial inhibition of gly-
cosylceramide synthase GCS (E.C. 2.4.1.80).[13]

Zavesca 3 inhibits GCS in patients who are not compatible with ERT. It
also targets intestinal sucrose and maltase.[10,14] Wennekes et al.15,16 reported
the synthesis of lipophilic 1-deoxynojirimycin derivatives based on the lead
compound N-[5-(adamantane-1-yl-methoxy)-pentyl]-1-deoxynojirimycin (AMP-
DNM) 4 (Figure 2), which was proved to be 100 times more potent against human
GCS than 3. Derivatives having N-methyl modification and 6-O-modification with
adamantane-1-yl-methoxy moiety exhibited more selectivity towards glucocere-
brosidase.

The hydroxy groups in N-alkylated-1-deoxynojirimycin derivatives are crucial
for the enzyme inhibition as described by van den Berg et al.[17] However, it was
found that the hydroxy group at the C6-position was not as important as that at the
C2- and C3-positions and is thus more amenable for further modification.
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Figure . Structure of lipophilic AMP-DNM 4.

Glycosylation of 1-deoxynojirimycin derivatives with a 2,3,4,6-tetra-O-acetyl-a-
D-glucopyranosyl moiety in quest for better GCS inhibitors have been reported by
Boucheron et al.[18] Selective alkylation at the 2-O-position of iminosugars and gly-
cosylation with a sugar moiety at the 4-O-position gave iminodisacharides such as
5 and 6 (Figure 3), which showed satisfactory GCS inhibition results. Similarly, 6-
O-α-L-rhamnopyranosyl-DMJ 7 (Rha-DMJ), which is a glycoside of DMJ, was syn-
thesized efficiently with modification at the 6-O-position (Figure 3).[19]

Inspired by the excellent results derived from selective modification of the
alkyl chains in the iminosugar scaffold, herein we report the synthesis of 6-O-
alkylated-N-octyl-1-deoxynojirimycin derivatives commencing from 2,3,4,6-tetra-
O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol. The design of these new compounds
was to alkylate both the nitrogen atom and the 6-O-position of iminosugar, which
could potentially allow the discovery of new potent glucocerebrosidase inhibitors
and pharmacological chaperones for Gaucher disease treatment. The key steps
for the target compounds synthesis were N- and 6-O-alkylations followed by
hydrogenolytic deprotection.

Results and discussion

A successful strategy was developed for gluco-configured 6-O-alkylated-N-octyl-
1-deoxynojirimycin derivative synthesis (Scheme 1), starting from 2,3,4,6-tetra-
O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol 8, which was prepared according to
the literature.[20] Benzyloxycarbonyl (Cbz) protection of the free amino group in
8 was carried out by reacting with benzylchloroformate to form 2,3,4,6-tetra-O-
benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol 9 in a good yield

Figure . Structures of lipophilic deoxynojirimycin derivatives with modifications at different
positions.
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298 M. IFTIKHAR AND Z. FANG

Scheme . Reagents and conditions: (a) benzyl chloroformate, aq. NaHCO, ,-dioxane, rt,  h; (b)
ZnCl, AcO, AcOH, rt,  h; (c) see Table ; (d) cat. NaOMe, MeOH, rt,  h; (e) conc. NaOMe, MeOH, rt,
 h; (f ) % KOH, MeOH, °C,  h.

(80%). The benzyl ether at the primary 6-O-position in 9 was selectively cleaved
and acylated in situ on treatment with ZnCl2 and Ac2O/AcOH to give 6-O-acetyl-
2,3,4-tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol 10 in a
92% yield. Stepwise acylations of the N- and 6-O-positions were important because
direct deprotection and acetylation of the 6-O-position in 8 would also acetylate
the nitrogen atom, which would be very difficult to deprotect. For example, N-acyl
group can only be removed under harsh basic conditions or by peroxide in water
with utmost precaution.[21] An N-acylated iminosugar derivative was deprotected
with BH3-THF and NaOH-H2O2 to obtain the free amine, but this procedure
afforded only a 31% yield.[22]

Zemplen deacetylation of compound 10 was carried out by using catalytic
amount of sodium methoxide (NaOMe) in MeOH at room temperature for 2 h to
give 2,3,4-tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol 11
in an 86% yield. Acid resin was used to quench the reaction mixture. It was noted
that stronger basic conditions, e.g. using more concentrated NaOMe, converted 11
into cyclic carbamate 12 in an 88% yield. One of the spectroscopic proofs for the
product was that the 1H NMR signal of the Cbz group in 11 (at δ = 5.17 ppm)
disappeared upon conversion to 12. Cyclic carbamate 12 needed to be treated with
concentrated potassium hydroxide solution (50%) in MeOH under refluxing con-
ditions to obtain 2,3,4-tri-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol 13 in a 75%
yield (Scheme 1).

To optimize the synthesis of 13, we probed the impacts of different bases on
the deacylation of 10 in different solvents. As shown in Table 1, the reaction went
smoothly in the presence NaOH (entry 1) in MeOH, which gave a 77% yield of
13 after 6 h of refluxing. Delightfully, when NaOH was changed to KOH (entry 2,
Table 1) and solvent was switched to EtOH, the reaction gave the target product in a
91% yield. Use of EtOH andNaOHunder refluxing condition also gave an improved
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Table . Optimization of formation of 13 in one pot reaction by 10.

Entry Base
a

Solvent
b

Time(h) Yield
c
(%)

 NaOH MeOH  
 KOH EtOH  
 NaOH EtOH  

Conditions:
a% solution in water ( mL),
brefluxed for – h in specified solvent ( mL);
cisolated yield.

Scheme . Reagents and conditions: (a) n-octanal, NaCNBH, AcOH,MeOH, °C,  h; (b) ethyl iodide
(for 15) or butyl bromide (for 16), NaH, DMF, °C to rt,  h; (c) Pd/C, H ( atm), MeOH, conc. HCl ( mL),
– h, rt.

yield (87%, entry 3, Table 1). It was thus established that the optimal yield of 13 was
obtained with the use of KOH in EtOH under refluxing condition for 12 h.

Next, intermediate 13 was N-alkylated with n-octanal successfully through
reductive amination to afford 2,3,4-tri-O-benzyl-N-octyl-1,5-dideoxy-1,5-imino-
D-glucitol 14 in an 88% yield, as shown in Scheme 2. Thereafterm the free
hydroxy group in 14 was alkylated using ethyl iodide or butyl bromide in the
presence of sodium hydride to result in 6-O-alkylated iminosugar derivatives 6-O-
ethyl-2,3,4-tri-O-benzyl-N-Octyl-1,5-dideoxy-1,5-imino-D-glucitol 15 (78%) and
6-O-butyl-2,3,4-tri-O-benzyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol 16 (71%),
respectively. Deprotection of 15 and 16was carried out underH2 (1 atm) using Pd/C
as the catalyst to obtain 6-O-ethyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol 17
(68%) and 6-O-butyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol 18 (59%), respec-
tively, as shown in Scheme 2.

Conclusion

In summary, we have synthesized two 6-O-alkylated-N-octyl-1-deoxynojirimycin
derivatives starting from 2,3,4,6-tetra-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol
8. The key intermediate 2,3,4-tri-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol 13
was synthesized successfully form 10 by a one-pot reaction. Themain steps involved
in the target compound synthesis were N-alkylation, subsequent modification at
the 6-O-position, and hydrogenolytic deprotection. The synthetic route developed
herein is facile and efficient as various compounds formed during the process can

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 E

ng
la

nd
] 

at
 2

1:
59

 1
5 

D
ec

em
be

r 
20

17
 



300 M. IFTIKHAR AND Z. FANG

be used for additional modification and for future research. In short, the target
compounds 17 and 18 were synthesized for the first time and may find therapeutic
applications.

Experimental

General methods

All commercially available chemicals were used without purification. Solvents were
dried prior to use according to standard protocols. Reactions were performed at
ambient temperature unless stated otherwise. Moisture sensitive reactions were
carried out under an argon environment. Reaction progression was monitored
using thin layer chromatography over 0.2 mm thick silica coated plates. Spots
were detected under UV-light at wavelength (λ) 254 nm. Iminosugars detection
was accomplished via exposure to Iodine vapors. Flash chromatography was per-
formed on silica gel 230–430 mesh (Merck). Melting points were recorded in open
glass capillaries and were not corrected. 1H NMR and 13C NMR were recorded in
CDCl3/MeOD on broker Avance III 500 MHz spectrometer. Chemical shifts are
given using tetramethysilane (δTMS = 0 ppm) as an internal standard.

Synthesis of 2,3,4,6-tetra-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-
D-glucitol (9)

To a solution of 2,3,4,6-tetra-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol 8 (3 g,
5.7 mmol) in 1,4-dioxane (55 mL) at room temperature, aqueous solution of
10% sodium bicarbonate (20 mL) was added. Next benzyl chloroformate (Cbz-Cl,
1.2 mL, 8.55 mmol) was slowly added to this cloudy solution and the reaction was
stirred for 18 hours at room temperature. After completion of the reaction as indi-
cated by TLC, the reaction mixture was diluted with water and extracted with ethyl
acetate EA (3× 200mL). The combined organic layers were dried over Na2SO4 and
concentrated. Purification via flash chromatography using gradient elution (SiO2,
petroleum ether/ethyl acetate 5:1, v/v) gave 9 (3 g, 80%) as colorless oil. Yield 80%,
colorless oil, Rf = 0.92 (petroleum ether/ethyl acetate 3:1). 1H NMR (500 MHz,
CDCl3) δ 7.24–7.38 (m, 25H), 5.14 (d, J = 12.3 Hz, 1H), 5.10 (d, J = 12.3 Hz,1H),
4.61–4.80 (m, 8H), 4.35 (dd, J= 9, 3 Hz, 1H), 4.09–4.27 (m, 2H), 3.92 (t, J= 6.3 Hz,
1H), 3.71–3.83 (m, 1H), 3.67 (m, 2H), 3.35 (dd, J = 14.4, 3.2 Hz, 1H); 13C NMR
(126 MHz, CDCl3) δ 154.90, 137.23, 137.10, 135.69, 127.40, 127.03, 126.92, 126.79,
126.58, 80.74, 77.13, 73.16, 72.22, 72.01, 71.95, 69.67, 67.43, 66.32, 54.69, 40.26.
HRMS (ESI): m/z calculated 658.3090 for [C42H43NO6 + H]+, found 658.3126.

Synthesis of 6-O-acetyl-2,3,4-tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-
imino-D-glucitol (10)

ZnCl2 (6.2 g, 45.6 mmol) was added to the dry solution of 2,3,4,6-tetra-O-benzyl-
N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol 9 (3 g, 4.56 mmol) in a
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mixture of AcOH (18 mL) and Ac2O (36 mL) and stirred for 20 hours. Reaction
was quenched with water (20 mL) after completion of the reaction (as indicated by
TLC) and stirred for another 30 minutes. The reaction mixture was poured slowly
into the stirring solution of concentrated Na2CO3 (200 mL) and extracted with
DCM (3 × 100 mL). Combined organic layers were washed with brine, dried over
Na2SO4, filtered and concentrated. Flash chromatography using gradient elution
(SiO2, petroleum ether/ethyl acetate 4:1, v/v) afforded 10 (2.58 g, 92%) as colorless
oil. Yield 92%, colorless oil, Rf = 0.43 (petroleum ether/ethyl acetate 3:1). 1HNMR
(500 MHz, CDCl3) δ 7.30–7.41 (m, 20H), 5.20 (m, 2H), 4.63–4.79 (m, 5H), 4.53–
4.55 (m, 2H), 4.37–4.41(m, 1H), 4.27–4.30 (m, 2H), 3.82 (t, J= 10Hz, 1H), 3.70–3.73
(m, 2H), 3.35 (d, J= 15Hz,1H), 2.06 (s, 3H); 13CNMR (126MHz, CDCl3) δ 169.67,
155.10, 137.05, 136.90, 135.60, 127.53, 127.45, 127.06, 126.94, 126.81, 126.68, 78.46,
75.90, 72.56, 71.81; 71.60, 69.65, 66.47, 61.19, 53.14, 38.97, 19.80. HRMS (ESI): m/z
calculated 610.2727 for [C37H39NO7 + H]+, found 610.2768.

Synthesis of 2,3,4-tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,
5-imino-D-glucitol (11)

Catalytic amount of sodium methoxide (0.025 M) was added into the dry solution
of 6-O-acetyl-2,3,4-tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-
glucitol 10 (250 mg, 0.41 mmol) in MeOH (3.6 mL) under argon environment at
0°C and mixture was stirred for 2 hours at room temperature. After indicated time,
the reaction was quenched by adding Amberlyte resin (H+) until neutral pH was
obtained. The mixture was filtered off and filtrate was concentrated. The residue
was purified by flash chromatography using gradient elution (SiO2, petroleum
ether/ethyl acetate 1:1, v/v) to obtain 11 as colorless oil which solidified at room
temperature as white solid (200 mg, 86%). Yield: 86%, white solid, mp: 188–191°C,
Rf = 0.68 (petroleum ether/ethyl acetate 1:1). 1H NMR (500 MHz, CDCl3) δ 7.20–
7.38 (m, 20H), 5.05–5.20 (m, 2H), 4.50 (d, J = 11.8 Hz, 1H), 4.68 (m, 5H), 3.9
(m, 3H), 3.56–3.70 (m, 3H), 3.64 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 154.90,
137.23, 137.15,135.69, 127.40, 127.03, 126.92, 126.79, 126.58, 125.50, 80.7, 77.13,
73.16, 72.22, 72.01, 69.7, 67.43, 66.32, 54.69, 40.26. HRMS (ESI): m/z calculated
568.2621 for [C35H37NO6 + H]+, found 568.2655.

Synthesis of 2,3,4-tri-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol-N-cyclic
carbamate (12)

Sodium methoxide (285 mg, 5.3 mmol) was added in portions to the dry solu-
tion of 2,3,4-tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol
11 (300 mg, 0.53 mmol) in MeOH and stirred the reaction mixture under an argon
environment at room temperature for 6 hours. Completion of the reaction was indi-
cated byTLCand the solventwas removedunder reduced pressure.Waterwas added
and extractions were made with EA (3 × 50 mL). Combined organic layers were
washed with aqueous NaHCO3 (50 mL) and brine (50 mL). Organic layers were
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302 M. IFTIKHAR AND Z. FANG

dried overNa2SO4, filtered and concentrated. The residuewas purified by flash chro-
matography using gradient elution (SiO2, petroleum ether/ethyl acetate 2:1, v/v)
to afford 12 (214 mg, 88%) as white solid. Yield 88%, white solid, mp: 95–100°C,
Rf = 0.47 (petroleum ether/ethyl acetate 3:1). 1H NMR (500 MHz, CDCl3) δ 7.31–
7.44 (m, 15H), 5.08 (d, J = 10.85 Hz, 1H), 4.98 (d, J = 11.5 Hz, 1H), 4.91 (d, J =
10.85 Hz, 1H), 4.75–4.80 (m, 2H), 4.69 (d, J = 11.5 Hz, 1H), 4.32 (t, J = 8.85 Hz,
1H), 4.12 (dd, J = 5.6, 7.75 Hz, 1H), 3.80–3.82 (m, 1H), 3.60–3.79 (m, 3H), 3.39 (t,
J = 9.05 Hz, 1H), 2.84 (dd, J = 10.05, 3.2 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ

155.73, 137.33, 136.76, 127.74, 127.64, 127.55, 127.37, 127.30, 127.04, 126.91, 84.71,
78.88, 74.97, 74.15, 72.25, 64.80, 55.75, 41.97. HRMS (ESI): m/z calculated 460.2046
for [C28H29NO5 + H]+, found 460.2088.

Synthesis of 2,3,4-tri-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol (13)

Method 1 (from compound 12 to 13): To a solution of 2,3,4-tri-O-benzyl-1,5-
dideoxy-1,5-imino-D-glucitol-N-cyclic carbamate 12 (280 mg, 0.609 mmol) in
MeOH (20 mL), 50% aqueous KOH (20 mL) was added. The reaction mixture was
stirred for 20 hours at 80°C. Reaction progression was monitored by TLC and after
disappearance of starting material; solvent was removed under reduced pressure.
Water was added and the mixture was extracted with EA (3 × 50 mL). Combined
organic layers were dried over Na2SO4, filtered and concentrated. Flash column
chromatography using elution gradient (SiO2, petroleum ether/ethyl acetate 1:1,
v/v) gave 13 (200 mg, 75%) as white solid.

Method 2 (from compound 10 to 13): To a solution of 6-O-acetyl-2,3,4-
tri-O-benzyl-N-benzyloxycarbonyl-1,5-dideoxy-1,5-imino-D-glucitol 10 (200 mg,
0.33 mmol) in EtOH or MeOH (20 mL), 50% aqueous KOH or NaOH (20 mL) was
added. The reaction mixture was stirred for 6–12 hours at 80°C. Reaction progres-
sionwasmonitored by TLC and after disappearance of startingmaterial; solvent was
removed under reduced pressure.Water was added and extractions were made with
EA (3× 50mL). Combined organic layers were dried overNa2SO4, filtered and con-
centrated. Flash column chromatography using elution gradient (SiO2, petroleum
ether/ethyl acetate 1:1, v/v) gave 13 as white solid. Yield see Table 1, white solid,
mp 80–85°C, Rf = 0.16 (petroleum ether/ethyl acetate 1:1). 1H NMR (500 MHz,
CDCl3) δ 7.26–7.34 (m, 15H), 5.0 (d, J = 10 Hz, 1H), 4.92 (d, J = 10 Hz, 1H), 4.87
(d, J= 10 Hz, 1H), 4.66–4.73 (m, 2H), 4.64 (d, J= 10 Hz, 1H), 3.77 (dd, J= 8, 3 Hz,
1H), 3.57–3.61 (m, 2H), 3.48–3.53 (m, 1H), 3.34 (t, J = 10 Hz, 1H), 3.26 (d, J =
10.05, 5.0 Hz, 1H), 2.62–2.65 (m, 1H), 2.54 (dd, J = 10.05, 5.0 Hz, 1H); 13C NMR
(126 MHz, CDCl3) δ 137.88, 137.48, 137.35, 127.56, 127.50, 127.23, 127.01, 126.94,
126.86, 126.65, 86.22, 79.54, 78.60, 76.36, 76.11; 75.85, 74.72, 74.20, 71.91, 61.78,
60.10, 47.12. HRMS (ESI): m/z calculated 434.2253 for [C27H31NO4 + H]+, found
434.2317.

Synthesis of 2,3,4-tri-O-benzyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol (14)

To a solution of 2,3,4-tri-O-benzyl-1,5-dideoxy-1,5-imino-D-glucitol 13 (100 mg,
0.23 mmol) in MeOH and AcOH mixture (v/v 200:1, 10 mL), n-octanal (150 µl,
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1.61 mmol) was added. After stirring for one hour at 60°C, NaCNBH3 (80 mg,
1.15 mmol) was added and the mixture was refluxed for 18 hours at 80°C. Reac-
tion was quenched with 1N HCl solution (100 µl) and was extracted with EA (3 ×
50 mL). Combined organic layers were washed with aqueous sodium bicarbonate
(50 mL) and brine (50 mL), dried (over Na2SO4), filtered and concentrated. Flash
chromatography using gradient elution (SiO2, petroleum ether/ethyl acetate 6:1,
v/v) gave 14 (115mg, 88%) as yellow oil. Yield 88%, yellow oil, Rf = 0.62 (petroleum
ether/ethyl acetate 3:1). 1H NMR (500 MHz, CDCl3) δ 7.26–7.37 (m, 15H), 4.9 (d,
J = 11 Hz, 1H), 4.96 (d, J = 11 Hz, 1H), 4.85 (d, J = 11 Hz, 1H), 4.72 (d, J = 11 Hz,
1H), 4.66–4.69 (m, 2H), 3.52–3.82 (m, 5H), 3.11 (dd, J = 10, 5 Hz, 1H), 2.48 (m,
1H), 2.43 (m, 1H), 2.26–2.29 (m, 1H), 2.23 (d, J = 10 Hz, 1H), 1.27–1.49 (m, 12H),
0.88 (t, J= 5Hz, 3H); 13CNMR (126MHz, CDCl3) δ 137.50, 137.45, 137.40, 127.50,
127.48, 127.05, 126.94, 126.86, 126.80, 85.92, 77.38, 76.99, 76.34, 76.09, 75.83, 74.64,
74.41, 71.98, 63.77, 56.79, 51.31, 43.31, 32.29, 30.88, 28.69, 28.35, 26.79, 23.77, 21.71,
13.15. MS (ESI): m/z calculated 546.3505 for [C35H47NO4 + H]+, found 546.3570.

Synthesis of 6-O-ethyl-2,3,4-tri-O-benzyl-N-Octyl-1,5-dideoxy-1,5-imino-D-
glucitol (15)

NaH (10 mg, 0.22 mmol) was added to the solution of 2,3,4-tri-O-benzyl-N-octyl-
1,5-dideoxy-1,5-imino-D-glucitol 14 (60mg, 0.11mmol) in dryDMF (2mL) at 0°C.
After stirring for 30 minutes, ethyl iodide (20 µl, 0.22 mmol) was introduced and
the reaction was stirred for 6 hours at room temperature. Reaction was quenched
by adding water and extracted with EA (3 × 50 mL). Combined organic layers were
dried over Na2SO4, filtered and concentrated. The residue was purified by flash col-
umn chromatography using gradient elution (SiO2, petroleum ether/ethyl acetate
10:1, v/v) to afford 15 (50 mg, 78%) as yellow oil. Yield 78%, yellow oil, Rf = 0.68
(petroleum ether/ethyl acetate 6:1). 1H NMR (500 MHz, CDCl3) δ 7.25–7.35 (m,
15H), 4.92–4.96 (m, 2H), 4.83 (d, J = 11 Hz, 1H), 4.63–4.70 (m, 2H), 4.60 (d, J =
11Hz, 1H), 3.58–3.67 (m, 4H), 3.49 (d, J= 3.5 Hz, 1H), 3.42–3.48 (m, 2H), 3.08 (dd,
J = 10, 5 Hz, 1H), 2.66–2.68 (m, 2H), 2.28–2.31 (m, 1H), 2.25 (d, J = 10 Hz), 1.26–
1.33 (m, 12H), 1.20 (t, J = 5 Hz, 3H), 0.89 (t, J = 5 Hz, 3H); 13C NMR (126 MHz,
CDCl3) δ 138.15, 137.80, 137.66, 127.42, 127.35, 126.88, 126.64, 126.45, 86.39, 77.81,
77.64, 74.34, 71.81, 65.59, 64.92, 54.72, 51.49, 30.88, 30.49, 29.24, 28.75, 28.58, 28.34,
26.64, 22.41,14.09, 13.16. HRMS (ESI): m/z calculated 574.3818 for [C37H51NO4 +
H]+, found 574.3880.

Synthesis of 6-O-butyl-2,3,4-tri-O-benzyl-N-octyl-1,5-dideoxy-1,5-imino-
D-glucitol (16)

Compound 16 was prepared from 2,3,4-tri-O-benzyl-N-octyl-1,5-dideoxy-1,5-
imino-D-glucitol 14 (70 mg, 0.128 mmol) and n-butyl bromide (40 µl, 0.256 mmol)
as described in the preparation of 6-O-ethyl-2,3,4-tri-O-benzyl-N-Octyl-1,5-
dideoxy-1,5-imino-D-glucitol 15, giving 16 (55mg, 71%) as colorless oil. Yield 71%,
colorless oil, Rf = 0.26 (petroleum ether/ethyl acetate 10:1). 1H NMR (500 MHz,
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CDCl3) δ 7.26–7.35 (m, 15H), 4.96–4.99 (m, 2H), 4.86 (d, J= 10 Hz, 1H), 4.67–4.73
(m, 2H), 4.62 (d, J = 10 Hz, 1H), 3.6–3.7 (m, 4H), 3.51 (d, J = 10 Hz, 1H), 3.46–
3.48 (m, 1H), 3.37–3.39 (m, 1H), 3.11 (dd, J = 10, 5 Hz, 1H), 2.69–2.70 (m, 2H),
2.34 (d, J = 10 Hz, 1H), 2.26–2.31 (m, 1H), 1.58–1.61 (m, 2H), 1.36–1.44 (m, 4H),
1.26–1.30 (m, 10H), 0.92 (t, J = 5 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 138.14,
137.83, 137.67, 127.45, 127.38, 126.95, 126.88, 126.67, 126.49, 86.43, 77.88, 77.66,
74.40, 74.31, 71.82, 70.30, 65.50, 62.87, 53.70, 51.52, 30.91, 30.63, 28.61, 28.37, 26.65,
21.74, 18.56, 13.20, 13.01. HRMS (ESI): m/z calculated 602.4131 for [C39H55NO4 +
H]+, found 602.4198.

Synthesis of 6-O-ethyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol (17)

A solution of 6-O-ethyl-2,3,4-tri-O-benzyl-N-Octyl-1,5-dideoxy-1,5-imino-D-
glucitol 15 (80 mg, 0.132 mmol) in MeOH (8 mL) and THF (4 mL) was acidified
with concentrated HCl upto pH = 2. Catalytic amount of 10% Pd/C (20 mg) was
added and the mixture was stirred under H2 atmosphere for 48 hours at room
temperature. After completion of reaction as indicated by TLC, mixture was passed
through a short pad of ce1lite and washed with warm MeOH and concentrated.
The residue was purified by flash column chromatography using gradient elution
(SiO2, ethyl acetate/MeOH 10:1, v/v) to afford 17 (30 mg, 68%) as yellow oil. Yield
68%, yellow oil, Rf = 0.6 (ethyl acetate/methanol 5:1). 1HNMR (500 MHz, MeOD)
δ 3.72 (dd, J = 9 Hz, 1H), 3.64 (dd, J = 3.5, 10.5 Hz, 1H), 3.45–3.53 (m, 2H), 3.29
(t, J = 10 Hz, 1H), 3.11 (t, J = 10 Hz, 1H), 2.94 (dd, J = 5, 10 Hz, 1H), 2.72–2.77
(m, 1H), 2.52–2.58 (m, 1H), 2.19–2.22 (m, 1H), 2.16 (d, J = 10 Hz), 1.43–1.50 (m,
2H), 1.29–1.33 (m, 10H), 1.20 (t, J = 5 Hz, 3H), 0.91 (t, J = 5 Hz, 3H); 13C NMR
(126 MHz, MeOD) δ 78.23, 69.85, 68.35, 66.47, 65.16, 63.81, 55.40, 51.61, 30.63,
28.38, 28.21, 28.04, 26.25, 22.62, 21.33, 13.06, 12.06. HRMS (ESI): m/z calculated
304.4430 for [C16H33NO4 + H]+, found 304.2459.

Synthesis of 6-O-butyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol (18)

Compound 18 was prepared from 6-O-butyl-2,3,4-tri-O-benzyl-N-octyl-1,5-
dideoxy-1,5-imino-D-glucitol 16 (70 mg, 0.122 mmol) as described in the prepara-
tion of 6-O-ethyl-N-octyl-1,5-dideoxy-1,5-imino-D-glucitol 17, giving 18 (22 mg,
59%) as yellow oil. Yield 59%, yellow oil, Rf = 0.8 (ethyl acetate/methanol 5:1). 1H
NMR (500MHz,MeOD) δ 3.69 (d, J= 10Hz, 1H), 3.59 (dd, J= 10, 5Hz, 1H), 3.40–
3.46 (m, 2H), 3.23 (t, J = 10 Hz, 1H), 3.11 (t, J = 10 Hz, 1H), 2.95 (dd, J = 10, 5 Hz,
1H), 2.76 (m, 1H), 2.55 (m, 1H), 2.24 (d, J = 5 Hz, 1H), 2.15–2.20 (m, 1H), 1.51–
1.54 (m, 2H), 1.41–1.43 (m, 2H), 1.26–1.38 (m, 12H), 0.96 (t, J = 5 Hz, 3H), 0.88
(t, J = 5 Hz, 3H); 13C NMR (126 MHz, MeOD) δ 76.32, 73.17, 69.23, 67.12, 64.62,
64.16, 58.3, 55.3, 30.49, 30.39, 28.23, 27.86, 25.29, 22.02, 21.15, 18.01, 11.88, 11.72.
MS (ESI): m/z calculated 349.2723 for [C18H37NO4 + NH4]+, found 349.2746.
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