[2 + 2] CYCLOADDITION OF TRICHLOROACETYL ISOCYANATE TO GLYCALS*

MAREK CHMIELEWSKI[†] AND ZBIGNIEW KAŁUŻA

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland) (Received August 18th, 1986; accepted for publication in revised form, November 30th, 1986)

ABSTRACT

Cycloaddition of trichloroacetyl isocyanate to 1,5-anhydro-2-deoxy-Derythro- and -L-threo-pent-1-enitols, and 1,5-anhydro-2-deoxy-D- and -L-arabinohex-1-enitols having benzyl, methyl, tert-butyldimethylsilyl, and trimethylsilyl substituents on hydroxyl groups proceeds satisfactorily, under normal pressure at room temperature, to give a mixture of [2 + 2] and [4 + 2] cycloadducts. The isocyanate enters the glycal molecule stereospecifically anti with respect to the C-3 substituent. Bicyclic adducts slowly rearrange to the respective α,β -unsaturated amides. N-Deprotection of the trichloroacetyl substituent in [2 + 2] cycloadducts produces stable β -lactams. Further deprotection gives crystalline, water-soluble 2-carboxy-2deoxypento- and -hexo-pyranosylaminolactams having a unique bicyclic sugar structure.

INTRODUCTION

Several attempts¹⁻⁵ have been made to carry out the reaction of tosyl, trichloroethoxysulfonyl, trichloroethylsulfonyl, trichloroacetyl, and trifluoroacetyl isocyanates 1–5 with 3,4-dihydro-2*H*-pyran (6), but the corresponding β -lactams were obtained in only a few cases. Cycloaddition of tosyl isocyanate to dihydropyran 6 at low temperature (~0°) leads to formation¹ of the bicyclic β -lactam 7. Elevation of the temperature of cycloaddition causes rearrangement of the fourmembered ring¹ to open-chain amide 11. The more-active sulfonyl isocyanates 2 and 3 react with 6 to give substituted 1,5-anhydro-2-carbamoyl-2-deoxy-pent- and -hex-1-enitols (12 and 13, respectively), no β -lactams being formed². Similar results were reported by Chan and Hall³ for the addition of tosyl isocyanate to 2,6-disubstituted dihydropyrans.

On the other hand, acyl isocyanates react with 6 in a more complex way. The reaction of trichloroacetyl isocyanate (4) with dihydropyran 6 produces⁴ amide 14

^{*}Presented at the XIIIth International Carbohydrate Symposium, Ithaca, August 10–15, 1986. *To whom correspondence should be addressed.

via intermediary formation of unstable β -lactam 8 and [4 + 2] adduct 16; byproducts 8 and 16 were both detected (in a n.m.r. test-tube only). Being more reactive than its trichloroacetyl analog, trifluoroacetyl isocyanate (5), under the same conditions, affords the open-chain amide 15, without formation of bicyclic compounds^{2.5}. Only 5-methyl- and 5-benzyl-3,4-dihydro-2*H*-pyran react with isocyanate 5, to give the expected β -lactams 9 and 10, respectively, obtained after removal of the trifluoroacetyl group with silica gel². Less reactive isocyanates, such as benzoyl isocyanate, do not react with 6 in boiling benzene⁴.

Attempts to add sulfonyl isocyanates to tri-O-acetyl-D-glucal (17) failed to give addition products^{6.7}; isocyanate acts only as a Lewis acid, causing decomposition of the sugar substrate. According to our earlier results, application of a pressure of 1 GPa (1000 MPa) enables [2 + 2] cycloaddition of active isocyanates 1 and 4 to glycals 17, 22, and 26 to occur, affording unstable β -lactams that, on heating, or even standing at room temperature, undergo retro-addition⁸⁻¹⁰. Our preliminary experiments on [2 + 2] cycloaddition of tosyl (1), trichloroethoxy-sulfonyl (3), and trichloroacetyl isocyanate (4) to glycals 18-20, 23, and 24 showed that the reaction proceeds under normal pressure at room temperature if the glycals bear non-polar blocking groups¹¹. In the present work, the list of glycals used was extended, and trichloroacetyl isocyanate (4) was used exclusively. The latter offers easy access to stable, bicyclic β -lactams having the azetidinone ring fused to the sugar residue.

RESULTS AND DISCUSSION

The reactions of trichloroacetyl isocyanate (4) with compounds 6, 18–21, 23– 25, and 27–29 were conducted in absolute chloroform or acetonitrile at room temperature, 2 mol. equiv. of isocyanate being used. For an isocyanate:glycal ratio of 1:1, the conversion of the sugar substrate was only 40–60%, even after prolongation of the reaction time. The progress of all reactions was monitored by ¹H-n.m.r. spectroscopy (see Table I). The isocyanate 4 reacted with glycals 18–21, 23–25, and 27–29 more slowly than sulfonyl isocyanates¹¹ 1 and 3. Reactions performed in chloroform solution were completed within ~50 h, whereas, in acetonitrile, the starting glycal disappeared after 22 h (see Table I). Dihydropyran 29 was more reactive than these; when the reaction was conducted in acetonitrile, a mixture of β -lactams 57 and 58, [4 + 2] cycloadducts 59 and 60, and unsaturated amide 61 was formed within ~10–20 min. Owing to overlapping of signals, the ratios of 57:58:59:60:61 could not be determined.

Isocyanate 4 added stereospecifically to glycals 18–21, 23–25, 27, and 28 in a position *anti* to the C-3 substituent, to give the *cis*-fused bicyclic systems 30–37, 42–47, and 51–54. Except for glycal 19, the initially formed proportion of (2 + 2) and (4 + 2) adducts changes slowly to afford a prepondance of six-membered ones. Glycal 19 favored formation of β -lactam 31; in chloroform solution, after 50 h, 31 became the main component of the reaction mixture, whereas, in acetonitrile, the [4 + 2] adducts 35 was not formed. In all cases, both [2 + 2] and [4 + 2] bicyclic intermediates slowly rearranged to α , β -unsaturated amide. The ratios of β -lactam: [4 + 2] adduct: amide depended on the reaction time and the glycal used (see Table

TABLE I

APPROXIMATE COMPOSITION (%) OF THE REACTION MIXTURE, INCLUDING THE SUBSTRATE, CYCLIC INTE	ER-
MEDIATES, AND $lpha,eta$ -UNSATURATED AMIDE	
	_

Glycal	Products	Time (h)								
		2		6		22		50		
		CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	CDCl ₃	CD ₃ CN	
	30	10	44	25	46	35	43	35		
18	34	15	45	40	54	65	57	65		
	38	a	a	u	a	a	а	u		
	31	2	10	12	30	28	40	50		
19	35	3	a	18	u	26	a	18		
	39	a	a	a	30	25	60	32		
	32			a -1		19		19		
20	36	10°		25°		47		74		
	40	а		a		u l		7		
	33		13		30		30			
21	37	10°	12	25°	30	60°	20			
	41		.~		50		20			
	42	8		23		23		10		
23	45	18		51		70		85		
	48	4		a		7		5		
	51	27	36	42		20	а	7		
74	53	31	44	50		76	78	88		
	55	<i>a</i>	21	a		л Л	22	5		
	57	31	20	13	30	26		16	20	
35	54	21	12	42	40	51		63	20 50	
22	56	a	10	ч .) а	13	11		21	30	
	43		25		21	10	37	21	15	
27	43	5^{b}	25	10 ^b	34	25	24	26	20	
	40	a	19	a	20	6	24	30 11	JO 47	
	47		10		23	12	27 17	11		
70	44	7 ^b	10 ^b			14	17			
40	4/ 50	a				23 14	1/			
	30	-				14	33			

"Not detected. "Representing a mixture of the two cyclic intermediates.

I). The behavior of isocyanate 4 with glycals 18–21, 23–25, and 27–29 resembled, in general, that reported by Martin *et al.*⁴ for addition of 4 to dihydropyran 6.

Acyl or sulfonyl substituents attached to the isocyanate group, required for cycloaddition, are responsible for the low stability of azetidinone rings. The electron-withdrawing Z-substituent stabilizes the partial negative charge at the nitrogen atom, whereas the partial positive charge at the anomeric carbon atom is stabilized by the pyranoid-ring oxygen atom. Attempts to isolate cycloadducts from the reaction mixture failed, owing to their high reactivity. Therefore, N-deprotection was necessary, prior to isolation or chemical transformation of β -lactams. Thus far, we have not succeeded in splitting sulfonyl substituents without opening of the four-membered azetidinone ring¹¹.

CONHCOCCI3

61

On the other hand, N-deprotection of the trichloroacetyl substituent proceeded satisfactorily in the presence of benzylamine, affording the stable, bicyclic β -lactams 63-65, 67, 69, and 70. The optimal time for addition of benzylamine, being specific for each reaction, was determined by a ¹H-n.m.r. monitoring experiment. Benzylamine is added to the C=N double bond of [4 + 2] cycloadducts. yielding unstable, bicyclic compounds. One of them, *i.e.*, the adduct 71, obtained by addition of benzylamine to 53, was isolated by chromatography, and its structure was proved by n.m.r. and m.s. data. β -Lactams 62-64, 66, and 68-70 were isolated from the respective post-reaction mixtures by extraction with hexane and chromatographic separation. Further deprotection of compounds 62 and 66 with methanol gave crystalline, stable, water-soluble β -lactams 65 and 67 having a unique, bicyclic structure.

Owing to the stereospecificity of cycloaddition, the configuration of the starting glycal offers stereocontrol of formation of an appropriate configuration at the carbon atom attached to the nitrogen and oxygen atoms. This configuration is crucial for the biological activity of β -lactam antibiotics.

Our earlier experiments performed under high and normal pressure⁸⁻¹¹, and other findings involving simple dihydropyran derivatives¹⁻⁵, clearly point to the reversibility of cycloaddition. Such isocyanates as phenyl isocyanate or methyl isocyanatoacetate are unreactive towards glycals and dihydropyrans, even under high pressure. Benzoyl isocyanate is reactive only under at least 1000-MPa pressure¹². On the other hand, very reactive isocyanates, such as trichloroethoxysulfonyl or trifluoroacetyl isocyanate, cause low stability of cycloadducts, and promote either rapid rearrangement to α , β -unsaturated amide or retro-addition. This is evident if the reactivity of N-tosyl β -lactams is compared with that of N-(trichloroethoxy)sulfonyl compounds. Our preliminary experiments using trifluoroacetyl isocyanate and rhamnal 23 showed that, even after 20 h, there were still ~60% of the substrate and ~40% of unsaturated amide, with no cycloadducts present⁷. These data indicate that the rate of rearrangement is higher than that of cycloaddition. Thermodynamic and kinetic aspects of cycloaddition help in selection of the most effective isocyanate. In view of the present results, trichloroacetyl isocyanate seems to be the most suitable isocyanate that promotes cycloaddition, provides relative stability of cycloadducts, and offers a trichloroacetyl substituent readily removable under mild conditions.

EXPERIMENTAL

General methods. — Melting points are uncorrected. Optical rotations were measured with a Perkin–Elmer 141 spectropolarimeter. I.r. spectra were recorded with a Beckman 4240 spectrophotometer. Column chromatography was performed on Merck Kieselgel 60 (230–400 mesh). ¹H-N.m.r. spectra were recorded with a Varian EM 360 and a Bruker 300-MHz spectrometer. ¹³C-N.m.r. spectra were recorded with a Varian CFT 20 spectrometer.

Glycals 18–21, 23–25, and 27–29 were obtained from the respective hydroxy compounds by standard silylation or alkylation procedures; 18, 23, 24, 27, and 29 by silylation with chlorotrimethylsilane and pyridine; 19, 25, and 28 by silylation with *tert*-butylchlorodimethylsilane and imidazole in DMF; 20 by methylation with dimethyl sulfate and KOH in Me₂SO; and 21 by benzylation with benzyl bromide and KOH in Me₂SO.

The experiments performed in a n.m.r. test-tube were as follows. A solution of an appropriate glycal (0.5 mmol) in CDCl₃ or CD₃CN (\sim 0.5 mL) was placed in a n.m.r. test-tube, and trichloroacetyl isocyanate (1.0 mmol) was added. The spectra were recorded at 0, 2, 6, 22, and 50 h after mixing of the substrates. Bicyclic products **30–37**, **42–47**, **51–54**, and **57–60** were characterized by chemical shifts and coupling constants for H-1 and H-2, whereas amides **38–41**, **48–50**, **55**, **56**, and **61** were characterized by chemical shifts of H-1. The data are collected in Table II. The compositions of the reaction mixtures were determined approximately by integration of appropriate signals of H-1, and are recorded in Table I.

General procedure for cycloaddition. — To a glycal (15 mmol) dissolved in acetonitrile (15 mL) was added trichloroacetyl isocyanate (5.7 g, 30 mmol). After disappearance of the substrate (¹H-n.m.r. pilot experiment performed in a test-tube), the mixture was cooled to -30° , and benzylamine (5.3 g, 48 mmol) in acetonitrile (5 mL) was added. Subsequently, the temperature of the mixture was allowed to rise to room temperature, and it was evaporated to dryness and treated with hexane. The crystalline precipitate was removed by filtration. The filtrate was evaporated, and the oily residue was isolated on a column of silica gel by flash chromatography, to give the respective β -lactams (the more-polar fraction).

2-Carboxy-2-deoxy-3,4,6-tri-O-(trimethylsilyl)-α-D-glucopyranosylaminolac-

tam (62). — From the glucal 18; 30%; m.p. 50–54°, $[\alpha]_{\rm D}$ +61.5° (*c* 1, CH₂Cl₂); $\nu_{\rm max}^{\rm film}$ 3340 and 1760 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 3.18 (m, 1 H, H-2), 3.63–3.78 (m. 3 H, H-4,6,6'), 3.99 (dt, 1 H, *J* 6.7, 6.5, 2.9 Hz, H-5), 4.17 (t, 1 H, ΣJ 6.3 Hz, H-3), and 5.42 (d, 1 H, *J* 4.6 Hz, H-1).

Anal. Calc. for C₁₆H₃₅NO₅Si₃: C, 47.4; H, 8.7; N, 3.4. Found: C, 46.5; H, 8.7; N, 3.5.

2-Carboxy-2-deoxy-3,4,6-tri-O-(tert-butyldimethylsilyl)-α-D-glucopyranosylaminolactam (63). — From the glucal 19; 50%; m.p. 74–76°; $[\alpha]_D$ –5.7° (c 1, CH₂Cl₂); $\nu_{max}^{CDCl_3}$ 3410 and 1775 cm⁻¹; ¹H-n.m.r. (CCl₄): δ 3.20 (m, 1 H, H-2), 3.3– 4.0 (m, 4 H, H-4,5,6,6'), 4.15 (m, 1 H, H-3), and 5.40 (d, 1 H, J 4.6 Hz, H-1).

Anal. Calc. for C₂₅H₅₃NO₅Si₃: C, 56.4; H, 10.0; N, 2.6. Found: C, 56.1; H, 10.1; N, 2.6.

TABLE II

SELECTED SPECTRAL	DATA FOR	CYCLIC INTERMEDIATES .	S AND α,β -UNSATURATED AMIDES
-------------------	----------	------------------------	--

Compound	Solvent	¹ H-N.m.r. data
30	CDCl ₃	6.02 (d, 1 H, >J 5.5 Hz, H-1), 3.47 (dd, 1 H, J 3.0 Hz, H-2)
34	CDCl ₃	6.15 (d, 1 H, J 3.7 Hz, H-1), 2.49 (dd, 1 H, J 9.0 Hz, H-2)
38 ^a		
31	CDCl ₁	6.03 (d, 1 H, J 6.2 Hz, H-1), 3.48 (dd, 1 H, J 2.8 Hz, H-2)
35	CDCl	6.17 (d, 1 H, J 6.5 Hz, H-1), 3.12 (dd, 1 H, J 3.2 Hz, H-2)
39	CDCl ₃	7.52 (s, 1 H, H-1)
32	CDCl	6.08 (d, 1 H, J 5.0 Hz, H-1)
36	CDCl ₃	6.10 (d, 1 H, J 3.3 Hz, H-1)
40	CDCl ₃	7.80 (s, 1 H, H-1)
33	CD ₃ CN	6.07 (d, 1 H, J 5.8 Hz, H-1)
37	CD ₃ CN	6.18 (d, 1 H, J 3.8 Hz, H-1)
41	CD ₃ CN	b
42	CDCl ₃	6.02 (d, 1 H, J 6.4 Hz, H-1)
45	CDCl	6.05 (d, 1 H, J 3.5 Hz, H-1), 2.98 (dd, 1 H, J 10.4 Hz, H-2)
48	CDCl ₃	7.72 (s, 1 H, H-1)
43	CD ₃ CN	5.92 (d, 1 H, J 6.2 Hz, H-1)
46	CD ₃ CN	6.10 (d, 1 H, J 3.8 Hz, H-1), 2.85 (m, 1 H, H-2)
49	CD ₃ CN	7.60 (s, 1 H, H-1)
44	CD ₃ CN	5.88 (d, 1 H, J 4.5 Hz, H-1)
47	CD ₃ CN	6.02 (d, 1 H, J 5.7 Hz, H-1)
50	CD ₃ CN	7.60 (s, 1 H, H-1)
51	CDCl ₃	5.82 (d, 1 H, J 5.4 Hz, H-1), 3.37 (t, 1 H, J 5.5 Hz, H-2)
53	CDCl ₃	6.12 (d, 1 H, J 3.3 Hz, H-1), 3.15 (dd, 1 H, J 7.3 Hz, H-2)
55	CDCl ₃	7.60 (s, 1 H, H-1)
52	CDCl ₃	5.90 (d, 1 H, J 5.5 Hz, H-1), 3.52 (t, 1 H, J 5.0 Hz, H-2)
54	CDCI ₃	6.10 (d, 1 H, J 3.2 Hz, H-1), 3.22 (dd, 1 H, J 7.3 Hz, H-2)
56	CDCl ₃	7.50 (s, 1 H, H-1)
57	CD ₃ CN	5.95 (d, 1 H, J 5.7 Hz, H-1)
58	CD ₃ CN	5.80 (d, 1 H, J 5.2 Hz, H-1)
59	CD ₃ CN	6.18 (d, 1 H, J 3.5 Hz, H-1)
60	CD ₃ CN	6.21 (m, 1 H, H-1)
61	CD_3CN	7.70 (s, 1 H, H-1)

"Not detected. "Overlapped by absorption caused by aromatic protons.

2-Carboxy-2-deoxy-3,4,6-tri-O-benzyl-α-D-glucopyranosylaminolactam (64). -- From 21; 24%; colorless syrup; $[\alpha]_D$ +23.2° (c 1, CH₂Cl₂); $\nu_{max}^{CHCl_3}$ 3400 and 1770 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 3.25 (m, 1 H, H-2), 3.3-4.2 (m, 4 H, H-3,4,5,5'), 4.2-4.9 (m, 6 H, benzyl), 5.35 (d, 1 H, J 4.2 Hz, H-1), and 7.2 (m, 15 H, 3 Ph).

Anal. Calc. for C₂₈H₂₉NO₅: C, 73.2; H, 6.4; N, 3.0. Found: C, 72.5; H, 6.1; N, 3.0.

2-Carboxy-2-deoxy-α-D-glucopyranosylaminolactam (65). — To a solution of compound 62 (0.1 g, 0.25 mmol) in methanol (10 mL) was added Dowex 50-W X-8 resin (0.05 g). The mixture was stirred for 1 h, filtered, and the filtrate evaporated to dryness, yielding 65 (0.045 g, 95%); m.p. 179–180°, $[\alpha]_D$ +65.4° (c 1, H₂O); $\nu_{\text{max}}^{\text{Nujol}}$ 3320 and 1715 cm⁻¹; ¹H-n.m.r. (Me₂SO-d₆): δ 3.20 (m, 1 H, H-2), 3.3–4.0 (m, 5 H, H-3,4,5,6,6'), and 5.50 (d, 1 H, J 4.0 Hz, H-1); ¹³C-n.m.r., (Me₂SO-d₆): δ 56.72 (C-2), 61.22 (C-6), 69.44, 70.64, 71.71 (C-3,4,5), and 168.12 (C=O).

Anal. Calc. for $C_7H_{11}NO_5$: C, 44.4; H, 5.9; N, 7.4. Found: C, 44.6; H, 6.0; N, 7.4.

2-Carboxy-2-deoxy-3,4-di-O-(trimethylsilyl)-α-D-arabinopyranosylaminolactam (66). — From 24 according to the general procedure; 40%; m.p. 53–57°, $[\alpha]_D$ -53.5° (c 1, CH₂Cl₂); $\nu_{max}^{CHCl_3}$ 3410 and 1775 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 3.26 (m, 1 H, H-2), 3.74 (dd, 1 H, J 11.2, 5.9 Hz, H-5), 3.78 (dd, 1 H, J 3.7 Hz, H-5'), 3.91 (m, 1 H, H-4), 4.11 (dd, 1 H, J 4.6, 2.9 Hz, H-3), and 5.37 (d, 1 H, J 4.7 Hz, H-1).

Anal. Calc. for C₁₂H₂₅NO₄Si₂: C, 47.6; H, 8.3; N, 4.6. Found: C, 47.1; H, 8.3; N, 4.8.

2-Carboxy-2-deoxy-β-D-arabinopyranosylaminolactam (67). — A solution of compound 66 (0.1 g, 0.33 mmol) in methanol (2 mL) was boiled for 0.5 h, and cooled. The precipitate was filtered off, to give 67 (0.045 g, 85%); m.p. 172–173°, $[\alpha]_D$ –112.4° (c 1, H₂O); ν_{max}^{Nujol} 3380, 3240, and 1750 cm⁻¹; ¹H-n.m.r. (Me₂SO-d₆): δ 3.05 (dt, 1 H, J 4.3, 4.4, 3.0 Hz, H-2), 3.5–3.7 (m, 3 H, H-3,5,5'), 3.83 (m, 1 H, H-4), and 5.19 (d, 1 H, J 4.3 Hz, H-1); ¹³C-n.m.r. (Me₂SO-d₆): δ 54.86 (C-2), 63.50, 64.31, 65.38 (C-3,4,5), 73.86 (C-1), and 168.38 (C=O).

Anal. Calc. for C₆H₉NO₄: C, 45.3; H, 5.7; N, 8.8. Found: C, 45.8; H, 5.9; N, 8.8.

8-Aza-2-oxabicyclo[4.2.0] octan-7-one (68). — From dihydropyran 6 according to the general procedure described; 25%; colorless syrup solidifying in a refrigerator; $\nu_{max}^{CHCl_3}$ 3420 and 1775 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 1.4–2.3 (m, 4 H, H-4,5,4',5'), 3.30 (m, 1 H, H-6), 3.5–4.3 (m, 2 H, H-3,3'), and 5.40 (d, 1 H, J 4.2 Hz, H-1); ¹³C-n.m.r. [(CD₃)₂CO]: δ 18.67, 20.74 (C-4,5), 47.90 (C-6), 60.05 (C-3), 75.30 (C-1), and 170.34 (C=O).

Anal. Calc. for C₆H₉NO₂: C, 56.7; H, 7.1; N, 11.0. Found: C, 56.4; H, 7.1; N, 11.5.

trans- and cis-8-Aza-3-(trimethylsilyloxymethyl)-2-oxabicyclo[4.2.0]octan-7one (69 and 70). — From 29 according to the procedure described; 36% for a mixture of the two compounds. The mixture of 69 and 70 was not separated into pure compounds; $\nu_{max}^{CDCl_3}$ 3410 and 1770 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 1.4-2.4 (m, 4 H, H-4,5,4'.5'), 3.18 (m, 1 H, H-6), 3.3–4.2 (m, 3 H, H-3, CH_2O_-), 5.18 (d, 0.4 H, J 4.2 Hz, H-1 *cis*), and 5.27 (d, 0.6 H, J 5.0 Hz, H-1 *trans*); ¹³C-n.m.r. [(CD₃)₂CO] for the mixture of **69** and **70** (the assignments of lines to diastereoisomers are based on ¹³C line-intensities and should be considered tentative); **69**: δ 18.57, 23.33 (C-4,5), 47.79 (C-6), 63.97 (- CH_2 -), 66.23 (C-3), 75.71 (C-1), and 170.39 (C=O); **70**: δ 15.58, 22.44 (C-4,5), 50.24 (C-6), 67.39 (- CH_2 -), 69.34 (C-3), 75.08 (C-1), and (C=O).

The mixture of 69 and 70 gave inconsistent elemental analyses.

(1S,3R,6S,7S,8R)-4-Aza-3-(benzylamino)-3-(trichloromethyl)-2,10-dioxa-7,8-di(trimethylsilyloxy)bicyclo[4.2.0]decan-5-one (71). — To a solution of 24 (3.9 g, 48 mmol). After 0.5 h, the mixture was cooled to -30° , and benzylamine (5.3 g) in acetonitrile (5 mL) was slowly added. The temperature of the mixture was allowed to rise to room temperature, the mixture was evaporated, and the oily residue was separated on a column of silica gel by using 9:1 (v/v) hexane-Et₂O as the cluant (flash chromatography). affording unstable, impure 71 (1.25 g, 15%); ν_{max}^{CHCL} 3400 and 1700 cm⁻¹; ¹H-n.m.r. (CDCl₃): δ 3.05 (t, 1 H, H-6), 3.3-4.2 (m, 6 H, H-7.8,9,9', CH₂Ph), 4.55 (m, 1 H, H-8), and 5.50 (d, 1 H, J 2.8 Hz, H-1); ¹³C-n.m.r. (CDCl₃): δ 46.1, 46.9 (C-6, CH₂Ph), 64.6, 65.9, 69.5 (C-7,8,9), 93.5 (C-1), 100.8 (C-3), 106 (CCl₃), 127.3, 128.1, 128.5, 139.8 (phenyl), and 168.2 (C=O); *m/z*: M⁺, 554. Subsequent washing of the column with methanol afforded **67** (0.8 g, 30%).

ACKNOWLEDGMENT

This work was supported by the Polish Academy of Sciences Grant CPBP-01.13.2.15.

REFERENCES

- 1 E EFFENBERGER AND R. GLEITER, Chem. Ber., 97 (1964) 1576-1583.
- 2 A. G. M. BARRETT, A. FENWICK, AND M. J. BETTS, J. Chem. Soc. Chem. Commun., (1983) 299-301.
- 3 J. H. CHAN AND S. S. HALL, J. Org. Chem., 49 (1984) 195-197.
- 4 J. L. CHIFWOOD, P. G. GOTT. AND J. C. MARTIN, J. Org. Chem., 36 (1971) 2228-2232.
- 5 A. G. M. BARRETT, M. J. BFITS, AND A. FENWICK, J. Org. Chem., 50 (1985) 169-175.
- 6 R. H. HALL, A. JORDAAN, AND G. J. LAURENS, J. Chem. Soc., Perkin Trans. 1, (1973) 38-44; R. H. HALL, A. JORDAAN, AND O. G. DE VLHERS, *ibid.*, (1975) 626-629.
- 7 M. CHMIELEWSKI AND Z. KAEDŹA, unpublished results.
- 8 M. CHMIELEWSKI, Z. KAEUŻA, C. BEFZFCKI, P. SAEANSKI, AND J. JURCZAK, Tetrahedron Lett., (1984) 4797–4800.
- 9 M. CHMIFLEWSKI, Z. KAŁUŻA, C. BEŁZECKI, P. SAŁANSKI, J. JURCZAK, AND H. ADAMOWICZ, Tetrahedron, 41 (1985) 2441–2449.
- 10 M. CHMIFLEWSKI, Z. KALUZA, C. BFEZECKI, P. SAEANSKI, and J. JURCZAK, Heterocycles, 24 (1986) 285-288.
- 11 M. CHMIELEWSKI, AND Z. KAŁUŻA, J. Org. Chem., 51 (1986) 2395-2397.
- 12 M. CHMIELEWSKI, Z. KAEUŻA, D. MOSTOWICZ, C. BEEZECKI, P. SAEANSKI, AND J. JURCZAK, unpublished results.