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CDs are cyclic polymers of D-glucose (1), and CD6 to CD8 (1) (Fig. 
1A) are produced enzymatically in bulk (2) making them easily 
available and non-toxic (3–5). These properties, along with the 
ability of CDs to capture small molecules within their hydrophobic 
central cavity, have permitted diverse applications in industry, 
medicine, and consumer products. Larger CDs, up to CD35, have 
been characterized (6). Conversely, the smallest known CD 
formed through chemical synthesis is CD5 (2) (6). The 
cyclodextrins CD3 (3) and CD4 (4) have been discussed without 
the actual compounds being known. French said, in 1957, that 
space-filling models of 3 to CD-infinity could be constructed when 
the glucose units had conformational flexibility, and that the 
smallest CD produced by treatment of a glycogen with Bacillus 
macerans amylase was most likely CD6 (8). In 1970, Sundararajan 
reported, based on computational calculations, that CDs having 
fewer than six glucoses could not be cyclized because of steric 
overlap (9). However, Nakagawa synthesized 2 in 1994 (7). In the 
following year, Immel indirectly concluded the difficulty of the 
synthesis of 3 and 4 due to the strained glucose units (10). Despite 
synthesis of CD-like molecules with smaller rings (11–14), 
synthesis of 3 and 4 remains an unmet goal. Here, we present 
chemical syntheses of these small cyclodextrins. 

In our synthesis of 3 and 4, one of the decisive factors for suc-
cess was the adoption of the 3,6-O-EDB bridge (Fig. 1B), which 
was introduced to improve α-selective glycosylation using 5 (15, 
16). The bridge in 5 arches over the β-face of the pyranose ring, 
and hinders the β-face approach of an alcohol to produce the cor-
responding product with high α-selectivity under kinetic condi-
tions using Cp2ZrCl2 and AgClO4 in the presence of 4 Å molecular 
sieves (MS) (Suzuki glycosylation) (17). However, the bridge 

locked the pyranose ring into the 3S1 form, which directed the 2-
O-benzyl group axially toward the α-face, thus inducing adverse 
steric hindrance as in 6. The α-selectivity and the yield of gluco-
sides 7 therefore decreased using elevated reaction tempera-
tures and more sterically hindered alcohols. We suspected this 
issue could be resolved by increasing the steric hindrance at the 
β-face and reducing the overhang of the 2-O-benzyl group on the 
α-face. To satisfy both of these requirements, we planned to 
modify the pyranose conformation by introducing a longer bridge 
than the o-xylylene group. With this consideration in mind, we 
chose an EDB group. The glycosylation reaction using the EDB-
bridged glucosyl fluoride 8 afforded the corresponding glucosides 
with α-selectivity even at room temperature [supplementary ma-
terial sections 2 and 19–24 (SM-2 and 19–24)]. The reaction pro-
ceeded through the corresponding oxocarbenium ion 
intermediate, as similar α-selectivity was observed using both 8-
α and 8-β (SM-15, 16). 

The other key element for synthesizing 3 and 4 was the dis-
covery of the supple pyranose system. The most stable confor-
mation of D-glucopyranose is 4C1. On the other hand, attachment 
of a bridge between the two discontiguous oxygen atoms on the 
pyranose ring produces a bicyclic skeleton in which the newly-
formed ring modulates the conformation of the pyranose scaf-
fold. A short bridge locks the conformation into a motif with more 
axial substituents, as seen in 5 and 7 (18) and others (19–23). In 
contrast, when the O-3 and O-6 atoms were bridged by the EDB 
group, the pyranose conformation was modified by subtle struc-
tural alteration (Fig. 1C), revealed by 1H NMR coupling constants 
of 8 to 12 (SM-8–14). Thus, although the difference between the 
diols 9-α and 9-β relates only to the anomers, the conformations 
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of the pyranose moieties were in 1C4 and 4C1 forms, respectively. 
In the case of dibenzylated compounds 8 and 10 to 12, where the 
anomeric substituents were varied, the conformations of the py-
ranose systems were widely distributed, as displayed on a map of 
conformations that puts 1C4 and 4C1 forms on both poles (Cremer-
Pople-Stoddart coordinates) (24, 25). We propose the length of 
the EDB bridge is appropriate to equally balance the innate pref-
erence of glucose for the equatorial-rich 4C1 form and the ten-
dency of the bridge to transform the pyranose ring into axial-rich 
forms. The α-selectivity featured in the reaction using 8 and sup-
ple pyranose ring set the stage for synthesis of strained cyclodex-
trins. 

As 3 and 4 repeat α-1,4-linkages, we protected oxygen atoms 
other than the bonding sites in their synthesis. The EDB group al-
ready protected the O-3 and O-6 (Fig. 2A, box), so we added pro-
tection for O-2 (P2). Full deprotection of 13 yielded the desired 
product 4. We obtained the cyclized intermediate 13 by intramo-
lecular glycosylation of a linear tetramer (a) produced by glyco-
sylation of 15 and 16, alteration of protecting circumstances, and 
addition of a leaving group (L). The dimers 15 and 16 derived from 
starting monomers 18 and 19. To equip the EDB-bridge of 18 and 
19, the synthesis began with 1,2,4-orthoacetylglucose (20) (26), 
the O-3 and O-6 of which are locked in the same direction to ease 
construction of the bridge. The precursor of 3 was 21, which was 
produced by intramolecular glycosylation of a linear trimer (b) 
formed from 15 and 19. The suppleness caused by the EDB-bridge 
enabled the cyclizations leading to 13 and 21, which we suggest 
are not possible when the glucopyranosyl moieties are in the 4C1 
form. Because α-selectivity is essential for synthesizing CDs (27, 
28), we apply the fluorine atom for the leaving group based on 
the glycosylation of 8 (Fig. 1B). 

Points in synthesis of the disaccharide 17 (Fig. 2B) (SM-25–33) 
are as follows. Bisetherification of 20 with 2,2′-bis-(bromome-
thyl)-dibenzyl (29) furnished the EDB-bridged 23. Keeping the 
concentration of 20 lower than 10 mM assured reproducibility. 
The indium bromide promoted cleavage of orthoester of 23 ac-
companying β-specific introduction of the arylthio groups fol-
lowed by deacetylation provided 24 and 9-β, which were 
converted to 18 and 19, respectively. The glycosylation using 18 
and 19 provided the dimer 17 with perfect α-selectivity. We spec-
ulate that the higher selectivity observed in the use of 19 than 
that in the use of 8 (Fig. 1B) is attributed to reduction of steric 
hindrance at the α-face by alteration of the P2, which tends to 
overhang on the α-face, from the benzyl group to the sterically 
smaller allyl group. We confirmed the α-stereochemistry of 17 by 
transformation to 25, whose pyranoses were 4C1 (SM-3). 

We synthesized 4 (Fig. 2C) from dimers 15 and 16, derived 
from 17 (SM-37–43). The stereochemistry of the formed glyco-
sidic bond in tetramer 14 was undetermined because of the over-
lapped NMR signals (SM-61). However, the 1H and 13C NMR 
spectra of cyclized 13 (SM-60) were in agreement with the 

pattern of a monosaccharide indicating the unified stereochemis-
try of the four anomeric positions. These linkages were α- be-
cause 13 integrated 17 whose 1'-α-stereochemistry was 
confirmed. The reproducibility and yield of the intramolecular gly-
cosylation was poor (6/17 successes/failures). Removal of the al-
lyl (30) and EDB groups from 13 afforded 4 through 27, 
demonstrating successful removability of the EDB group by hy-
drogenolysis. Mass spectrometry of 4 indicated the desired mo-
lecular ion peak for the cyclic tetramer (SM-50). 1H NMR spectra 
revealed that the conformations of the pyranose ring of 13 and 4 
were 2H1 and between 4C1 and 2H1 (see 4 in Fig. 1A), respectively 
(SM-41, 43). The pyranose in these compounds is distorted and 
flatter than that of larger CDs (31–33). 

In the synthesis of 3 (Fig. 2D) (SM-44–48), the intramolecular 
glycosylation was more efficient than that of 4, with yield of 21 
reaching 88%. The 1H and 13C NMR, HRMS (SM-49), and X-ray dif-
fraction study of a single crystal (SM-48) confirmed that 3 was the 
cyclic trimer. The NMR spectra of 21 and 3 (SM-68, 49) were con-
sistent with equivalent sugar units and averaged pyranose con-
formations were E1 in acetone-d6 and 2SO in D2O (see 3 in Fig. 1A), 
respectively (SM-46, 48). The X-ray diffraction study of a single 
crystal of 3 indicated that the conformations of the three pyra-
noses were different (2 × 5S1 and between 4C1 and OH1) in the crys-
tal lattice (figs. S7 to S9). The interatomic distances among three 
O-4s, O-5s, and H-5s (figs. S10 to S12) suggest that there is essen-
tially no cavity in the center of the molecule when considering the 
robes of lone pairs on the O-5s. The lower field shift of H-5 in the 
1H NMR spectrum of 3 than those of CD6–8 (fig. S5) may be a re-
sult of a deshielding effect induced by the O-5s. 

The use of glucose monomers with conformational flexibly, 
which we term supple, allowed for the syntheses of the strained 
CDs 3 and 4. The creation of suppleness in sugars by addition of 
another ring is potentially applicable to the synthesis of other 
strained compounds or where function requires flexible struc-
ture. The averaged C3 and C4 symmetry observed in NMR spectra 
of 3 and 4, where multiple stereocenters exist, could be useful in 
construction of molecular catalysts or metal-organic frameworks. 
CDs have general applications which take advantage to hold of 
molecules within the central cavity. We expect the smaller cavity 
of 4 may permit selective inclusion of molecules smaller than 
those accommodated in currently available CDs. 
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Fig. 1. Structures of CDs and key 
elements enabled synthesis of 3 
and 4. (A) Because of the strained 
glucopyranose-rings in 3 and 4, 
their existence was considered 
implausible. (B) Conception of the 
EDB bridge and the α-selective 
glycosylation attributed to the 
EDB bridge. The α-selective 
glycosylation using 5, which 
possesses the 3,6-O-o-xylylene 
bridge, lacked clarity and 
effectiveness. A desire to improve 
the reaction led to the 3,6-O-EDB-
bridged 8. Glycosylation reaction 
with 8 proceeded efficiently with 
α-selectivity. (C) Suppled 
pyranose by formation of the 3,6-
O-EDB bridge. Because the 
conformation of the EDB-bridged 
compounds is not constant, we 
hesitated to adopt the 
conventional notation of 
carbohydrates based on the chair 
form. For the synthesis of 8 to 12, 
see SM-9–14. For the 
determination of each 
conformation, see SM-8–14. Cp, 
cyclopentadienyl; EDB, 1,1′-
(ethane-1,2-diyl)dibenzene-2,2′-
bis(methylene); MS, molecular 
sieves. 
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Fig. 2. Synthesis of 3 and 4. The colors in the frame around “G” indicate the corresponding reactions in (A to D). The pyranose 
conformations of 3, 4, 13, 21, and 25 were determined on the basis of 1H NMR coupling constants (SM-48, 43, 41, 46, and 35, 
respectively). In the ORTEP drawing, waters of crystallization were omitted. For description of protecting groups, Px, see SM-
5. DMP, 2,6-dimethylphenyl.  
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