Pyrano[2,3-b]dioxanes through Bisacetalic Annulation of 2-Ketosugars to Glycol^[‡]

Eckehard Cuny,^[a] Frieder W. Lichtenthaler,*^[a] and Hans J. Lindner^[a]

Keywords: Carbohydrates / Ulosyl bromides / Glycosidation / cis-1,4,5-Trioxadecalins / Trioxaspiro[4,5]decanes

The utility of 2-ketohexosyl ("ulosyl") bromides has been extended to the straightforward generation of *cis*-fused pyrano[2,3-*b*]dioxanes (1,4,5-trioxadecalins) of type **11** and **13** by β -specific and α -selective glycosidation with glycol, and subsequent intramolecular hemiketalization. Mild basic conditions elicit highly stereoselective rearrangements to trioxadecalinones **22–25**, representing the structurally and configurationally correct framework of steroidal natural products in which the sugar portion is doubly glycosidically linked to

the aglycon. Exposure of **11** or **13** to mineral acid results in an essentially stereospecific contraction of the pyranoid ring to yield trioxaspiro[4,5]decanes. Mechanistic considerations of the unusual rearrangements observed are discussed in light of available experimental facts and the scarce existing analogies.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)

Introduction

Glycos-2-ulosyl bromides of type **2** have recently become nearly as accessible as the usual glycosyl halides,^[1] as they may be prepared in a straightforward one-step process from readily available^[2] 2-hydroxyglycal esters (**1**); the conversion simply consists of reaction with *N*-bromosuccinimide or bromine in the presence of methanol^[1] (Scheme 1). The ease with which the transformation $\mathbf{1} \rightarrow \mathbf{2}$ can be effected (30 min, room temperature) is as remarkable as the yields attainable (80–90%) and the feasibility with essentially any blocking group pattern.

Acylated ulosyl bromides^[1,4] – unlike their reactive benzylated analogs^[3] – are shelf-stable, crystalline substances with comparatively low anomeric reactivity, such that the tri-*O*-benzoyl derivative **2**, for example, may be recovered from a methanol solution at ambient temperature to react with cyanoborohydride by carbonyl addition to provide the 2-OH-free glucosyl bromide **3**.^[5] Anomeric reactivity, though, can be substantially enhanced by either conversion into ulosyl iodides, e.g. **2** \rightarrow **4**,^[1] or by employing benzyl instead of acyl protecting groups.^[3]

As the electron-withdrawing 2-keto group in ulosyl bromides strongly favors direct $S_N 2$ displacement of the anomeric bromine by *O*-nucleophiles, Koenigs–Knorr type glycosidations proceed in an essentially β -specific man-

 [a] Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstr. 22, 64287 Darmstadt, Germany Fax: (internat.) + 49-6151-166674 ner,^[1,3,4] e.g. $2 \rightarrow 5$. Since reduction of the β -D-glycosiduloses formed is highly manno-selective,^[3,6] the two-step-sequence, $2 \rightarrow 5 \rightarrow 6$, has evolved into an expedient procedure for the generation of β -D-mannosides, the "ulosyl donor approach", which has successfully been applied to the synthesis of β-D-mannose-oligosaccharides up to the hexasaccharide level, [3,7] as well as to the generation of β -Lrhamnosidic linkages.^[8] A gluco-selective reduction may also be accomplished in a straightforward manner by using borane as the reductant, e.g. $5 \rightarrow 7$, providing 2-OH-free β -D-glucosides.^[6] As α-bromoketones, ulosyl bromides are also amenable to Reformatsky reactions, leading to C-glycosides on exposure to zinc and aldehydes $(2 \rightarrow 8)$.^[9] Modest though is the α -selectivity attainable in glycosidations, which result in α,β -mixtures that require chromatographic separation, e.g. $2 \rightarrow 9 (53\%)$.^[10]

An application of ulosyl bromides that has not been exploited is their reaction with vicinal diols for which pyranodioxanes of type **11** or **13** are to be expected, if glycoside formation with one glycol-OH is followed by ring closure with the other to a cyclic hemiacetal. As such products carry an OH group at the ring junction, they contain the structural and conformational elements of a series of cardioactive cardenolides such as asclepin, calotropin,^[11] and its 7,8-dehydro analog humistratin,^[12] for which the bisacetalic annulation of a 2-ketohexose to the steroid diol aglycon is all but synthetically solved.

To determine whether the "ulosyl donor approach" may be implemented to doubly link a hexosulose to a vicinal diol through an acetal (glycosidic) and a hemiketal bond, we have undertaken exploratory studies, which are the subject of this report. They have not only established the

^[‡] Sugar-Derived Building Blocks, 35. Part 34: F. W. Lichtenthaler, T. Weimer, S. Immel, *Tetrahedron: Asymmetry* 2004, 15, 2703–2709.

Scheme 1. Preparative utility of ulosyl bromides

feasibility of obtaining *cis*-fused pyrano[2,3-*b*]dioxanes in a concise fashion, but uncovered their exceptional proclivity of undergoing unique, stereospecific rearrangements.

Results and Discussion

When subjected to glycolysis with ethylene glycol in the presence of silver carbonate, the ulosyl bromide **2** smoothly gave the *cis*-fused trioxadecalin **11** in a nearly quantitative yield; the same reaction with 1,2-ethanedithiol provided the dithia-analog **12** (79%) as readily. Both products (**11** and **12**) were obtained in good crystalline form (Scheme 2). No *trans*-fused products could be detected by TLC or ¹H NMR

spectroscopy in either mother liquor. Thus, in both cases, β -specific glycosidation was followed by addition of the second OH or SH group to the 2-carbonyl from the upper side to elaborate a *cis*-annulated dioxane or dithiane, respectively. Obviously, the *e,a*-linkup of these rings with the ring junction substituent (OH) in a diaxial disposition to the pyran ring oxygen is considerably more favored than an *e,e*-fusion with the OH group in a gauche arrangement relative to the pyranoid oxygen.

When the glycosidation of ulosyl bromide 2 with glycol was conducted in an α -selective manner, either with silver triflate in CH₂Cl₂ or, preparatively more advantageous, by stirring in dimethylformamide at ambient temperature, mixtures of β -*cis* (11) and α -*cis* isomers (13) were obtained

Scheme 2. Glycosidations of ulosyl bromide 2 with glycol and 1,2-ethanedithiol, and subsequent cyclo-hemiketal formation

(Scheme 2), from which **13** could be separated by crystallization from diethyl ether in moderate yield (36%).

Whilst ¹H and ¹³C NMR spectroscopic data for **11** and 13 are clearly consistent with their pyrano[2,3-b]dioxane structure, they are not sufficient for differentiating between cis- and trans-decalinoid annulation. Strong indications for the cis-fusion of the two rings, however, can be derived from force field calculations of the hemiketal formation enthalpies,^[13] clearly revealing that the β -*cis* isomer is favored by more than 10 kcal/mol over the β -trans-annulated product. For the α -cis and α -trans isomers, the energy is even higher.^[13] Experimental validation for the *cis*-fusion of the two rings in 11 was provided by its conversion into the 1,2-*O*-ethanediyl β -D-mannoside **16**, by removing the tertiary OH group through the established^[14] hemiketal reduction with triethylsilane/BF₃-etherate (Scheme 3). This reaction, comprising hydride addition to the intermediate carboxonium ion generated by BF3-mediated cleavage of the hemiketal C-O bond, proceeds in two directions: abstraction of the OH group through intermediate 14 to give $16^{[15]}$ and, alternatively, cleavage of the dioxane C-O bond to oxocarbonium ion 15, which on hydride addition elaborates the hydroxyethyl β -D-glucoside 17. The resulting mixture, 3:1 in favor of the mannoside, could readily be separated, and the configurations of the products could unambiguously be established by their pyranoid ring couplings.

Scheme 3

Pyranoid Ring Rearrangements

Whilst the *cis*-trioxadecalinols **11** and **13** are stable crystalline compounds, in solution though, notably under slightly basic conditions, the dioxanoid hemiketal link reveals a pronounced tendency to open (**11** \gtrsim **20**), hence giving ensuing reactions via the free 2-carbonyl group. Accordingly, brief exposure of **11** at ambient temperature to tetrabutylammonium acetate in dichloromethane afforded the decalinone **22** (72%), obviously generated through elimination of benzoic acid (**20** \rightarrow **21**) and subsequent migration of the enolic benzoyl group (arrows in **21**) thereby liberating the underlying carbonyl group. The same product could also be obtained by Ag₂CO₃-mediated glycosidation of glucose-derived^[16] enolone bromide **19** (82%) – a course not unexpected in view of the previously observed^[17] formation of an analogous product (with two methoxy groups instead of the annulated dioxane ring) on glycosidation with methanol (Scheme 4).

Scheme 4. Reagents and conditions: (a) Bu_4NOAc , CH_2Cl_2 , 1.5 h, room temperature, $\rightarrow 22$ (72%); (b) Bu_4NOAc , MeCN, 30 min, room temperature, $\rightarrow 22$ (29%) and 25 (34%); (c) Ag_2CO_3 , glycol, CH_2Cl_2 , 2 h, room temperature, $\rightarrow 22$ (82%); (d) K_2CO_3 , MeOH, 15 min, room temperature, 75%

Surprisingly, when 11 was exposed to Bu_4NOAc in a more polar solvent such as acetonitrile (30 min, room temperature), the initial elimination of benzoic acid $20 \rightarrow 21$ was partially followed by a second one involving the terminal OBz group to give a dienolone ester ($21 \rightarrow 24$), which on hemiketalization, $O-8a \rightarrow O-8$ -benzoyl shift, and protonation at the exocyclic double bond (arrows in 24) led to the dihydropyranone 25. De facto, an approximate 1:1 mixture of 22 and 25 was obtained, indicating that elimination of benzoic acid from the terminal positions in intermediate 21 was not complete under the conditions employed.

The *cis*-trioxadecalinones **22** and **25**, thus readily accessible, possess a unique array of three differently functionalized carbonyl groups, and, due to their close structural and configurational relationships to the sugar portion of the *Asclepiadaceae* cardenolides labriformidine^[18] and

FULL PAPER

uscharidine,^[11] and the antibiotic spectinomycin,^[19] are deemed to be of particular value for the construction of these products in an enantiomerically pure form.

Ring Contractions to spiro-Trioxadecanes

When exposed to BF₃/triethylsilane in dichloromethane, **11** generated the carboxonium ion intermediate **14**, which was then trapped by the hydride ion to give β -D-mannoside **16** (Scheme 3). Under stronger acidic conditions such as 70% aqueous HClO₄ in acetic anhydride, or in dichloromethane containing benzoic anhydride, a highly stereoselective ring contraction to the spiro-trioxadecanes **29** and **30** was elicited, isolable in yields of 94 and 83%, respectively (Scheme 5). The sequence of reactions involved are thought to be initiated by protonation of the hemiketal-OH in **11**, the subsequent loss of water entailing the pyranoid ring oxygen to migrate (arrows in **26**), whereupon the oxygen-stabilized carbocation **27** is trapped by acetate or benzoate. Although an antiperiplanar *a*,*a*-disposition in **26** of the pyranoid oxygen and the water to be expelled favors the course of the reaction, it is not a stereochemical requirement, as the α -cis-analog **13**, with an *a*,*e*-arrangement of

Scheme 5. Acid-induced pyranoid ring contraction of trioxadecalins 11 and 13 to trioxaspiro[4,5]decanes

Figure 1. Perspective drawing and atomic numbering of 1,6,9-trioxaspiro[4,5]decane **30** as determined by X-ray crystallography; relevant dihedral angles around the spiro carbon (C-5): O1-C5-O6-C7 -63.6, O1-C5-C10-O9 +69.5, O1-C5-C10-O11 -167.7, O1-C5-C4-O40 -153.1^[23]

the groups involved in ring contraction, reacted as readily to form the isomeric spiro-trioxadecane **28** (84%).

This ring contraction, in the essentially stereospecific course observed, appears to be without precedence, albeit distantly related analogies exist in the formation of 2,5-anhydro-D-mannose on nitrous acid induced deamination of glucosamine^[20] and in the solvolysis of methyl 2-*O*-(*p*-nitrophenylsulfonyl)- α -D-glucopyranoside in water containing sodium acetate.^[21]

The configurations of the spiro compounds 28-30 could not be determined on the basis of ¹H and ¹³C NMR spectroscopic data alone, as the orientation at the tertiary ring junction remained unresolved. Proof of its stereochemistry at the spiro carbon in 30, however, could be secured chemically by conversion – through HBr/acetic acid treatment (\rightarrow 31) and subsequent reductive debromination – into 1,2-*O*-ethanediyl β -D-fructofuranoside (32). It was unequivocally characterized as the β -anomer by its $J_{3,4}$ coupling constant of 6.6 Hz, which correlated well with those of a variety of β -fructofuranoses, yet was in distinct contrast to those of the α -furanoid anomers ($J_{3,4} = 1.7-2.2$ Hz).^[22] Further unequivocal proof for this assignment as well as for the configuration of the dioxane ring substituent, was provided by an X-ray structural analysis of tetrabenzoate **30** (Figure 1): the furanoid ring adopts a ⁵E conformation with only slight distortions toward the ⁵T₀ form, whilst the dioxane portion, based on ring dihedral angles in the $52-59^{\circ}$ range, assumes a standard chair conformation with the benzoyloxy group in an axial disposition. Another distinctive feature is represented by the fact that the furanoid ring oxygen and both of the benzoyloxy groups at C-4 and C-10 are in a near antiparallel arrangement, obviously a result of the operation of **30** from **11**, whereby intermediate **27** is captured by benzoate from the site opposite to the furanose oxygen.

Pyranothiazoles

As α -haloketones are known to readily react with thiourea to form aminothiazoles,^[25] which are of interest as pharma-intermediates, ulosyl bromide **2** and the enolone analog **19** were exploited for the generation of enantiomerically pure pyrano-thiazolamines. Indeed, when equimolar parts of thiourea and **2** reacted in acetone solution at room temperature, the anomeric bromine was instantaneously displaced by sulfur to give the β -thioamidine, isolated as

FULL PAPER

the hydrobromide **33** in 88% yield (Scheme 6). Removal of HBr by ion exchange resin left the β -glyosidulose intact (TLC), yet quantitative ring closure was effected on acetylation with pyridine/acetic anhydride (20 min, 0 °C) to yield the acetimido-thiazole **34** (91%), readily characterized structurally by its ¹H and ¹³C NMR spectroscopic data. Only on more vigorous exposure to the acetylation conditions (5 h, 50 °C) did tautomerization take place to give the acetamido-thiazole **35**.

The reaction of thiourea with the enolone bromide 19, unexpectedly, took a different course: a thiouronium bromide was obtained in 75% yield, which was analyzed correctly to be the pyrano-thiazol structures 36 or 37, yet was devoid of optical rotation and had NMR spectroscopic data, notably large olefinic couplings of 15.6 Hz, that were incompatible with 36 or 37. Closer inspection of the ¹H and, in particular, the ¹³C NMR spectra revealed the product to be the hydrobromide of aminothiazolone (38. HBr) instead. The mechanism involved in this multistep reaction sequence can be understood in terms of an initial S-glycosidation of 19 by thiourea, followed by cyclization to the pyrano-thiazolamine hydrobromide 36 and subsequent tautomerization to 37, which - as a 2*H*-pyran lacking electronwithdrawing stabilizing substituents - undergoes ring opening by a cycloreversion process (arrows in 37). Although being a unique example, the electrocyclic ring opening of destabilized 2H-pyrans has been observed previously;^[26] there is even a hexose-derived 2-ethoxy-2H-pyran that underwent ring opening to a hexadienone in an analogous fashion.^[27]

Conclusion

The chemistry detailed in this report describes the utilization of 2-ketohexosyl ("ulosyl") bromide 2 – conveniently accessible and already amenable to a variety of preparatively useful reactions such as the "ulosyl donor approach" to β -D-mannosides – for the straightforward generation of the *cis*-annulated pyrano-dioxanes (or 1,4,5-trioxadecalins) **11** and **13** by α - and β -selective glycosidations with glycol, followed spontaneously by cyclo-hemiketalization. Salient features of the ensuing chemistry of **11** comprise highly stereoselective rearrangements to spiro-trioxadecanes as well as to *cis*-trioxadecalinones, the latter comprising the structural and configurational framework of a variety of cardenolides in which the sugar portion is doubly annulated to the aglycon. This approach is thus deemed to be of particular relevance towards their synthesis.

Experimental Section

General: Melting points, determined with a Bock hot-stage microscope, are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 polarimeter at 20 °C with a cell of 1 dm path length; concentration (*c*) in g/100 mL and solvent are given in parentheses. ¹H and ¹³C NMR spectra were recorded on a Bruker ARX-300 spectrometer in the solvents given. Mass spectra were acquired on Varian MAT 311 and MAT 212 spectrometers. Microanalyses were determined with a Perkin–Elmer 240 elemental analyzer. Analytical thin layer chromatography (TLC) was performed on precoated Merck plastic sheets (0.2 mm silica gel 60 F₂₅₄) with detection by UV (254 nm) and/or spraying with H₂SO₄ (50%) and heating. Column and flash chromatography was carried out on Fluka silica gel 60 (70–230 mesh) with the specified eluents.

1. cis-1,4,5-Trioxadecalins^[28]

(4aR,6R,7R,8S,8aS)-7,8-Bis(benzoyloxy)-6-(benzoyloxymethyl)-8ahydroxy-1,4,5-trioxa-cis-decalin (11): A mixture of Ag₂CO₃ (3.30 g, 12 mmol), ethylene glycol (0.75 g, 12 mmol), CH₂Cl₂ (100 mL), and molecular sieves (4 Å, 3 g) was stirred at ambient temperature for 15 min. Ulosyl bromide 2 (5.53 g, 10 mmol) was then added and stirring was continued for 5 h in the dark. Filtration through kieselguhr and evaporation of the filtrate in vacuo gave a crystalline residue, which was recrystallized from EtOAc to give 4.90 g (92%) of 11 as colorless crystals. M.p. 181–182 °C. $[\alpha]_{D}^{20} = -7.1$ (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 3.57, 4.33 (two m, 2 H each, 2-H $_2$ and 3-H $_2),$ 4.10 (ddd, 1 H, 6-H), 4.50, 4.67 (dd, 2 H, BzOCH₂), 4.85 (s, 1 H, 4a-H), 5.24 (d, 1 H, 8-H), 5.25 (s, 1 H, OH), 5.86 (dd, 1 H, 7-H), 7.3–8.1 (m, 15 H, $3 C_6 H_5$) ppm; $J_{6,7} =$ $J_{7,8} = 10.0, J_{6,CH_2} = 2.9$ and 5.0, $J_{BzOCH_{2}gem} = 12.1$ Hz. ¹³C NMR $(CDCl_3): \delta = 59.1, 59.4 (C-2, C-3), 63.2 (BzOCH_2), 67.9 (C-7), 71.8$ (C-6), 79.1 (C-8), 90.9 (C-8a), 95.3 (C-4a), 128-134 (3 C₆H₅), 165.2, 166.2, 168.4 (3 C_6H_5CO) ppm; $J_{C-4a,H-4a} = 167.9$ Hz. MS (FD, 14 mA): m/z = 534 (100) [M⁺]. $C_{29}H_{26}O_{10}$ (534.5): calcd. C 65.16, H 4.90; found C 64.89, H 4.91.

(4aS,6R,7R,8S,8aS)-7,8-Bis(benzoyloxy)-6-(benzoyloxymethyl)-8ahydroxy-1,4-dithia-5-oxa-cis-decalin (12): To a suspension of Ag_2CO_3 (330 mg, 1.2 mmol) and molecular sieves (4 Å, 1 g) in CH₂Cl₂ (10 mL) was added consecutively ulosyl bromide 2 (555 mg, 1 mmol) and ethanedithiol, and the mixture was stirred for 1 h at ambient temperature. Filtration with suction and evaporation of the filtrate to dryness in vacuo left a crystalline residue, which was recrystallized from EtOAc to give 445 mg (79%) of 12 as colorless crystals. M.p. 198–199 °C. $[\alpha]_{D}^{20} = -29.5$ (c = 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ = 2.48, 2.74 and 3.32 (m, 2 H and one m, 2 H, 2-H₂, 3-H₂), 4.17 (ddd, 1 H, 6-H), 4.39 (s, 1 H, OH), 4.45 (s, 1 H, 4a-H), 4.47, 4.68 (dd, 2 H, CH₂OBz), 5.54 (d, 1 H, 8-H), 5.92 (dd, 1 H, 7-H), 7.3-8.1 (m, 15 H, 3 C₆H₅) ppm; $J_{6,7} = 10.0, J_{7,8} = 9.7, J_{6,CH_2} = 3.0, 4.6$ Hz. ¹³C NMR (75.5 MHz, $CDCl_3$): $\delta = 23.5, 25.4$ (C-2, C-3), 63.4 (CH₂OBz), 68.7 (C-6), 77.5 (C-4a), 78.9 (C-8a), 79.0, 80.6 (C-7, C-8), 128-133 (C₆H₅), 165.2, 166.2, 166.8 (3 BzCO) ppm. MS (FD, 10 mA): $m/z = 567 [M^+]$. C₂₉H₂₆O₈S₂ (566.7): calcd. C 61.46, H 4.63; found C 61.09, H 4.59.

(4a*S*,6*R*,7*R*,8*S*,8a*R*)-7,8-Bis(benzoyloxy)-6-(benzoyloxymethyl)-8ahydroxy-1,4,5-trioxa-*cis*-decalin (13): Freshly desiccated molecular sieves (3 Å) and glycol (620 mg, 10 mmol) were added to a solution of ulosyl bromide 2 (555 mg, 1 mmol) in dry dimethylformamide (10 mL), and the mixture was stirred at ambient temperature for 24 h. Dilution with CH₂Cl₂ (100 mL), washing with water (3 × 30 mL), drying (Na₂SO₄), and removal of the solvents in vacuo gave a syrup, which was subjected to three preparative silica plates (20 × 20 cm) and developed with benzene/EtOAc (4:1). Extraction of the middle zone ($R_f = 0.45$) with CH₂Cl₂ and evaporation to dryness resulted in a syrup, which crystallized on trituration with diethyl ether. Collection of the crystals and recrystallization from diethyl ether gave 190 mg (36%) of **13**. M.p. 137–139 °C, [α]_D²⁰ = +8.8 (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.72$, 3.94, 4.07 (m, 3 H, 2-H₂, 3-H_e), 4.32 (ddd, 1 H, 3-H_a), 4.44 (dd, 1 H, BzOCH_A), 4.60 (m, 2 H, 6-H, BzOCH_B), 4.80 (s, 1 H, 4a-H), 5.88 (dd, 1 H, 7-H), 6.20 (d, 1 H, 8-H) ppm, $J_{6,7} = 9.8$, $J_{7,8} = 9.7$, $J_{6,CH_2} = 5.5$ Hz; NOE: irradiation of the 8-H doublet at $\delta = 6.20$ ppm amplifies signals at 4.32 (3-H_a) and 4.60 (6-H) ppm. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 62.5$ (C-3), 63.0 (COBz), 66.1 (C-2), 67.9 (C-7), 68.6 (C-8), 70.6 (C-6), 93.2 (C-8a) 97.7 (C-4a) ppm; $J_{C-4a,H-4a} = 170.0$ Hz. MS (FD, 14 mA): m/z = 535 [M⁺ + 1]. C₂₉H₂₆O₁₀ (534.5): calcd. C 65.16, H 4.90; found C 65.08, H 4.85.

1,2-O-(1,2-Ethanediyl) 3,4,6-Tri-O-benzoyl-β-D-mannopyranoside (16) and 2-Hydroxyethyl 3,4,6-Tri-O-benzoyl-\beta-D-glucopyranoside (17): Boron trifluoride etherate (0.25 mL, 2 mmol) was added to a stirred suspension of cis-trioxadecalin 11 (535 mg, 1 mmol) in a mixture of acetonitrile (10 mL) and CH₂Cl₂ (2 mL); this was followed by the addition of triethylsilane (0.32 mL, 2 mmol) and stirring at ambient temperature overnight. The then clear solution was quenched by adding solid Na₂CO₃ (250 mg) and stirring for 15 min, diluted with CH₂Cl₂ (100 mL), washed with water (20 mL), and dried (Na₂SO₄), and the solvents were evaporated to dryness in vacuo. The resulting syrup consisted of an approximate 3:1 mixture of mannoside 16 ($R_{\rm f} = 0.33$ in 10:1 toluene/EtOAc) and glucoside 17 ($R_{\rm f} = 0.05$) that was separated by elution from a silica gel column (2.5 \times 30 cm) with toluene/EtOAc (10:1). The fraction eluted first gave a syrup on removal of the solvents in vacuo, which crystallized on trituration with diethyl ether/n-hexane to give 275 mg (53%) of **16**. M.p. 152–153 °C. $[\alpha]_{D}^{20} = -17.3$ (c = 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.52$ (dd, 1 H, 1'-H₂) and 2'-H₂), 3.75 and 4.29 (ddd, 1 H) with $J_{1',1'} = 11.5$, $J_{1',2'} = 3.0$, 11.5, and 12.0, $J_{2',2'} = 11.9$ Hz, pyranoid H: 4.06 (ddd, 1 H, 5-H), 4.23 (dd, 1 H, 2-H), 4.49, 4.67 (dd, 2 H, 6-H₂), 4.97 (d, 1 H, 1-H), 5.37 (dd, 1 H, 3-H), 5.96 (dd, 1 H, 4-H), 7.3-8.1 (m, 15 H, 3 C₆H₅) ppm; $J_{1,2} = 0.9$, $J_{2,3} = 3.3$, $J_{3,4} = 10.2$, $J_{4,5} = 10.0$, $J_{5,6} = 3.0$, 5.0 Hz. MS (FD, 12 mA): m/z = 518 [M⁺]. C₂₉H₂₆O₉ (518.6): calcd. C 67.17, H 5.06; found C 67.23, H 4.93.

Evaporation in vacuo of the fraction eluted second gave 95 mg (18%) of **17** as a colorless syrup. ¹H NMR (300 MHz, CDCl₃): $\delta = 3.83$ (dd, 1 H, 2-H), 4.12 (ddd, 1 H, 5-H), 4.44, 4.61 (dd, 2 H, 6-H₂), 4.65 (d, 1 H, 1-H), 5.46 (dd, 1 H, 4-H), 5.67 (dd, 1 H, 3-H), $J_{1,2} = 7.9$, $J_{2,3} = J_{3,4} = J_{4,5} = 9.5$, $J_{5,6} = 3.1$, 5.5, $J_{6,6} = 12.2$ Hz; ethylene-H₂: $\delta = 3.70$ (m, 3 H) and 3.98 (m, 1 H) ppm. MS (FD, 12 mA): m/z = 537 [M⁺], 538 [M⁺ +1].

(4a*R*,6*S*,8a*S*)-8a-Benzoyloxy-6-benzoyloxymethyl-1,4,5-trioxa-*cis*-decalin-8-one (22)

A. Glycosidation of Enolone Bromide 19 with Glycol: To a stirred slurry of Ag₂CO₃ (605 mg, 2.2 mmol) and molecular sieves (4 Å, 1 g) in CH₂Cl₂ (10 mL) was added consecutively (2R,6S)-4benzoyloxy-6-(benzoyloxymethyl)-2-bromo-2H-pyran-3(6H)-one (**19**)^[16] (860 mg, 2 mmol) and ethylene glycol (1.1 mL, 20 mmol), and stirring was continued for 2 h at ambient temperature with the exclusion of light. The mixture was then filtered through kieselguhr, and the filtrate was evaporated to dryness in vacuo to leave a syrup which crystallized on trituration with methanol to give 675 mg (82%) of **22** as colorless crystals. M.p. 136–138 °C, $[\alpha]_D^{20} = +16.3$ $(c = 1.2, \text{CHCl}_3)$. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.75, 2.85$ (dd, 2 H, 7 H₂), 3.63, 3.81 (m, 2 H, 2-H_e, 3-H_e), 4.40 (m, 3 H, 2-H_a, 3-H_a, 6-H), 4.50 (m, 2 H, BzOCH₂), 5.43 (s, 1 H, 4a-H), 7.4-8.1 (m, 10 H, 2 C₆H₅) ppm; $J_{6,7e} = 3.5$, $J_{6,7a} = 10.5$, $J_{7,7} = 16.5$ Hz. ¹³C NMR (CDCl₃): δ = 40.8 (C-7), 58.7, 61.5 (C-1, C-2), 65.6 (BzOCH₂), 68.9 (C-6), 93.5 (C-4a), 94.7 (C-8a), 128.5-134.0 (2 C₆H₅), 166.0, 166.2 (2 C₆H₅CO), 195.3 (C-8) ppm. MS (FD, 12 mA): m/z: 412 [M⁺]. C₂₂H₂₀O₈·CH₃OH (444.4): calcd. C 62.16, H 5.44; found C 62.09, H 5.36.

B. From Uloside 11 by Bu₄NOAc-Promoted Elimination of Benzoic Acid and $O-8 \rightarrow O$ -8a-Benzoyl Shift: Tetrabutylammonium acetate (900 mg, 3 mmol) was added to a solution of 11 in CH₂Cl₂ (25 mL), and the mixture was stirred for 1.5 h at room temperature. Subsequent dilution with CH₂Cl₂ (150 mL), washing with water (3 \times 50 mL), drying (Na₂SO₄), and removal of the solvent in vacuo gave a syrup, which crystallized spontaneously. Recrystallization from methanol gave 295 mg (72%) of 22, whose physical properties are identical with those of the product described under A.

(4aR,6S,8aR)-6-(Benzoyloxymethyl)-8a-hydroxy-1,4,5-trioxa-cisdecalin-8-one (23): Solid K₂CO₃ (140 mg, 1 mmol) was added to a solution of dibenzoate 22 (412 mg, 1 mmol) in dry methanol (20 mL), and the mixture was stirred at ambient temperature for 15 min. Subsequent dilution with CH2Cl2 (50 mL), washing with water (3 \times 20 mL), drying (Na₂SO₄), and removal of the solvent in vacuo left a syrup, which crystallized on trituration with methanol to give 230 mg (75%) of 23 as colorless crystals. M.p. 107-108 °C. $[\alpha]_{D}^{20} = +3.2$ (c = 1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.60, 3.06 (dd, 2 H, 7-H_2), 3.61, 3.65 (m, 2 H, 1-H_e, 2-H_e), 4.03$ (m, 1 H, 6-H), 4.40 (m, 3 H, 1-H_a, 2-H_a, OH), 4.54 (m, 2 H, BzOCH₂), 4.67 (s, 1 H, 4a-H), 7.3–8.1 (m, 5 H, C₆H₅) ppm; J_{6,7e} = 2.1, $J_{6,7a} = 12.2$, $J_{7,7} = 14.3$ Hz. ¹³C NMR (CDCl₃): $\delta = 39.9$ (C-7), 59.4, 59.7 (C-1, C-2), 65.8 (BzOCH₂), 69.3 (C-6), 90.4 (C-8a), 96.4 (C-4a), 128-133 (C₆H₅), 166.0 (C₆H₅CO), 201.0 (C-8) ppm. MS (FD, 5 mA): m/z = 308 [M⁺]. C₁₅H₁₆O₇ (308.3): calcd. C 58.44; H 5.23; found C 58.64; H 5.28.

(4aR,8aS)-8a-Benzoyloxy-6,7-dehydro-6-methyl-1,4,5-trioxa-cisdecalin-8-one (25): Tetrabutylammonium acetate (900 mg, 3 mmol) was added to a solution of glycol-uloside 11 (535 mg, 1 mmol) in dry acetonitrile (50 mL), and the mixture was stirred for 30 min at ambient temperature. Workup by dilution with CH₂Cl₂ (150 mL), washing with water (3 \times 50 mL), drying (Na₂SO₄), and removal of the solvents in vacuo gave a brownish syrup, consisting of an approximate 1:1 mixture (TLC in benzene/EtOAc, 4:1) of enone 25 $(R_{\rm f} = 0.47)$ and monobenzoate 23 $(R_{\rm f} = 0.10)$, aside from small amounts of dibenzoate 22 ($R_{\rm f} = 0.53$). Separation was effected by flash chromatography (2×15 cm column, toluene/EtOAc, 8:1) to afford, after a minor fraction (22), the enone 25 as a colorless foam on evaporation to dryness, which then crystallized on trituration with methanol to give 98 mg (34%). M.p. 152–153 °C. $[\alpha]_{D}^{20} = -8.7$ $(c = 1.1, CHCl_3)$. ¹H NMR (CDCl₃): $\delta = 2.15$ (d, 3 H, CH₃), 3.80 (m, 2 H, 2-He, 3-He), 4.50 (m, 2 H, 2-Ha, 3-Ha), 5.52 (d, 1 H, 7-H), 6.02 (s, 1 H, 4a-H), 7.3–8.1 (m, 5 H, C_6H_5) ppm; $J_{7CH_3} =$ 0.7 Hz. ¹³C NMR (CDCl₃): δ = 21.2 (CH₃), 59.3, 60.7 (C-2, C-3), 92.7 (C-8a), 94.9 (C-4a), 103.3 (C-7), 128.5-131.7 (C₆H₅), 165.0 (C₆H₅CO), 172.7 (C-6), 183.4 (C-8) ppm. C₁₅H₁₄O₆ (290.3): calcd. C 62.06; H 4.86; found C 61.81; H 4.83.

The third fraction contained monobenzoate **23** and gave, on removal of the solvents in vacuo and crystallization from methanol, 90 mg (29%). M.p. 107-108 C, identical in all respects with the product obtained by mono-debenzoylation of **22** (see above).

2. 1,6,9-Trioxaspiro[4,5]decanes

(2*R*,3*R*,4*S*,5*R*,10*R*)-3,4,10-Tris(benzoyloxy)-2-(benzoyloxymethyl)-1,6,9-trioxaspiro[4,5]decane (28): A solution of pyrano-dioxane 13 (300 mg, 0.56 mmol), benzoic anhydride (1.35 g, 6 mmol), and 70% aqueous HClO₄ (50 mL, 0.6 mmol) in CH₂Cl₂ (10 mL) was stirred at ambient temperature for 15 min. Dilution with CH₂Cl₂ (70 mL), washing with water, saturated NaHCO₃ solution, and water again (2 \times 10 mL each), drying (Na₂SO₄), removal of the solvent, and purification of the residue by flash chromatography (*n*-hexane/ diethyl ether, 1:1) gave 298 mg (84%) of **28** as a colorless, amorphous solid ($R_{\rm f} = 0.29$, diethyl ether/*n*-hexane, 2:1). $[\alpha]_{\rm D}^{20} = +27.8$ (c = 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.69$ (dd, 1 H, 7-H_e), 3.78 (dd, 1 H, 8-H_e), 4.27 (ddd, 1 H, 7-H_a), 4.45 (ddd, 1 H, 8-H_a), 4.62 (ddd, 1 H, 2-H), 4.79, 4.89 (dd, 2 H, CH₂OBz), 5.51 (dd, 1 H, 3-H), 5.76 (d, 1 H, 4-H), 6.38 (s, 1 H, 10-H), 7.1–8.3 (m, 20 H, 4 C₆H₅) ppm; $J_{2,CH_2} = 3.2$, 4.2, $J_{2,3} = 4.4$, $J_{3,4} = 0.4$, $J_{7,7} = 11.6$, $J_{7a,8a} = 12.2$, $J_{7a,8e} = 2.7$, $J_{7e,8a} = 2.9$, $J_{7e,8e} = 0$, $J_{8,8} = 11.5$ Hz. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 59.5$, 59.6 (C-7, C-8), 63.5 (CH₂OBz), 78.6 (C-3), 81.1 (C-4), 82.1 (C-2), 88.2 (C-10), 102.8 (C-5) ppm. MS (FD, 20 mA): m/z (%) = 637 (40) [M⁺ - 1], 533 (100) [M⁺ - C₆H₅CO]. C₃₆H₃₀O₁₁ (638.6): calcd. C 67.71, H 4.73; found C 67.89, H 4.58.

(2R,3R,4S,5S,10S)-10-Acetoxy-3,4-bis(benzoyloxy)-2-(benzoyloxymethyl)-1,6,9-trioxaspiro[4.5]decane (29): Acetic anhydride (1.89 mL, 20 mmol) and 70% aqueous HClO₄ (0.1 mL) was stirred into a cooled (0 °C) solution of pyranodioxane 11 (1.07 g, 2 mmol) in CH₂Cl₂ (25 mL); this was followed by removal of the ice-bath. After stirring for another 5 min, the mixture was diluted with CH_2Cl_2 (200 mL) and washed consecutively with water (2 \times 50 mL), saturated NaHCO₃ solution (2 \times 30 mL), and water (2 \times 30 mL). Drying (Na₂SO₄), evaporation to dryness in vacuo left a syrup, which was purified by elution from a short silica gel column with toluene/EtOAc (4:1) to give 1.09 g (94%) of 29 a colorless foam ($R_{\rm f} = 0.54$, toluene/EtOAc, 4:1). [α]_D²⁰ = -124.7 (c = 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.85$ (s, 3 H, AcH₃), 3.55 (dd, 1 H, 7-H_e), 3.67 (dd, 1 H, 8-H_e), 4.12 (ddd, 1 H, 7-H_a), 4.46 (ddd, 1 H, 8-H_a), 4.59 (ddd, 1 H, 2-H), 4.70, 4.81 (dd, 2 H, CH₂OBz), 5.91 (m, 2 H, 3-H and 4-H), 5.99 (s, 1 H, 10-H), 7.3-8.2 (m, 15 H, 3 C₆H₅) ppm; $J_{2,3} = 5.5$, $J_{2,CH_2} = 4.1$, 6.0, $J_{7,7} = 11.8$, $J_{7e,8e} = 0, J_{7a,8e} = 2.9, J_{7e,8a} = 3.0, J_{7a,8a} = 12.1, J_{8,8} = 11.6$ Hz. ¹³C NMR (75.5 MHz, CDCl₃): δ = 59.1 (C-7), 60.8 (C-8), 65.1 (CH₂OBz), 75.5 (C-4), 77.1 (C-3), 79.0 (C-2), 89.5 (C-10), 98.6 (C-5) ppm. MS (FD): $m/z = 576 (100) [M^+]$. $C_{31}H_{28}O_{11} (576.6)$: calcd. C 64.58, H 4.89; found C 64.51, H 4.78.

Replacement of $HClO_4$ by BF_3 -diethyl ether (1 mmol) in otherwise identical conditions similarly induced the rearrangement $11 \rightarrow 29$; yield 88%.

(2R,3R,4S,5S,10S)-3,4,10-Tris(benzoyloxy)-2-(benzoyloxymethyl)-1,6,9-trioxaspiro[4,5]decane (30): To a CH₂Cl₂ solution of pyranodioxane 11 (2.3 g, 4.3 mmol in 25 mL) was added benzoic anhydride (9.7 g, 43 mmol) and 70% aqueous HClO₄ (250 μ L, 2.9 mmol); this was followed by stirring of the mixture at room temperature for 10 min. Workup by dilution with CH₂Cl₂ (200 mL), washing with water, saturated NaHCO₃ solution, and water again (2 \times 25 mL each), removal of the solvent, and purification of the resulting syrup by elution from a silica gel column (2 \times 15 cm) first with *n*-hexane/diethyl ether (10:1) to remove impurities, then followed by diethyl ether, afforded a residue, which crystallized from diethyl ether/iPrOH to give 1.97 g (83%) of 30 as colorless crystals. M.p. 124–125 °C. $[\alpha]_{D}^{20} = -108.6$ (c = 0.8, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.61$ (dd, 1 H, 7-H_e), 3.75 (dd, 1 H, 8-H_e), 4.23 (ddd, 1 H, 7-H_a), 4.49 (ddd, 1 H, 8-H_a), 4.63 (ddd, 1 H, 2-H), 4.73, 4.85 (two 1H-dd, CH₂OBz), 5.94 (dd, 1 H, 3-H), 6.02 (d, 1 H, 4-H), 6.23 (s, 1 H, 10-H), 6.9-8.2 (m, 20 H, 4 C₆H₅) ppm; $J_{2,CH_2OBz} = 4.0$ and 6.1, $J_{BzOCH_2Gem} = 11.8$, $J_{2,3} = 5.5$, $J_{3,4} = 5.5$ 7.1, $J_{7,7} = 11.8$, $J_{7a,8a} = 12.0$, $J_{7a,8e} = 2.8$, $J_{7e,8a} = 3.0$, $J_{7e,8e} = 0$, $J_{8,8} = 11.7$ Hz. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 59.4$ (C-7), 60.1 (C-8), 65.2 (CH₂OBz), 75.5 (C-4), 77.1 (C-3), 79.1 (C-2), 89.9 (C-10), 99.1 (C-5) ppm. MS (FD): m/z = 638 (100) [M⁺]. $C_{36}H_{30}O_{11}$ (638.65): calcd. C 67.71, H 4.73; found C 67.75, H 4.74.

Recrystallization of **30** from acetone/*i*PrOH afforded well-formed, colorless prisms suitable for X-ray structural analysis (Figure 1).^[23]

Table 1. Crystallographic data for the crystal structure determination of trioxaspiro[4,5]decane 30

E :: 16 1	C U O
Empirical formula	$C_{36}H_{30}O_{11}$
Molecular mass	038.03 202(2) K
Temperature (K)	293(2) K
Wavelength (A)	0./1069 A
Crystal system, space group	orthorhombic, $P2_12_12_1$
Unit cell dimensions	
$a(\mathbf{A})$	8.844(1)
$b(\mathbf{A})$	10.343(1)
<i>c</i> (A)	34.116(4)
a (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	3120.7(6)
Ζ	4
Calculated density (Mg·m ⁻³)	1.359
Absorption coefficient (mm^{-1})	0.101
F(000)	1360
Crystal size (mm)	$0.6 \times 0.2 \times 0.1$
$\theta_{\rm max}$ (°) for data collection	22.97
Reflections collected	3324
Independent reflections $[R_{int}]$	2505 [0.0541]
Refinement method	full-matrix least-squares on F^2
Data/restraints/parameters	2505/0/424
Goodness-of-fit on F^2	1.106
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0336, wR_2 = 0.0813$
R indices (all data)	$R_1 = 0.0452, wR_2 = 0.0883$
Largest diff. peak and hole ($e \cdot Å^{-3}$)	0.190 and -0.172

(2R,3R,4S,5S,10S)-3,4-Bis(benzoyloxy)-2-(benzoyloxymethyl)-10bromo-1,6,9-trioxaspiro[4.5]decane (31): A 33% HBr solution in glacial acetic acid (5.3 mL, 30 mmol) was added to a CH₂Cl₂ solution (30 mL) of either acetate 29 (1.15 g, 2 mmol) or tetrabenzoate 30 (1.28 g, 2 mmol), and the mixture was stirred at ambient temperature for 10 min. Workup by dilution with CH₂Cl₂ (150 mL), washing with ice-water (2 \times 30 mL), saturated NaHCO₃ solution (1 \times 30 mL) and water, drying (Na₂SO₄), and removal of the solvent in vacuo left bromide 31 as a chromatographically uniform, colorless syrup ($R_{\rm f} = 0.48$, *n*-hexane/diethyl ether, 1:1). $[\alpha]_{\rm D}^{20} = -210.2$ (c =1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.67$ (dd, 1 H, 7-H_e), 3.76 (dd, 1 H, 8-H_e), 4.30 (ddd, 1 H, 7-H_a), 4.45 (ddd, 1 H, 8-H_a), 4.46, 4.79 (dd, 2 H, CH₂OBz), 4.59 (m, 1 H, 2-H), 5.79 (dd, 1 H, 3-H), 5.89 (d, 1 H, 4-H), 6.28 (s, 1 H, 10-H), 7.1-8.2 (m, 15 H, $3 C_6 H_5$) ppm; $J_{2,CH_2OBz} = 3.8$ and 6.0, $J_{BzOCH_2gem} = 11.8$, $J_{2,3} =$ 5.4, $J_{3,4} = 6.5$, $J_{7,7} = 11.9$, $J_{7a,8a} = 12.1$, $J_{7a,8e} = 2.9$, $J_{7e,8a} = 2.8$, $J_{7e,8e} = 0, J_{8,8} = 11.5$ Hz. MS (FD, 20 mA): m/z = 517 (100) [M⁺ - Br]. C₂₉H₂₅BrO₉ (597.4): calcd. C 58.30, H 4.22, Br 24.10; found C 58.38, H 4.31, Br 24.01.

1,2-*O*-(**1,2-Ethanediyl**) **3,4,6-Tri-***O*-**benzoyl-β-D-fructofuranoside** {(**2***R*,**3***R*,**4***S*,**5***R*)-**3,4-Bis(benzoyloxy)-2-(benzoyloxymethyl)-1,6,9-trioxaspiro[4.5]decane**} (**32**): AIBN (50 mg, 0.3 mmol) and Bu₃SnH (700 μL, 2.65 mmol) were added to a solution of bromide **23** (500 mg, 0.84 mmol) in toluene (25 mL), and the mixture was refluxed for 1 h. Subsequent dilution with acetonitrile (200 mL), washing with *n*-hexane (3 × 50 mL), and removal of the solvent in vacuo left a syrup, which was then subjected to elution from a silica gel column (2 × 10 cm) with *n*-hexane/Et₂O (1:1). The residue obtained on evaporation of the product-carrying eluates crystallized from diethyl ether/*i*PrOH to give 414 mg (96%) of **32** as colorless crystals. M.p. 95–96 °C. $[\alpha]_{D}^{20} = -89.8$ (c = 0.9, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 3.61$ (dd, 1 H, 1'-H_e), 3.70 (ddd,

1 H, 2'-H_a), 3.75 (dd, 1 H, 2'-H_e), 4.28 (ddd, 1 H, 1'-H_a) ppm; $J_{1',1'} = 10.0$, $J_{1'e,2'a} = 2.7$, $J_{1'e,2'e} = 0$, $J_{1'a,2'e} = 4.0$, $J_{1'a,2'a} = J_{2',2'} = 12.0$ Hz (2 ethylene-H₂); $\delta = 3.81$, 3.91 (d, 2 H, 1-H₂), 4.59 (ddd, 1 H, 5-H), 4.70, 4.78 (d, 2 H, 6-H₂), 5.57 (d, 1 H, 3-H), 5.97 (dd, 1 H, 4-H) ppm; $J_{1,1} = 11.9$, $J_{3,4} = 0.6$, $J_{4,5} = 5.0$, $J_{5,6} = 4.8$, 6.5, $J_{6,6} = 11.6$ Hz (fructose protons). ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 61.3$ (C-7), 65.6 (BzOCH₂), 66.1 (C-3), 70.1 (C-10), 77.2 (C-4), 77.5 (C-3), 79.3 (C-2), 101.1 (C-5) ppm. MS (FD, 20 mA): m/z = 518 (95) [M⁺]. C₂₅H₂₆O₉ (518.5): calcd. C 67.17, H 5.05; found C 67.06, H 5.03.

3. Pyranothiazoles

3,4,6-Tri-O-benzoyl-β-D-arabino-hexopyrano-2-ulosyl Thiouronium Bromide (33): Thiourea (0.76 g, 10 mmol) was added to a solution of ulosyl bromide 2 (5.55 g, 10 mmol) in acetone (150 mL), the mixture was stirred at room temperature for 15 min, and was subsequently evaporated to drvness in vacuo. The residue crystallized from hot EtOAc to give 4.33 g (88%) of 33. M.p. 174-175 °C (dec.). $[\alpha]_{D}^{20} = -4.6$ (c = 1.1, acetone). ¹H NMR (300 MHz, $[D_6]DMSO$: $\delta = 4.43$, 4.52 (dd, 2 H, 6-H₂), 4.68 (ddd, 1 H, 5-H), 5.40 (dd, 1 H, 4-H), 5.84 (s, 1 H, H-1), 6.09 (d, 1 H, 3-H), 7.4-8.2 (m, 16 H, $3 C_6 H_5$, NH), 9.24, 10.38, 10.84 (3 broad 1H-s, 3 NH) ppm; $J_{3,4} = J_{4,5} = 10.0$, $J_{5,6} = 2, 6, 4.4$, $J_{6,6} = 12.5$ Hz. ¹³C NMR (75.5 MHz, [D₆]DMSO): δ = 62.5 (C-6), 67.8, 73.6, 74.3 (C-3, C-4, C-5), 88.4 (C-1), 92.6 [SC(NH₂)₂], 128-133 (3 C₆H₅), 164.7, 164.9, 165.3 (3 COC₆H₅), 174.0 (C-2) ppm. MS (FD, 10 mA): $m/z = 549 [M^+ - Br]$. C₂₈H₂₅BrN₂O₈S (629.5): calcd. C 53.42, H 4.01, N 4.45; found C 53.46, H 3.87, N 4.38.

(2R,3R,4R,7aS)-6-Acetimido-3,4-bis(benzoyloxy)-2-(benzoyloxymethyl)-3,4-dihydro-2H,7aH-pyrano[5,6-d]thiazoline (34): A mixture of 33 (2.50 g, 4 mmol), pyridine (20 mL), and Ac₂O (0.4 mL) was stirred at 0 °C for 20 min, whereby a colorless precipitate formed. The mixture was subsequently poured into ice-water (50 mL), stirred for 1 h, and the crystals formed were collected by filtration to give 2.08 g (91%) of 34. M.p. 108–109 °C. $[\alpha]_D^{20} = +16.0$ (c = 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.04$ (s, 3 H, NAc), 4.16 (ddd, 1 H, 2-H), 4.44 and 4.56 (dd, 2 H, CH₂OBz), 5.31 (s, 1 H, 7a-H), 5.50 (dd, 1 H, 3-H), 5.89 (d, 1 H, 4-H), 7.2-8.0 (m, 15 H, 3 C₆H₅) ppm; $J_{2,CH_2} = 3.4, 6.6, J_{2,3} = 9.6, J_{3,4} = 9.3$ Hz. ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 23.9$ (AcCH₃), 64.1 (CH₂), 68.9, 74.7, 76.8 (C-2, C-3, C-4), 90.0 (C-7a), 96.7, 96.9 (C-4a, C-6), 128.3-133.8 (3 C₆H₅), 166.9, 166.1, 165.3, 165.0 (COCH₃, $3 \text{ COC}_6\text{H}_5$) ppm. MS (FD): $m/z = 572 \text{ [M^+]}$, 450 [M - HOBz]. C₃₀H₂₄N₂O₉S (572.6): calcd. C 62.92, H 4.23, N 4.89; found C 62.88, H 4.22, N 4.84.

(2R,3R,4R)-6-Acetamido-3,4-bis(benzoyloxy)-2-(benzoyloxymethyl)-3,4-dihydro-2H-pyrano[5,6-d]thiazole (35): A mixture of thiuronium bromide 33 (1.25 g, 2 mmol) in pyridine (10 mL) and Ac₂O (650 mg, 6.4 mmol) was stirred at ambient temperature for 2 h, resulting in a mixture of 34 ($R_f = 0.12$ in CH₂Cl₂/EtOAc, 20:1) and **35** ($R_{\rm f} = 0.30$); this was followed by heating to 50 °C for 5 h, after which conversion into 35 was complete (TLC). The mixture was subsequently stirred with ice-water. The precipitate was collected and purified by elution from a silica gel column (3 \times 30 cm) with CH₂Cl₂/EtOAc (20:1). Evaporation of the solvent in vacuo gave 580 mg (75%) of 35 as a yellowish, amorphous product. $\left[\alpha\right]_{D}^{20} =$ +5.3 (c = 1.1, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.18$ (s, 3 H, NAc), 4.66 and 4.89 (dd, 2 H, CH₂OBz), 5.08 (ddd, 1 H, 2-H), 5.85 (dd, 1 H, H-3), 6.31 (dd, 1 H, 4-H), 9.38 (broad s, 1 H, NH) ppm; $J_{2,CH_2} = 4.7$ and 7.5, $J_{2,3} = 3.6$, $J_{2,4} = 1.1$, $J_{3,4} = 3.4$, $J_{C,H_{2}gem} = 12.1 \text{ Hz}. {}^{13}C \text{ NMR} (75.5 \text{ MHz}, \text{CDCl}_{3}): \delta = 22.8 (CH_{3}),$ 61.7 (CH₂OBz), 66.1, 68.6, 77.5 (C-2, C-3, C-4), 128.5-133.6 (m, 3 C₆H₅), 128.8, 147.5, 150.9 (C-4a, C-6, C-7a), 165.1, 165.7, 166.1, 167.9 (3 COC_6H_5 , $COCH_3$) ppm. $C_{30}H_{24}N_2O_8S$ (572.6): calcd. C 62.92, H 4.23, N 4.89; found C 62.72, H 3.99, N 4.83.

2-Amino-4-[1',4'-bis(benzoyloxy)but-2'-enylidene]thiazolin-5(4H)one Hydrobromide (38·HBr): A solution of bromo-enolone **19**^[17] (1.0 g, 2.3 mmol) and thiourea (200 mg, 0.6 mmol) in dry acetone (10 mL) was gently refluxed for 30 min. The crystalline product that separated on cooling was filtered off, washed with acetone, and dried to give 900 mg (79%) of the hydrobromide of **38**. M.p. 176–178 °C. $[\alpha]_{D}^{20} = 0.00$ (c = 2, CHCl₃). ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 5.02$ (dd, 2 H, 4'-H₂), 6.39 (dt, 1 H, 3'-H), 7.2–8.2 (m, 11 H, 2'-H, 2 C₆H₅) ppm; $J_{2',3'} = 15.6$, $J_{2',4'} = 1.6$, $J_{3',4'} = 6.9$ Hz. C₂₁H₁₇BrN₂O₅S (489.34): calcd. C 51.54, H 3.50, N 5.72; found C 51.44, H 3.45, N 5.80.

2-Amino-4-[1',4'-bis(benzoyloxy)but-2'-enylidene]thiazolin-5(4H)one (38): A suspension of **38·HBr** (245 mg, 0.5 mmol) and solid NaHCO₃ (100 mg) in moist methanol was stirred for 30 min at room temperature; this was followed by evaporation to dryness in vacuo. The residue was extracted with hot *i*PrOH (3 × 5 mL) from which **38** crystallized on cooling. Collection and recrystallization gave 157 mg (77%). M.p. 160–162 °C. ¹H NMR (300 MHz, CDCl₃): δ = 4.99 (dd, 2 H, 4'-H2), 5.45 (bs, 2 H, NH₂), 6.40 (dt, 1 H, 3'-H), 7.25–7.74 (m, 7 H, 2'-H, 6 ArH), 8.10 (dd, 2 H, 2 ArH), 8.25 (dd, 2 H, 2 ArH) ppm; $J_{2',3'}$ = 15.6, $J_{2',4'}$ = 1.6, $J_{3',4'}$ = 5.8 Hz. MS (FD, 14 mA): m/z = 408 [M⁺]. C₂₁H₁₆N₂O₅S (408.43): calcd. C 61.76, H 3.95, N 6.86; found C 61.61, H 3.88, N 6.81.

Acknowledgments

We would like to thank Mrs. Ingrid Svoboda for measuring the Xray data, Prof. Dr. H. J. Lindner for solving the crystal structure, and Dr. S. Immel for expert graphics with his Molarch⁺ program. This work was partly supported by the Fonds der Chemischen Industrie.

- [1] F. W. Lichtenthaler, U. Kläres, M. Lergenmüller, S. Schwidetzky, Synthesis 1992, 179–184.
- ^[2] ^[2a] K. Maurer, M. Mahn, *Ber. Dtsch. Chem. Ges.* **1927**, 60, 1318–1329.
 ^[2b] M. G. Blair, *Methods Carbohydr. Chem.* **1963**, 2, 411–414.
 ^[2c] R. J. Ferrier, *Methods Carbohydr. Chem.* **1972**, 6, 307–311.
- ^[3] ^[3a] F. W. Lichtenthaler, T. Schneider-Adams, J. Org. Chem.
 1994, 59, 6728-6734. ^[3b] F. W. Lichtenthaler, U. Kläres, Z. Szurmai, B. Werner, Carbohydr. Res. **1997**, 305, 293-303. ^[3c] M. Nitz, D. R. Bundle, J. Org. Chem. **2001**, 66, 8411-8423.
- ^[4] ^[4a] F. W. Lichtenthaler, E. Kaji, S. Weprek, J. Org. Chem. 1985, 50, 3505-3515.
 ^[4b] F. W. Lichtenthaler, E. Kaji, Liebigs Ann. Chem. 1985, 1659-1668.
- [5] F. W. Lichtenthaler, B. Köhler, *Carbohydr. Res.* 1994, 258, 77–85.
- [6] F. W. Lichtenthaler, M. Lergenmüller, S. Peters, Z. Varga, *Tetrahedron: Asymmetry* 2003, 14, 727–736.
- [7] For reviews see: ^[7a] E. Kaji, F. W. Lichtenthaler, *Trends Glycosci. Glycotechnol.* **1993**, *5*, 121–142. ^[7b] J. J. Gridley, H. M. I. Osborn, J. Chem. Soc., Perkin Trans. 1 **2000**, 1477–1491.
- [8] F. W. Lichtenthaler, T. Metz, Eur. J. Org. Chem. 2003, 3081–3093.
- ^[9] [^{9a]} H. M. Binch, A. M. Griffin, S. Schwidetzky, M. V. J. Ramsay, T. Gallagher, F. W. Lichtenthaler, *J. Chem. Soc., Chem. Commun.* **1995**, 967–968. [^{9b]} F. W. Lichtenthaler, M. Lergenmüller, S. Schwidetzky, *Eur. J. Org. Chem.* **2003**, 3094–3103.
- ^[10] F. W. Lichtenthaler, S. Schwidetzky, K. Nakamura, *Tetrahedron Lett.* 1990, 31, 71–74.
- [^{11]} [^{11a]} F. Brüschweiler, K. Stöckel, T. Reichstein, *Helv. Chim. Acta* **1969**, *52*, 2276–2303. [^{11b]} P. Brown, J. von Euw, T. Reichstein, K. Stöckel, T. R. Watson, *Helv. Chim. Acta* **1979**,

FULL PAPER

62, 412-441. ^[11c] H. T. A. Cheung, F. C. K. Chiu, T. R. Watson, R. J. Wells, J. Chem. Soc., Perkin Trans. 1 1983, 2827-2835.

- ^[12] S. Nishio, M. S. Blum, J. V. Silverton, R. J. Highet, J. Org. Chem. **1982**, 47, 2154–2157.
- ^[13] ^[13a] U. Kreis, Dissertation, TU Darmstadt, **1992**. ^[13b] Forcefield calculations were performed with the PIMM program (A. E. Smith, H. J. Lindner, *J. Comput.-Aided Mol. Des.* **1991**, 5, 235–262) to determine the energy differences of the four 6methyl-1,4,5-trioxadecalin-8a-ols. The formation enthalpies ($\Delta\Delta H$ values given in parenthesis) clearly show the β -*cis* linkup to be the most favored, followed by the α -*cis*- and β -*trans*-isomers, whilst the α -*trans* compound, due to the pyranoid ring being forced into the ${}^{1}C_{4}$ conformation with an axial methyl group, is the least likely to be formed. For a detailed discussion of the underlying steric and stereoelectronic effects, see ref.^[14a], pp. 109–116.

- ^[14] ^[14a] M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. **1982**, 104, 4976–4978. ^[14b] D. Ronzand, P. Sinaÿ, J. Chem. Soc., Chem. Commun. **1983**, 1353–1354.
- ^[15] In principle, the β -D-mannoside **16** could be conceived to also result from the C-2-isomeric, β -*trans*-annulated product I by S_N2 displacement of the F₃BO⁻ leaving group with the hydride ion, as indicated in II. Such an inversion at C-2, however,

entails the transient adoption of the ${}^{1}C_{4}$ conformation of the pyranoid ring, i.e. II \rightarrow III, most unlikely due to four axially disposed substituents in III and their multiple 1,3-diaxial interactions.

- ^[16] F. W. Lichtenthaler, U. Kraska, *Carbohydr. Res.* 1977, 58, 363–377.
- ^[17] F. W. Lichtenthaler, S. Nishiyama, P. Köhler, H. J. Lindner, *Carbohydr. Res.* **1985**, *136*, 13–26.
- ^[18] H. T. A. Cheung, T. R. Watson, J. N. Seiber, C. Nelson, J. Chem. Soc., Perkin Trans. 1 **1980**, 2169–2173.
- ^[19] W. Rosenbrook, Jr. J. Antibiotics 1979, 32, S211-S227.
- ^[20] J. M. Williams, Adv. Carbohydr. Chem. Biochem. 1975, 31, 18–25.
- ^[21] P. W. Austin, J. G. Buchanan, R. M. Saunders, *J. Chem. Soc.*, *C* **1967**, 372–377.
- [22] F. W. Lichtenthaler, J. Klotz, F. J. Flath, *Liebigs Ann.* 1995, 2069-2080.
- ^[23] CCDC-242772 contains the supplementary crystallographic data for 30. These data can be obtained free of charge at http:// www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].
- ^[24] E. L. Eliel, S. H. Wilen, *Stereochemistry of Organic Compounds*, John Wiley & Sons, New York, **1994**, p. 753.
- ^[25] G. Vernin, *Heterocyclic Compounds*, John Wiley & Sons, New York, **1979**, vol. 34/1, p. 213 ff.
- ^[26] J. Kuthan, Adv. Heterocycl. Chem. 1983, 34, 249-259.
- [27] M. B. Yunker, B. Fraser-Reid, Can. J. Chem. 1976, 54, 3986–3993.
- ^[28] Nomenclature: The divergence in naming and numbering heterodecalins of type **11–13** and **22–25** can be exasperating. Based on carbohydrate nomenclature, **11** is a 1,2-*O*-(ethane-1,2-diyl) 3,4,6-tri-*O*-benzoyl-2-hydroxy- β -D-mannopyranoside, whilst heterocyclic notations require its delineation from 6*H*-pyrano[2,3-*b*]-1,4-dioxine (IV), hence the designation (4a*R*,6*R*,7*R*,8*S*,8a*S*)-7,8-bis(benzoyloxy)-6-benzoyloxymethyl-8a-hydroxy-hexahydro-6*H*-pyrano[2,3-*b*]-1,4-dioxine(V). As the basic bicyclic skeleton of **11** constitutes a 1,4,5-trioxa-*cis*decalin, which we consider mnemonically a more descriptive designation, it is employed in this paper in place of hexahydro-6*H*-pyrano[2,3-*b*]-1,4-dioxine.

Received July 1, 2004