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a b s t r a c t

Armed/disarmed effect of propargyl glycosides in the presence of AuBr3 is studied. Observed that oxo-
philic AuBr3 cleaves interglycosidic bond of an armed disaccharide resulting in the formation of a disac-
charide and a 1,6-anhydro sugar. Trisaccharides were obtained after fine tuning the reactivity of the
glycosyl donor with different protecting groups.

� 2010 Elsevier Ltd. All rights reserved.
Oligosaccharides and glycoconjugates are implicated in various
intracellular and extracellular molecular recognition events.1 In this
regard, several strategies were developed for the synthesis of oligo-
saccharides; Fraser-Reid pioneered strategy of armed/disarmed n-
pentenyl glycosides that exploits differential reactivity of protecting
groups is one of the most significant advancements in the annals of
oligosaccharide synthesis.2a,3 Ethers at the C-2 position of alkyl gly-
cosides (armed) electronically facilitate the departure of the alkyl-
leaving group at the anomeric position favoring the formation of
oxocarbenium ion and thus transglycosides are easily formed.2a,s

Whereas, C-2 esters (disarmed) make the anomeric carbon electron
deficient and as a consequence, the alkyl-leaving group at the C-1
position does not depart quickly and hence do not facilitate transgly-
coside formation.2a,s

We have recently identified propargyl glycosides as glycosyl
donors in the presence of catalytic amount of Au(III) salts.4a–c

Subsequently, propargyl 1,2-orthoesters were reported for the
1,2-trans selective glycosidation under AuBr3/CH2Cl2/rt.4d Further-
more, gold-catalyzed activation was found to activate the propar-
gyl moiety of 1,2-orthoesters in the presence of aglycones having
propargyl group to obtain propargyl disaccharides.4e In all these
studies, we observed that alkyl glycosides get disarmed when the
protecting group at the C-2 position is an ester and armed to par-
ticipate in the glycosidation when the protecting group at the C-2
position is a benzyl ether.4f In continuation of our efforts on the
development of novel strategies for the glycoconjugate synthesis,4

we got interested in the study of armed/disarmed effects for prop-
argyl glycosides to enable sequential glycosylations.

Initial set of experiments were planned with propargyl 2,3,4,6-
tetra-O-benzyl a-D-mannopyranoside (1) as the armed glycosyl do-
nor and the propargyl 2,3,4-tri-O- benzoyl a-D-mannopyranoside
(2) as the disarmed aglycone mainly due to the prospect of
ll rights reserved.

x: +91 20 2590 2624.
1,2-trans stereoselectivity in the resulting disaccharide.4a,h Accord-
ingly, armed glycosyl donor 1 was allowed to react with aglycone 2
in the presence of AuBr3 in CH3CN at 70 �C for 8 h and obtained the
anticipated disaccharide 3a in 68% (Scheme 1).4a,5,6a The disarmed
disaccharide was then converted to an armed disaccharide 3b in
two steps involving Zemplén debenzoylation (NaOMe/MeOH/rt)
followed by benzylation using NaH and benzyl bromide in DMF.
In continuation, the armed disaccharide 3b6c was allowed to react
with disarmed aglycone 2 in anticipation of a trisaccharide 5,
resulting in the isolation of two compounds. Purification by con-
ventional silica gel column chromatography enabled us to charac-
terize the major component not as the trisaccharide 5 but
surprisingly as 3a.5,6b For instance, only two anomeric protons
were noticed at d 5.26(d, 1H, J = 1.8 Hz), 5.68 (dd, 1H, J = 1.8,
2.9 Hz) in the 1H NMR spectrum instead of three if it were 5. The
13C NMR spectrum of 3a revealed that there are two mannose res-
idues with 1,2-trans configuration as their anomeric carbons were
noticed at d 96.2 (1JC–H = 175.5 Hz) and 98.2 (1JC–H = 170.9 Hz) ppm
and the molecular weight was found to be 1075.3889 (C64H60O14N-
a).5,6b These observations and matching of the data with that of 3a
previously synthesized led us to assign the structure of the major
component (53%) to be propargyl 2,3,4-tri-O-benzoyl-6-(2,3,4,6-
tetra-O-benzyl a-D-mannopyranosyl)-a-D-manno-pyranoside 3a.
The minor component (16%) was identified to be 1,6-anhydro
derivative 4.4h,5,6e

The formation of disaccharide 3a and the 1,6-anhydro sugar for-
mation can be rationalized by a double activation of the armed gly-
cosyl donor 3b in the presence of AuBr3 (Fig. 1). Initially, oxophilic
AuBr3 cleaved the interglycosidic bond leaving the intermediate
oxocarbenium ion (A) with the extrusion of propargyl mannoside
B. Intermediate A was then attacked by the disarmed aglycone 2
resulting in disaccharide 3a whereas the ejected product B led to
the second oxocarbenium ion C which is trapped intramolecularly
by the 6-OH group to give 1,6-anhydro derivative 4. The sequence
of events could not be established. Similar reaction on disaccharide
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Scheme 1. A study on the armed-disarmed effect of propargyl glycosides. Regents and conditions: (i) AuBr3, CH3CN, 70 �C, 8 h, 68%; (ii) NaOMe, MeOH, rt,, 0.5 h, 95%; (iii)
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66f resulted in the identification of trisaccharide 7,6g disaccharide
8,6h and ejected out monosaccharide 96i but not the anhydro sugar
due to the unfavorable spatial separation (Scheme 2).

Replacement of benzoyl groups of disaccharide 3a by methyl
groups via a two-step procedure gave armed disaccharide 3c6d

with less-directing methyl groups on the sugar at the reducing
end. AuBr3- catalyzed glycosidation gave us the trisaccharide
10,6j disaccharide 3a6b, and propargyl 2,3,4-tri-O-methyl manno-
side 116k in 16%, 51%, and 16%, respectively. Similar observations
were noticed with the per O-methylated disaccharide 126l to give
the trisaccharide 13,6m disaccharide 146n, and the monosaccharide
116k (Scheme 2). The foregoing studies led us to understand that
the propargyl glycosides are highly dependent on the electronic ef-
fect of the protecting groups.

In conclusion, armed/disarmed effects of propargyl glycosides
in the presence of catalytic amount of AuBr3 were studied. The
cleavage of interglycosidic bond was noticed in the presence of
armed-protecting groups due to the double activation and the
resulting oxocarbenium ion is attacked by the aglycone giving,
respectively, disaccharide and 1,6-anhydro sugar as major and
minor products. Fine tuning of protecting groups led to the synthe-
sis of trisaccharides albeit in poor yields. The unusual cleavage of
the interglycosidic bond can be circumvented if the glycosidations
were conducted at room temperature. Efforts in this direction are
currently underway and results will be reported in future. Applica-
tion of these results for the synthesis of significant carbohydrate
epitopes is currently underway.
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1H NMR (200.13 MHz, CDCl3): d 2.44 (t, 1H, J = 2.4 Hz), 3.25–4.05 (m, 12H), 4.28
(ABq, 2H, J = 11.8 Hz), 4.40 (m, 3H), 4.48–4.65 (m, 3H), 4.62–4.83 (m, 7H), 4.97
(ABq, 2H, J = 9.1 Hz), 4.98 (ABq, 1H, J = 12.8 Hz), 7.10–7.42 (m, 35H); 13C NMR
(50.32 MHz, CDCl3): d 55.8, 68.0, 68.1, 72.5, 72.9, 73.0, 73.3, 73.5, 74.7, 74.8,
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C64H66O11Na, 1033.4503; found, 1033.4509.
(g) Compound characterization data for compound 7: Overall a/b = 9:1; Data for
the major isomer: ½a�25

D = �5.9�(CHCl3, c 1.0); 1H NMR (500.13 MHz, CDCl3): d
2.52 (t, 1H, J = 2.4 Hz), 3.43–3.78 (m, 10H), 3.83–3.98 (m, 4H), 4.02 (dd, 1H,
J = 3.7, 9.8 Hz), 4.16 (t, 1H, J = 6.7 Hz), 4.29–5.00 (m, 17H), 5.29 (m, 1H), 5.74 (dd,
1H, J = 1.8, 3.1 Hz), 5.88 (m, 1H), 5.96 (t, 1H, J = 10.2 Hz), 7.10–7.55 (m, 44H),
7.78–8.14 (m, 6H); 13C NMR (125.76 MHz, CDCl3): d 54.9, 66.7, 67.1, 68.9, 69.2,
69.6, 70.1, 70.2, 70.2, 70.3, 70.8, 72.8, 72.9, 73.3, 73.5, 73.6, 74.6, 74.7, 75.2, 75.8,
76.6, 78.2, 78.7, 79.7, 81.3, 91.9, 96.1, 97.3, 127.4–130.1, 133.1, 133.4, 133.5,
137.9, 138.0, 138.2, 138.3, 138.5, 138.6, 138.9, 165.4, 165.4, 165.6; HRMS
(MALDI-TOF) calcd for C91H88O19Na, 1508.5851; found, 1508.5855.
(h) Compound characterization data for compound 8: Overall a/b = 3:1; Data for
the major isomer: ½a�25

D = �19.2�(CHCl3, c 1.0); 1H NMR (200.13 MHz, CDCl3): d
2.31–2.48 (m, 1H), 3.36–5.12 (m, 21H), 5.26 (m, 1H), 5.72 (m, 1H), 5.81–5.98 (m,
1H), 7.09–7.63 (m, 29H), 7.76–8.12 (m, 6H); 13C NMR (50.32 MHz, CDCl3): d
54.7, 66.9, 67.1, 68.6, 69.1, 70.1, 70.1, 70.2, 72.9, 73.0, 73.1, 74.7, 75.0, 75.8, 77.2,
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78.1, 78.7, 95.8, 97.9, 127.3–130.0, 133.1, 133.4, 133.4, 138.0, 138.6, 138.7,
138.9, 165.4, 165.4, 165.8; HRMS (MALDI-TOF) calcd for C64H60O14Na,
1075.3881; found, 1075.3889.
(i) Compound characterization data for compound 9: ½a�25

D = �11.0�(CHCl3, c 1.0);
1H NMR (200.13 MHz, CDCl3): d 2.47 (t, 1H, J = 2.4 Hz), 2.51 (br s, 1H), 3.38–3.82
(m, 6H), 4.43 (t, 2H, J = 2.4 Hz), 4.58 (d, 2H, J = 1.8 Hz), 4.63–4.76 (m, 3H), 4.90-
5.03 (m, 2H), 7.23–7.44 (m, 15H); 13C NMR (50.32 MHz, CDCl3): d 56.0, 70.0,
71.2, 73.7, 74.1, 74.7, 75.0, 75.3, 78.9, 81.4, 83.9, 101.5, 127.5–128.6, 137.9,
138.3, 138.6; HRMS (MALDI-TOF) calcd for C30H32O6Na, 511.2097; found,
511.2090.
(j) Compound characterization data for 10: ½a�25

D = �11.1�(CHCl3, c 1.0); 1H NMR
(200.13 MHz, CDCl3): d 2.50 (t, 1H, J = 2.4 Hz), 3.30, 3.36, 3.46 (3s, 9H), 3.45 (m,
4H), 3.58–4.09 (m, 10H), 4.24 (m, 1H), 4.35 (d, 2H, J = 2.4 Hz), 4.43–4.71 (m, 7H),
4.86 (dd, 2H, J = 4.8, 6.2 Hz), 4.99 (d, 1H, J = 1.7 Hz), 5.26 (d, 1H, J = 1.7 Hz), 5.67
(dd, 1H, J = 1.7, 3.2 Hz), 5.86 (dd, 1H, J = 3.2, 10.2 Hz), 6.03 (t, 1H, J = 10.2 Hz),
7.09–7.66 (m, 29H), 7.75–8.17 (m, 6H); 13C NMR (125.76 MHz, CDCl3): d 55.4,
57.4, 58.7, 60.7, 65.6, 66.1, 67.3, 69.3, 69.9, 69.9, 70.5, 71.6, 71.7, 71.8, 72.3, 73.3,
74.8, 75.0, 75.0, 75.6, 75.8, 76.7, 78.2, 79.9, 81.2, 96.6 (1JC–H = 170.5 Hz), 97.1
(1JC–H = 169.7), 98.1 (1JC–H = 174.2), 127.3–130.2, 133.1, 133.4, 133.6, 138.5,
138.5, 138.7, 138.7, 165.3, 165.4, 165.4; HRMS (MALDI-TOF) calcd for
C73H76O19Na, 1279.4879; found, 1279.4870.
(k) Compound characterization data for 11: ½a�25

D = +75.5�(CHCl3, c 1.0); 1H NMR
(200.13 MHz, CDCl3): d 2.18 (br s, 1H), 2.47 (t, 1H, J = 2.4 Hz), 3.50, 3.51, 3.55 (3s,
9H), 3.52 (m, 3H), 3.62 (m, 1H), 3.71–3.90 (m, 2H), 4.23 (d, 2H, J = 2.4 Hz), 5.09
(d, 1H, J = 1.7 Hz); 13C NMR (50.32 MHz, CDCl3): d 54.3, 57.7, 59.1, 60.8, 62.1,
72.4, 74.9, 76.3, 76.9, 78.6, 80.9, 95.6 HRMS (MALDI-TOF) calcd for C12H20O6Na,
283.1158; found, 283.1164.
(l) Compound characterization data for compound 12: ½a�25

D = +106.9�(CHCl3, c 1.0);
1H NMR (200.13 MHz, CDCl3): d 2.46 (t, 1H, J = 2.4 Hz), 3.4, 3.5, 3.5, 3.5, 3.5, 3.5,
3.5 (7s, 21H), 3.42 (m, 1H), 3.50–3.72 (m, 10H), 3.92 (dd, 1H, J = 3.7, 11.5 Hz),
4.22 (t, 2H, J = 2.4 Hz), 5.07 (d, 1H, J = 1.5 Hz), 5.09 (d, 1H, J = 1.8 Hz); 13C NMR
(50.32 MHz, CDCl3): d 54.2, 57.6, 57.6, 58.7, 58.8, 59.1, 60.6, 60.8, 65.8, 71.2,
71.6, 71.9, 74.8, 75.7, 76.3, 76.8, 76.8, 78.6, 81.1, 81.1, 95.3, 97.0; HRMS (MALDI-
TOF) calcd for C22H38O11Na, 501.2312; found, 501.2318.
(m) Compound characterization data for compound 13: ½a�25

D = �7.1�(CHCl3, c 1.0);
1H NMR (200.13 MHz, CDCl3): d 2.57 (t, 1H, J = 2.3 Hz), 3.34, 3.37, 3.38, 3.38,
3.44, 3.49, 3.52 (7s, 21H), 3.38–3.59 (m, 8H), 3.69 (m, 3H), 3.78 (dd, 1H, J = 3.3,
4.8 Hz), 3.9 (dd, 1H, J = 3.5, 11.1 Hz), 4.14–4.36 (m, 2H), 4.40 (d, 2H, J = 2.3 Hz),
4.92 (d, 1H, J = 1.3 Hz), 4.94 (d, 1H, J = 1.3 Hz), 5.29 (d, 1H, J = 1.5 Hz), 5.69 (dd,
1H, J = 1.8, 3.2 Hz), 5.88 (dd, 1H, J = 3.2, 10.1 Hz), 6.02 (t, 1H, J = 9.9 Hz), 7.20–
7.71 (m, 9H), 7.75–8.18 (m, 6H); 13C NMR (100.61 MHz, CDCl3): d 55.3, 57.4,
57.6, 58.6, 58.6, 59.1, 60.6, 60.8, 65.6, 66.1, 67.3, 69.9, 69.9, 70.5, 71.1, 71.5, 71.6,
75.6, 75.7, 76.3, 76.6, 77.2, 78.1, 81.2, 81.2, 96.5, 96.9, 96.9, 128.2–130.0, 133.2,
133.5, 133.6, 165.3, 165.4, 165.4; HRMS (MALDI-TOF) calcd for C49H60O19Na,
975.3627; found, 975.3631.
(n) Compound characterization data for compound 14: ½a�25

D = �144.3�(CHCl3, c
1.0); 1H NMR (200.13 MHz, CDCl3): d 2.56 (t, 1H, J = 2.4 Hz), 3.21, 3.36, 3.36, 3.50
(4s, 12H), 3.18–3.59 (m, 6H), 3.71 (dd, 1H, J = 3.7, 11.1 Hz), 3.96 (dd, 1H, J = 3.8,
11.1 Hz), 4.29 (td, 1H, J = 3.6, 7.3, 9.8 Hz), 4.40 (d, 2H, J = 2.4 Hz), 4.94 (s, 1H),
5.31 (d, 1H, J = 1.5 Hz), 5.69 (dd, 1H, J = 1.8, 3.1 Hz), 5.87 (dd, 1H, J = 3.3, 10.1 Hz),
6.02 (t, 1H, J = 9.9 Hz), 7.21–7.68 (m, 9H), 7.79–8.14 (m, 6H); 13C NMR
(50.32 MHz, CDCl3): d 55.3, 57.5, 58.8, 58.9, 60.6, 66.1, 67.2, 69.8, 69.9, 70.4,
71.2, 71.3, 75.6, 76.2, 76.7, 78.1, 80.9, 96.4, 97.0, 128.2–129.9, 133.1, 133.3,
133.6, 165.3, 165.4, 165.4; HRMS (MALDI-TOF) calcd for C40H44O14Na, 771.2629;
found, 771.2620.
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