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ABSTRACT: An efficient strategy for the asymmetric synthesis of
pyrrolidines with vicinal quaternary−tertiary or quaternary−quater-
nary stereocenters was established. A “memory of chirality”
intramolecular SN2′ reaction of α-amino ester enolates with allylic
halides provided a functionalized pyrrolidine with excellent dia- and
enantioselectivity. This method features construction of stereochemi-
cally enriched pyrrolidines in a single operation through the influence
of a single chiral center presented in substrates.

The stereoselective construction of chiral pyrrolidine rings
with multiple stereocenters is a challenging task in

organic synthesis.1 A diverse array of alkaloid natural products
and bioactive molecules feature vicinal quaternary−tertiary or
quaternary−quaternary stereocenters in the pyrrolidine system
(Figure 1).2 For the enantioselective synthesis of such sterically

demanding structures, considerable progress has been made
mainly using the catalytic asymmetric 1,3-dipolar cycloaddition
of azomethine ylides.1c,d Other enantioselective approaches has
been relatively underdeveloped.
Approaches toward the enantioselective construction of

pyrrolidine rings by intramolecular cyclization have attracted a
certain degree of attention. One notable approach that has met
with success is Kawabata’s intramolecular alkylation of α-
amino acid derivatives (Scheme 1a)3 that yielded a pyrrolidine
ring with a single quaternary stereocenter, where the chirality
of the amino acid is preserved to a high extent via dynamic

axial chirality of transient enolate intermediates. Kawabata et
al. extended this phenomenon of memory of chirality (MOC)4

to intramolecular conjugated addition reactions to prepare
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Figure 1. Pyrrolidine natural products featuring vicinal quaternary−
tertiary or quaternary−quaternary stereocenters.

Scheme 1. Enantioselective Construction of a Pyrrolidine
Ring Using MOC Phenomena
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pyrrolidine with vicinal quaternary−tertiary stereocenters
(Scheme 1b).5 The enantiopurity of the obtained products
was high (91% ee), while the diastereoselectivity was only
modest. Recently, we developed a strategy for the asymmetric
5-exo-dig cyclization of α-amino ester enolates onto hetero-
substituted alkynes via the MOC concept (Scheme 1c).6 This
method provided access to the Cα-substituted proline with
heterosubstituted methylene at the β-position. This trigonal
functionality was eventually transformed into a quaternary
stereocenter during the synthesis of hasubanan alkaloids,
including runanine (Figure 1).6a

Herein, we report the development of an intramolecular
MOC SN2′ reaction of acyclic α-amino ester to form
pyrrolidines with vicinal quaternary−tertiary or quaternary−
quaternary stereocenters (Scheme 1d). This reaction is similar
in concept to the previously reported intramolecular MOC
alkylations.3 However, our approach provides value in addition
to forming pyrrolidine rings because the intramolecular SN2′
reaction of allylic electrophiles would result in a versatile vinyl
functionality and create a new carbon stereocenter generally
with excellent stereocontrol because of allylic strain.7

To explore the feasibility of this strategy, model substrate 1
was designed (Scheme 2). A Boc group was used as the

protecting group on the nitrogen because it is preferable in the
generation of an axially chiral amino ester enolate inter-
mediate.4 Compound 1 was prepared from L-phenylalanine
tert-butyl ester in five steps without noticeable racemization, as
shown in Scheme 2. The introduction of an alkyl substituent
on the amino group was realized by Fukuyama−Mitsunobu
alkylation.8 For this, the α-amino group of phenylalanine was
first condensed with the 2,4-dinitrobenzenesulfonyl (DNs)
group to afford 2. Under the Mitsunobu reaction conditions, 2
was coupled with (E)-5-hydroxypent-2-en-1-yl acetate (3).
The DNs group was then replaced with the Boc group using a
one-pot operation to provide 5. The acetate group of 5 was
removed, and the resulting allyl alcohol was halogenated to
provide substrates 1a and 1b, which were enantiomerically
pure (>99%).
After several bases and conditions were screened, we

obtained a promising result with KHMDS. When the allyl

chloride substrate 1a was treated with KHMDS at −78 °C in
THF, the desired SN2′ product 6 was provided in a high yield
and dr with 92% ee (Table 1, entry 1). The allyl bromide 1b

furnished product 6 with an enantiopurity higher than that
obtained from 1a, but the diastereoselectivity was much lower
(entry 2 vs entry 1). The low diastereoselectivity and instability
of the allyl bromide substrate 1b led us to optimize the
reaction conditions with allyl chloride 1a as a substrate.
Attempts to optimize the reaction conditions with respect to

solvent were conducted. The reaction performed in DMF
provided 6 with almost perfect chirality preservation (>99%
ee), albeit with diminished diastereoselectivity (entry 3). When
the reaction was performed in a THF/DMF mixture (1:1), 6
was obtained with a nearly perfect ee value (>99%) and an
excellent dr (16:1) value (entry 4). Applying these conditions
to a larger scale reaction led to similar results (entry 5).
Additionally, under the conditions of entry 4, the cis geometric
isomer of 1a also provided 6 with >99% ee in a slightly lower
yield (85%) and diastereoselectivity (10:1).
With the optimized reaction conditions in hand, we explored

the substrate scope (Scheme 3). The substrate possessing an
N-Cbz protecting group underwent the reaction to provide
pyrrolidine 8a with excellent chirality preservation in a
significantly increased diastereoselectivity compared to that
of N-Boc-protected substrate 1a. The substrate with an N-Bz
protecting group furnished 8b with diminished enantio- and
diastereoselectivity.
The next exploration of the scope of the reaction under the

identified conditions focused on the influence of the α-
substituent of α-amino esters on the degree of chirality
preservation. With a Boc protecting group, α-amino esters
bearing various α-alkyl groups were smoothly cyclized to afford
the pyrrolidine products in high yield with excellent ee (8c−
8f). Even substrate 7f bearing an additional carbonyl group at
the γ-carbon afforded product 8f in high yield with excellent
ee. Only 7g, prepared from methionine, provided product 8g
in diminished yield and ee. Substrate 7h with the ethyl ester
group gave a dr value much lower than that of substrate 1a
with the bulkier tert-butyl ester group, suggesting that the
bulkiness of the ester group has a significant effect on the
diastereoselectivity. Notably, products bearing vicinal quater-

Scheme 2. Representative Scheme for the Synthesis of
Substrates 1a and 1ba

aReagents and conditions: (a) (i) NaHCO3 (aq), CH2Cl2, rt, 1 h; (ii)
DNsCl (1.1 equiv), pyridine (3 equiv), CH2Cl2, rt, 12 h, 92%; (b) 3
(1.1 equiv), DIAD (1.5 equiv), PPh3 (2 equiv), benzene, rt, 1 h, 99%;
(c) thioglycolic acid (1.5 equiv), Et3N (3 equiv), CH2Cl2, rt, 2 h, then
Boc2O (2 equiv), Et3N (2 equiv), rt, 48 h, 95%; (d) K2CO3 (2 equiv),
MeOH, rt, 2 h; (e) PPh3 (2 equiv), hexachloro-2-propanone (1.5
equiv, for 1a) or CBr4 (1.5 equiv, for 1b), CH2Cl2, rt, 2 h, 96% for 1a
(two steps), 97% for 1b (two steps). DNsCl = 2,4-dinitrobenzene-
sulfonyl chloride, DIAD = diisopropyl azodicarboxylate.

Table 1. Optimization of Reaction Conditionsa

entry substrate
solvent
(0.02 M)

temp
(°C)

yield
(%)b drc

ee of 6
(%)d

1 1a THF −78 97 19:1 92
2 1b THF −78 89 6:1 95
3 1a DMF −60 82 10:1 >99
4 1a THF/DMF

(1:1)
−60 93 16:1 >99

5e 1a THF/DMF
(1:1)

−60 94 14:1 >99

aReactions were run with 0.1 mmol of 1. bCombined yield of 6 and
its diastereomer. cThe ratio was determined by 1H NMR of the crude
mixture. The absolute and relative stereochemistry were tentatively
assigned by analogy to 8c. dThe enantiomeric excess was determined
by chiral HPLC analysis. eThe reaction was run with 1.0 mmol of 1a.
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nary−quaternary stereocenters were readily obtained from the
trisubstituted allylic substrates in high yield and stereo-
selectivities (8i and 8j). This result is of particular interest
because the alkyl substituent at the R4 position can retard the
SN2′ reaction by several factors such as steric interference with
the enolate nucleophile and ground state stabilization of the
double bond.7 To the best of our knowledge, this is the first
successful example of applying the concept of MOC alkylation
for the formation of vicinal quaternary−quaternary stereo-
centers with a high level of enantio- and diastereoselectivities.9

The absolute configuration of 8c was determined to be
2R,3S by the X-ray crystallographic analysis of its N-4-
bromobenzoate analogue (see the Supporting Information
for details). The absolute stereochemistry and relative
stereochemistry of 8a, 8b, and 8d−8j were tentatively assigned
by analogy with 8c. On the basis of the stereochemical
outcome and hypothesis proposed by Kawabata et al.,3 the
mechanism of MOC cyclization was suggested as shown in
Scheme 4. The 2R configuration indicated that the MOC
cyclization occurred with retention of configuration at the Cα-
stereogenic center and suggested that the reaction proceeded
through axially chiral enolate C instead of ent-C. The
formation of enolate C by deprotonation of conformer A
could be more favorable over the formation of ent-C from
conformer B, which is another stable conformer of 7.
Deprotonation of B would be unfavorable because of the
steric interaction between the bulky KHMDS base and the N
protecting group as stated previously.3 Major diastereomer 8
arises from cyclization of enolate conformer C-I, which
minimizes steric repulsions. The other competing transition
conformer C-II would experience steric compression between
ester enolate and allyl chloride moieties.

In conclusion, we have developed an intramolecular MOC
SN2′ reaction of acyclic α-amino ester to form pyrrolidines
with vicinal quaternary−tertiary or quaternary−quaternary
stereocenters. Vicinal stereocenters were installed with
excellent dia- and enantioselectivity. Various functional groups
were well tolerated. The attraction of this method lies in the
asymmetric construction of pyrrolidines with vicinal stereo-
centers in a single operation through the influence of a single
chiral center in the substrate. In addition, the synthetically
useful vinyl functionality was introduced into the new
stereocenter. Applications of this general methodology to the
asymmetric synthesis of complex alkaloids are under
investigation.
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Scheme 3. Substrate Scope of the MOC SN2′ Reactiona

aReactions were run with 0.1 mmol of 7. The yields shown are
isolated yields. The dr values were determined by 1H NMR analysis of
the crude mixture. The ee values were determined by chiral HPLC.
bThe ee values were determined after transformation to their N-
benzoate analogue.

Scheme 4. Proposed Mechanism
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