SYNTHESIS OF PHOSPHORYLATED TRIMANNOSIDES CORRE-SPONDING TO END GROUPS OF THE HIGH-MANNOSE CHAINS OF LYSOSOMAL ENZYMES

OM P. SRIVASTAVA AND OLE HINDSGAUL*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada) (Received March 31st, 1986; accepted for publication, April 16th, 1986)

ABSTRACT

Glycosylation of suitably protected 8-methoxycarbonyloctyl α -D-mannopyranosides with 2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl chloride provided α -D-Manp-(1 \rightarrow 2)- α -D-Man, α -D-Manp-(1 \rightarrow 3)- α -D-Man and α -D-Manp-(1 \rightarrow 6)- α -D-Man derivatives from which the 2'-hydroxyl group was liberated by Odeacetylation. Addition of the terminal D-mannose 6-phosphate residues was achieved by reaction with the readily accessible 2,3,4-tri-O-acetyl-6-Odiphenoxyphosphoryl- α -D-mannopyranosyl bromide under standard glycosylation conditions. Conventional deprotection provided the terminal 6"-phosphate of α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 2)- α -D-Man, α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- α -D-Man, and α -D-Manp-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 6)- α -D-Man which are present as end groups on the high-mannose oligosaccharide chains of lysosomal enzymes.

INTRODUCTION

D-Mannose 6-phosphate (Man-6-P) residues on asparagine-linked oligosaccharide chains are known as subcellular sorting signals in the lysosomal targeting of acid hydrolases¹⁻³. Man-6-P has also been shown to be a recognition marker for the binding and endocytosis of extracellular glycoproteins by high-affinity receptors on the surface of a variety of cells⁴⁻¹⁰. With the recent evidence^{11,12} for the existence of at least two structurally distinct Man-6-P receptors, we have embarked on a synthetic program aimed at providing an extensive panel of O-phosphorylated oligosaccharides to study the detailed molecular specificity of these important recognition phenomena.

The Man-6-P recognition marker in these systems is found on asparaginelinked oligosaccharide chains whose structures have been studied by Varki and Kornfeld^{13,14}, and by Natowicz *et al.*¹⁵. Structure **1** shows the mannose residues of the "unprocessed" high-mannose oligosaccharide chains where 6-O-phosphorylation has been suggested to occur. The Man-6-P residues are always either terminal

^{*}Author to whom correspondence should be addressed.

or subterminal and, in this unprocessed structure, are located on α -D-Manp-(1 \rightarrow 2)- α -D-Man disaccharide terminii. Smaller phosphorylated oligosaccharides, where outer nonphosphorylated residues have been cleaved, have also been described¹³⁻¹⁵.

We have already reported^{16,17} the preparation of glycosides of the three possible terminal disaccharides present in the composite structure 1, namely, 2, 3, and 4. We report herein the syntheses of the three phosphorylated trisaccharide glycosides 5, 6, and 7 which are also partial structures of 1. These trisaccharides were prepared as the 8-methoxycarbonyloctyl glycosides¹⁸ to allow for their eventual covalent attachment to proteins and solid supports¹⁹.

RESULTS AND DISCUSSION

Methods for the synthesis of oligomannosides are now well developed and have been reviewed by Ogawa *et al.*²⁰ who have elegantly synthesized a large number of structures related to the naturally occurring asparagine-linked manno-

oligosaccharides²¹. For the synthesis of trisaccharides 5, 6, and 7, we have used very similar approaches starting with the preparation of selectively protected 8-methoxycarbonyloctyl α -D-mannopyranosides having free OH-2 (12), OH-3 (18), and OH-6 (14). Glycosylation of 12, 18, and 14 with well known 2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl chloride^{22,23} (8), followed by O-deacetylation, provides access to the required disaccharides 20, 22, and 24 having OH-2' groups free. Addition of the terminal 6-O-phosphorylated α -D-mannopyranosyl units could then be accomplished by reaction with the prephosphorylated glycosyl bromide 10, which is obtained on treating the readily accessible²⁴ β -acetate 9 with hydrogen bromide in acetic acid.

Reaction of the diol^{16,17} 11 with *tert*-butyldimethylsilyl chloride provided the

6-O-silyl derivative 12 (80%) having the required OH-2 free for further glycosylation. Benzylation of 12 with benzyl bromide and silver oxide in N,N-dimethylformamide provided 13 (69%) from which OH-6 was cleaved with tetrabutylammonium fluoride to provide 14 (87%).

Treatment of 2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl bromide with 8methoxycarbonyloctanol gave the α -glycoside 15 (60%) which was O-deacetylated to provide 16. Benzylidenation of 16, according to the recently described procedure of Albert *et al.*²⁵, by use of dimethoxytoluene in N, N-dimethylformamide containing ethereal tetrafluoroboric acid provided the 4,6-O-benzylidene derivative 17 (74%). The structural assignment of 17 was verified by conversion of a small sample into the 2,3-di-O-acetyl derivative (acetic anhydride-pyridine) and observing the characteristic signals for H-2 (δ 5.345, $J_{1,2}$ 1.5, $J_{2,3}$ 3.5 Hz) and H-3 (δ 5.423, $J_{3,4}$ 10.0 Hz) in the ¹H-n.m.r. spectrum shifted downfield. Selective 2-O-benzylation of 17, according to Borén *et al.*²⁶, provided the alcohol 18 (41%) with OH-3 free for chain extension.

Reaction of 12 with the mannopyranosyl chloride 8, in the presence of silver trifluoromethanesulfonate and N, N, N', N'-tetramethylurea^{27,28}, gave the desired protected α -(1 \rightarrow 2)-linked disaccharide 19 in 67% yield. Ogawa and Sasajima²⁹ have previously described the lability of the *tert*-butyldimethylsilyl group under standard

glycosylation conditions and some loss of this protecting group was anticipated in the glycosylation. Indeed, the α -(1 \rightarrow 2)- α -(1 \rightarrow 6)-linked trisaccharide **25** was isolated from the reaction mixture in 12% yield. The loss in the yield of **19** due to this side-reaction was still deemed acceptable, however, since an ample supply of the precursor diol^{16,17} **11** was already available in our laboratory. Deprotection of OH-2 in **19** by transesterification with sodium methoxide in methanol provided the disaccharide alcohol **20** (86%).

Condensation of 18 with 8 gave the protected α -D-(1 \rightarrow 3)-linked disaccharide 21 (81%) which was O-deacetylated to produce the alcohol 22 (85%). Similarly, reaction of 14 with 8 gave the α -D-(1 \rightarrow 6)-linked disaccharide 23 (79%) from which the acetyl group was removed to provide the OH-2' derivative 24 (85%).

Reaction of the disaccharides 20, 22, and 24 having OH-2' free with the 6-Ophosphorylated glycosyl bromide 10, in the presence of silver trifluoromethanesulfonate and N, N, N', N'-tetramethylurea in 1,2-dichloroethane, was sluggish and required a large excess of 10 to produce an acceptable yield. Reaction of 20 with 10 (7.5 equiv.) for 2 days at room temperature produced the protected α -D-(1->2)- α -D-(1->2)-linked trisaccharide 26 in 50% yield. That all three glycosidic linkages in 26 had the α -D-configuration was evident from its ¹H-coupled ¹³C-n.m.r. spectrum which showed the presence of three resolved anomeric carbon atoms at δ 100.87 (¹J_{C,H} 171 Hz), 99.23 (¹J_{C,H} 173 Hz), and 98.86 (¹J_{C,H} 170 Hz), in accord with the empirical rules formulated by Bock and Pedersen³⁰ for the dependence of the onebond C-H coupling constants on the anomeric configuration of glycopyranosides

27 R = H

and supported by a large number of observations³¹ on synthetic oligomannosides. Although some loss of the *tert*-butyldimethylsilyl protecting group undoubtedly occurred under these reaction conditions, no tetrasaccharidic product was isolated. Combinations of mercuric cyanide and mercuric bromide were also evaluated as promoters in these glycosylation reactions with **10** but, in acetonitrile containing 4A molecular sieves, unacceptable yields (<10%) of trisaccharides were produced.

Glycosylation of 22 with 10 under the reaction conditions described gave the protected α -D-(1→2)- α -D-(1→3)-linked trisaccharide 28 in 56% yield. The ¹³C-n.m.r. spectrum of 28 showed the expected one-bond C-H coupling constants for the three anomeric carbon atoms at δ 99.67 (¹J_{C,H} 173 Hz), 99.16 (¹J_{C,H} 167 Hz), and 98.47 (¹J_{C,H} 172 Hz) along with the benzylidene acetal carbon atom at δ 101.86. Similarly, reaction of 24 with 10 gave the protected α -D-(1→2)- α -D-(1→6)-linked trisaccharide 29 in 65% yield. Compound 10 showed signals for the anomeric carbon atoms at δ 99.37 (¹J_{C,H} 170 Hz), 99.19 (¹J_{C,H} 170 Hz), and 97.95 (¹J_{C,H} 168 Hz). The signals for C-6" in the ¹³C-n.m.r. spectra of the trisaccharides 26, 28, and 29 all showed ³J_{C,P} ≈ 5 Hz and the ³¹P-n.m.r. spectra showed the presence of a single signal in the region expected for phosphoric triesters at δ -12.5.

Deprotection of 26 involved removal of the *tert*-butyldimethylsilyl group with aqueous acetic acid at room temperature for 24 h to give 27 (86%). Acidic conditions were selected for this deprotection step in order to avoid the potentially troublesome acetyl-transesterification side-reactions that may accompany desilyla-

Nucleus ^c	Compound		
	5 (1→2,1→2)	6 (1→2,1→3)	7 (1→2,1→6)
H-1 (J ₁₂)	4.985 (1.4)	4.832 (1.6)	4.850 (1.6)
H-1' $(J_{1',2'})$	5.325 (1.6)	5.369 (1.6)	5.129 (1.4)
H-1" (J _{1",2"})	5.042 (1.6)	5.068 (1.7)	5.027 (1.8)
H-2 (J _{2 3})	4.006 (3.2)	4.029 (3.2)	3.929 (3.2)
H-2' $(J_{2',2'})$	4.125 (3.2)	4.120 (3.2)	3.984 (3.0)
H-2" (J _{2",3"})	4.060 (3.0)	4.068 (2.8)	4.067 (3.2)
$C-1({}^{1}J_{C,\mu})$	98.54 (170)	99.71 (171)	99.02 (172)
$C-1'(J_{CH})$	100.66 (170)	100.45 (171)	100.64 (170)
$C-1'' (J_{C \mu})$	102.40 (170)	102.33 (170)	103.16 (169)
C-5" (3)	72.77 (7)	72.73 (7)	73.20 (7)
C-6" (² J _{C,P})	63.16 (4)	63.16 (3-4)	64.50 (3-4)
Р	4.23	3.51	4.12

TABLE I

SELECTED CHEMICAL SHIFTS (δ) and COUPLING CONSTANTS (Hz)^{*a*} FOR TRISACCHARIDES 5, 6, and 7^{*b*}

^aIn parentheses. ^bFor solutions in deuterium oxide; experimental conditions and reference standards are described in the Experimental section. ^cAssignments are tentative. ¹H-Connectivities were established by homonuclear-decoupling.

tion with tetrabutylammonium fluoride^{32,33}. Hydrogenolysis of the benzyl ethers of 27 in the presence of 5% palladium-on-carbon, followed by hydrogenolysis of the phosphate-protecting phenyl groups in the presence of Adam's catalyst (PtO₂), and O-deacetylation with sodium methoxide in methanol provided, after ion exchange on Dowex 50-X8 (Na⁺), the disodium salt of the α -D-(1 \rightarrow 2)- α -D-(1 \rightarrow 2)-linked trisaccharide 5 (73% from 27).

Deprotection of 28 and 29 in a similar fashion using hydrogenation over palladium-on-carbon, followed by Adam's catalyst, and finally O-deacetylation gave the target trisaccharides 6 (75%) and 7 (72%). Some key ¹H, ¹³C-, and ³¹P-n.m.r. data for 6, 7, and 8 are presented in Table I.

EXPERIMENTAL

General methods. -- Melting points are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 polarimeter at ambient temperatures ($22 \pm 2^{\circ}$). T.l.c. was performed on precoated plates of Silica gel 60-F₂₅₄ (E. Merck, Darmstadt) with detection by quenching of fluorescence, or by charring, or both, after spraying with 5% H_2SO_4 in ethanol. Column chromatography was performed on Silica gel Merck 60 (30-63 µm). ¹H-N.m.r. spectra were recorded at 360 MHz (Bruker WM-360) with either tetramethylsilane (Me₄Si, δ 0 in CDCl₃) or acetone (δ 2.225 in D₂O) as internal standards at ambient temperature. ¹³C-N.m.r. spectra were recorded at 100 MHz (Bruker WH-400) with either internal Me₄Si (δ in CDCl₃) or external 1,4-dioxane (δ 67.4 in D₂O) as reference standards. ³¹P-N.m.r. spectra were recorded at 145 MHz (Bruker WM-360) with external 85% H₃PO₄ in D_2O as reference (δ 0). The microanalyses were carried out by the Analytical Services Laboratory of this department. Unless otherwise noted, all reactions were carried out at ambient temperature and, in the processing of reaction mixtures, solutions in organic solvents were washed with equal volumes of aqueous solutions. 8-Methoxycarbonyloctanol was a generous gift from Chembiomed Ltd., Edmonton, Alberta, Canada.

2,3,4-Tri-O-acetyl-6-O-[(diphenyloxy)phosphoryl]- α -D-mannopyranosyl bromide (10). — Hydrogen bromide in glacial acetic acid (45%, w/v; 5 mL) containing 3% (v/v) acetic anhydride was added to a solution of 1,2,3,4-tetra-O-acetyl-6-O-[(diphenoxy)phosphoryl]- β -D-mannopyranose²⁴ (9; 1.20 g, 2.07 mmol) in dichloromethane (2 mL). After 4 h, the mixture was diluted with dichloromethane (50 mL) and washed 5 times with ice-water (50 mL) before drying (Na₂SO₄) and evaporation. T.1.c. examination of the residual syrup showed the presence of a single component (R_F 0.26 in 2:3 ethyl acetate-hexane) and this material was used in the glycosylation reactions without further purification; ¹H-n.m.r. (CDCl₃): δ 7.364-7.178 (m, 10 H, arom.), 6.237 (d, 1 H, $J_{1,2}$ 1.2 Hz, H-1), 5.717 (dd, 1 H, $J_{2,3}$ 2.3, $J_{3,4}$ 10.1 Hz, H-3), 5.425 (dd, 1 H, H-2), 5.374 (dd, 1 H, $J_{4,5}$ 10 Hz, H-4), 4.363 (dd, 2 H, $J_{5,6}$ 4.0, $J_{6,P}$ 7.5 Hz, H-6a,6b), and 4.265 (ddd, 1 H, $4_{5,P}$ 3 Hz, H-5).

8-Methoxycarbonyloctyl 3,4-di-O-benzyl-6-O-(tert-butyldimethylsilyl)- α -D-

mannopyranoside (12). — A solution of 11 (refs. 16, 17; 2.00 g, 3.77 mmol) and tert-butyldimethylsilyl chloride (681 mg, 4.52 mmol) in dry pyridine (15 mL) was stirred for 15 h. The mixture was poured into ice-water and, after 0.5 h, the solution was extracted with dichloromethane. The organic phase was taken to dryness and chromatography of the residue with 1:3 ethyl acetate-hexane as eluent provided 12 (1.95 g, 80%) as a syrup, $[\alpha]_D^{22} + 31.9^{\circ}$ (c 1.17 chloroform), R_F 0.50 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 4.825 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1), 3.660 (s, 3 H, CO₂CH₃), and 0.900 (s, 9 H, Me₃); ¹³C-n.m.r. (CDCl₃): δ 138.65 and 138.19 (quat. arom.), 99.15 (C-1), 62.73 (C-6), 51.27 (OCH₃), 34.01 (CH₂CO₂), and 25.94 [C(CH₃)₃].

Anal. Calc. for C₃₆H₅₆O₈Si: C, 67.04; H, 8.75. Found: C, 66.86; H, 8.71.

8-Methoxycarbonyloctyl 2,3,4-tri-O-benzyl-6-O-(tert-butyldimethylsilyl)- α -Dmannopyranoside (13). — Benzyl bromide (0.55 mL, 4.65 mmol) and Ag₂O (1.6 g) were added to a solution of 12 (1.0 g, 1.55 mmol) in dry N,N-dimethylformamide (7 mL) and the mixture was stirred for 48 h. Dichloromethane (50 mL) was added and the organic layer was washed with water (5 × 50 mL) before concentration to a syrup which was purified by chromatography with 1:4 ethyl acetate-hexane as eluent to provide 13 (790 mg, 69%) as a clear syrup, $[\alpha]_{D^2}^{22}$ +24.9° (c 0.85, chloroform), R_F 0.65 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 4.803 (d, 1 H, $J_{1,2}$ 1.8 Hz, H-1), 3.663 (s, 3 H, OCH₃), and 0.895 (s, 9 H, Me₃); ¹³C-n.m.r. (CDCl₃): δ 138.92, 138.83 and 138.74 (quat. arom.), 97.73 (C-1), 62.97 (C-6), 51.33 (OCH₃), 34.10 (CH₂CO₂), and 25.98 [C(CH₃)₃].

Anal. Calc. for C43H62O8Si: C, 70.26; H, 8.50. Found: C, 70.47; H, 8.55.

8-Methoxycarbonyloctyl 2,3,4-tri-O-benzyl- α -D-mannopyranoside (14). — Treatment of 13 (698 mg, 0.95 mmol) with tetrabutylammonium fluoride trihydrate (600 mg, 1.91 mmol) in oxolane (20 mL) for 5 h, followed by evaporation, gave crude 14 which was dissolved in dichloromethane (50 mL) and washed with water (3 × 20 mL) before concentration to a syrup. Chromatography with 1:3 ethyl acetate-hexane as eluent provided 14 (512 mg, 87%) as a clear syrup, $[\alpha]_D^{22}$ +32.9° (c 1.25, chloroform), R_F 0.28 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 4.781 (d, 1 H, $J_{1,2}$ 1.8 Hz, H-1), 3.659 (s, 3 H, OCH₃), and 1.999 (dd, 1 H, $J_{6,OH} = J_{6'OH}$ 7 Hz, OH); ¹³C-n.m.r. (CDCl₃): δ 138.56, 138.47 and 138.42 (quat. arom.), 98.24 (C-1), 62.43 (C-6), 51.33 (CO₂CH₃), and 34.03 (CH₂CO₂).

Anal.Calc. for C₃₇H₄₈O₈: C, 71.59; H, 7.79. Found: C, 71.75; H, 7.59.

8-Methoxycarbonyloctyl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside (15). — To a solution of 8-methoxycarbonyloctanol (964 mg, 5.12 mmol) in dry acetonitrile (15 mL) containing 4A molecular sieves were added sequentially HgBr₂ (2.77 g, 7.79 mmol) and Hg(CN)₂ (1.94 g, 7.79 mmol), followed by a solution of 2,3,4,6tetra-O-acetyl- α -D-mannopyranosyl bromide (7.7 mmol) in acetonitrile (15 mL). After being stirred for 15 h, the mixture was diluted with dichloromethane (50 mL), filtered, and evaporated to dryness. The residue was extracted three times with dichloromethane, and the extracts were combined and washed with saturated KCl (3 times), saturated NaHCO₃ (3 times), and twice with water, and solvent was removed by evaporation. Chromatography using 1:2 ethyl acetate-hexane as eluent provided **15**, syrup (1.6 g, 60%), $[\alpha]_D^{22}$ +38.5° (*c* 1.22, chloroform): ¹H-N.m.r. (CDCl₃): δ 5.235 (dd, 1 H, $J_{1,2}$ 1.8, $J_{2,3}$ 3.5 Hz, H-2), 4.803 (d, 1 H, H-1), 3.675 (s, 3 H, OCH₃), 2.163, 2.110, 2.053, and 2.002 (each s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 97.49 ($J_{C-1,H-1}$ 170.9 Hz), 51.17 (OCH₃), 33.92 (CH_2CO_2).

Anal. Calc. for C₂₄H₃₈O₁₂: C, 55.59; H, 7.39. Found: C, 55.50; H, 7.41.

8-Methoxycarbonyloctyl 4,6-O-benzylidene-α-D-mannopyranoside (17). -Treatment of 15 (1.40 g, 2.70 mmol) with methanolic sodium methoxide for 7 h, followed by neutralization with IRC-50 (H⁺) and subsequent removal of the resin provided a solution of 8-methoxycarbonyloctyl α-D-mannopyranoside (16, R_F 0.59 in 4:1 ethyl acetate-hexane) which was not further characterized. Evaporation gave a white solid which was dried overnight *in vacuo* over P₂O₅. Compound 16 (699 mg, 2.00 mmol) was dissolved in N,N-dimethylformamide (15 mL), and benzaldehyde dimethylacetal (0.33 mL, 2.2 mmol) and tetrafluoroboric acid (2.2 mmol of a 54% solution in diethyl ether) were added. After 15 h, triethylamine (0.35 mL) was added and the solvent was evaporated. The residue was purified by chromatography using 1:1 ethyl acetate-hexane as eluent to provide 17 (650 mg, 74%), clear syrup, R_F 0.22 (1:1 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.537 (s, 1 H, $C_6H_5CHO_2$), 4.794 (br, 1 H, H-1), 3.646 (s, 3 H, OCH₃), and 3.50 (br, OH); ¹³Cn.m.r. (CDCl₃): δ 137.36 (quat. arom.), 102.05 and 100.31 (C_6H_5CH and C-1), 68.77 (C-6), 51.19 (OCH₃), and 33.93 (CH_2CO_2).

Anal. Calc. for C₂₃H₃₄O₈: C, 62.99; H, 7.82. Found: C, 62.91; H, 7.90.

8-Methoxycarbonyloctyl 4,6-O-benzylidene-2-O-benzyl-α-D-mannopyranoside (18). — Compound 17 (597 mg, 1.36 mmol) was stirred with benzyl bromide (0.23 mL, 1.92 mmol) and Ag₂O (0.47 g) in N,N-dimethylformamide (5 mL) for 48 h. After dilution with chloroform (50 mL), washing with water (5 × 50 mL). and evaporation, the residue was purified by chromatography using 1:3 ethyl acetatehexane as eluent to give 18 (298 mg, 41%), clear syrup, $[\alpha]_D^{22}$ +13.3° (c 1.27, chloroform), R_F 0.47 (2:3 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.581 (s, 1 H, C₆H₅CHO₂), 4.828 (d, 1 H, J_{1,2} 1.6 Hz, H-1), 4.105 (br. 1 H, collapses to dd, J_{2,3} 4.0, J_{3,4} 9.5 Hz on irradiation of OH, H-3), 3.667 (s, 3 H, OCH₃), and 2.378 (br., 1 H, OH); ¹³C-n.m.r. (CDCl₃): δ 137.79 and 137.45 (quat. arom.), 101.99 (C₆H₅CHO₂), 98.41 (C-1), 68.86 (C-6), 51.30 (OCH₃), and 34.01 (CH₂CO₂).

Anal. Calc. for C₃₀H₄₀O₈: C, 68.16; H, 7.63. Found: C, 68.27; H, 7.46.

8-Methoxycarbonyloctyl 2-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-3,4-di-O-benzyl-6-O-tert-butyldimethylsilyl- α -D-mannopyranoside (19) and 8-methoxycarbonyloctyl 2,6-di-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-3,4-di-O-benzyl- α -D-mannopyranoside (25). — A solution of 8 (0.9 mmol) in 1,2-dichloroethane (3 mL) was added dropwise to a stirred mixture of 12 (302 mg, 0.47 mmol), silver trifluoromethanesulfonate (0.48 g, 1.87 mmol), and N, N, N'N'tetramethylurea (0.17 mL, 1.41 mmol) in the same solvent (3 mL). After 1 h at 20°, more 8 (0.9 mmol) and N, N, N', N'-tetramethylurea (0.17 mL) were added and stirring was continued for an additional hour. The mixture was diluted with 1,2dichloroethane (10 mL), and 2,4,6-trimethylpyridine (0.20 mL) followed by silver trifluoromethanesulfonate (0.24 g) were added to eliminate excess **8**. After 0.5 h, tetraethylammonium bromide (0.20 g) was added to precipitate excess Ag, and solids were removed by filtration. The filtrate was washed twice with a saturated NaHCO₃ solution and twice with water, before evaporation and purification by chromatography using 1:3 ethyl acetate-hexane as eluent. The disaccharide **19** was obtained as a clear syrup (350 mg, 67%), $[\alpha]_D^{22} + 19.8^{\circ}$ (*c* 0.99, chloroform), R_F 0.64 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.551 (dd, 1 H, $J_{1',2'}$ 1.8, $J_{2',3'}$ 3.2 Hz, H-2'), 5.085 (d, 1 H, $J_{1',2'}$ 1.8 Hz, H-1'), 4.816 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1), 3.654 (s, 3 H, OCH₃), 3.203 (m, 1 H, OCHHCH₂), 2.117 (s, 3 H, COCH₃), and 0.874 [s, 9 H, C(CH₃)₃]; ¹³C-n.m.r. (CDCl₃): δ 99.80 ($J_{C-1,H-1}$ 171 Hz, C-1), 98.72 ($J_{C-1',H-1'}$ 168 Hz, C-1'), 62.70 (C-6), 51.32 (OCH₃), 34.11 (CH_2CO_2), and 24.97 [C(CH_3)₃].

Anal. Calc. for C₆₅H₈₆O₁₄Si: C, 69.74; H, 7.74. Found: C, 69.74; H, 7.86.

Evaporation of the later fractions provided the trisaccharide **25** (80 mg, 12%), $[\alpha]_{D}^{22}$ +37.9° (c 0.19, chloroform), $R_{\rm F}$ 0.47 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.570 (dd, 1 H, $J_{1',2'}$ 1.8, $J_{2',3'}$ 3.2 Hz, H-2'), 5.410 (dd, 1 H, $J_{1',2''}$ 1.7, $J_{2'',3''}$ 3.0 Hz, H-2''), 5.094 (d, 1 H, H-1'), 4.928 (d, 1 H, H-1''), 4.798 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1), 3.645 (s, 3 H, OCH₃), 2.109 and 2.103 (both s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 99.62, 98.48 and 97.46 (C-1,1',1''), 51.30 (OCH₃), and 34.00 (CH₂CO₂).

Anal. Calc. for C₈₈H₁₀₂O₂₀: C, 71.43; H, 6.95. Found: C, 70.97; H, 7.08.

8-Methoxycarbonyloctyl 3,4-di-O-benzyl-6-O-tert-butyldimethylsilyl-2-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)- α -D-mannopyranoside (20). — Deacetylation of 19 (299 mg, 0.27 mmol), as described for the preparation of 16, gave 20 which was purified by chromatography using 1:3 ethyl acetate-hexane as eluent. Pure 20 was obtained as a syrup (250 mg, 86%), $[\alpha]_D^{22} + 30.4^\circ$ (c 0.53 chloroform), R_F 0.43 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.168 (d, 1 H, $J_{1',2'}$ 1.8 Hz, H-1'), 4.530 (d, 1 H, $J_{1,2} < 2$ Hz, H-1), 3.665 (s, 3 H, OCH₃), 2.452 (br., 1 H, OH), and 0.888 [s, 9 H, C(CH₃)₃]; ¹³C-n.m.r. (CDCl₃): δ 101.27 (C-1'), 98.81 (C-1), 62.57 (C-6), 51.29 (OCH₃), 34.06 (CH₂CO₂), and 26.00 [C(CH₃)₃].

Anal. Calc. for C₆₃H₈₄O₁₃Si: C, 70.23; H, 7.86. Found: C, 70.25; H, 7.58.

8-Methoxycarbonyloctyl 3-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-2-O-benzyl-4,6-O-benzylidene- α -D-mannopyranoside (21). — A solution of 8 (1.18 mmol), in 1,2-dichloroethane (3 mL) was added dropwise to a stirred mixture of 18 (312 mg, 0.59 mmol), silver trifluoromethanesulfonate (303 mg, 1.18 mmol) and N,N,N',N'-tetramethylurea (212 mg, 1.77 mmol) in the same solvent (2 mL), and stirring was maintained for 2 h. After dilution with 1,2-dichloroethane (10 mL), the mixture was processed as described for the preparation of 19. Chromatography using 1:3 ethyl acetate-hexane as eluent provided 21 as a syrup (480 mg, 81%), $[\alpha]_{D}^{22}$ +45° (c 0.27, chloroform), $R_{\rm F}$ 0.58 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.643 (s, 1H, C₆H₅CHO₂), 5.620 (dd, 1 H, J_{1',2'} 2.0, J_{2',3'} 3.2 Hz, H-2'), 5.333 (d, 1 H, H-1'), 4.763 (d, 1 H, J_{1,2} 1.8 Hz, H-1), 3.657 (s,

OCH₃), and 2.097 (s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 101.31 (C₆H₅CHO₂), 99.26 (³J_{C,H} 168 Hz) and 99.04 (³J_{C,H} 172 Hz) (C-1,1'), 64.17 (C-6), 51.34 (OCH₃), and 34.10 (CH₂CO₂).

Anal. Calc. for C₅₉H₇₀O₁₄: C, 70.64; H, 7.03. Found: C, 70.32; H, 6.88.

8-Methoxycarbonyloctyl 2-O-benzyl-4,6-O-benzylidene-3-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (22). — Deacetylation of 21 (350 mg, 0.35 mmol) was accomplished as described for the preparation of 16. Purification by chromatography using 1:3 ethyl acetate-hexane as eluent provided 22 as a clear syrup (285 mg, 85%), $[\alpha]_D^{22}$ +46° (c 0.19, chloroform), R_F 0.40 (1:2 ethyl acetate-hexane); ¹H-N.m.r. (CDCl₃): δ 5.592 (s, 1 H, C₆H₅CHO₂), 5.260 (d, 1 H, $J_{1',2'}$ 1.8 Hz, H-1'), 4.610 (d, 1 H, $J_{1,2}$ <2 Hz, H-1), and 3.658 (s, 3 H, OCH₃); ¹³C-n.m.r. (CDCl₃): δ 101.60, 100.69 and 99.16 (C₆H₅CHO₂, C-1,1'), 64.14 (C-6), 51.33 (OCH₃), and 34.10 (CH₂CO₂).

Anal. Calc. for C57H68O13: C, 71.23; H, 7.13. Found: C, 70.74; H, 7.14.

8-Methoxycarbonyloctyl 6-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-2,3,4-tri-O-benzyl-α-D-mannopyranoside (23). — A solution of 8 (0.97 mmol) in 1,2-dichloroethane (2 mL) was added dropwise to a stirred mixture of 14 (301 mg, 0.49 mmol), silver trifluoromethanesulfonate (249 mg, 0.97 mmol), and N, N, N', N'-tetramethylurea (1.45 mmol) in the same solvent (3 mL). After 1 h, the mixture was processed as described for the preparation of 19. Chromatography using 1:3 ethyl acetate-hexane as eluent provided 23 as a clear syrup (420 mg, 79%), $[\alpha]_{D^2}^{2^2}$ +33.4° (c 1.08, chloroform), R_F 0.47 (1:2 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.495 (dd, 1 H, $J_{1',2'}$ 2.0, $J_{2',3'}$ 3.2 Hz, H-2'), 4.975 (d, 1 H, H-1'), 4.823 (d, 1 H, $J_{1,2}$ 1.9 Hz, H-1), 3.660 (s, 3 H, OCH₃), and 2.143 (s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 98.11 (${}^{3}J_{C,H}$ 173 Hz) and 97.76 (${}^{3}J_{C,H}$ 168 Hz) (C-1,1'), 51.31 (OCH₃), and 34.08 (CH₂CO₂).

Anal. Calc. for C₆₆H₇₈O₁₄: C, 72.37; H, 7.18. Found: C, 72.07; H, 7.21.

8-Methoxycarbonyloctyl 2,3,4-tri-O-benzyl-6-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-α-D-mannopyranoside (24). — Deacetylation of 23 (350 mg, 0.32 mmol) was accomplished as described for the preparation of 16. Chromatography using 1:2 ethyl acetate-hexane as eluent provided pure 24 as a clear syrup (285 mg, 85%), $[\alpha]_D^{22}$ +46.7° (c 0.67, chloroform), R_F 0.17 (1:2 ethyl acetate-hexane); ¹Hn.m.r. (CDCl₃): δ 5.088 (d, 1 H, $J_{1',2'}$ 1.8 Hz, H-1'), 4.803 (d, 1 H, $J_{1,2}$ 2.0 Hz, H-1), 3.660 (s, 3 H, OCH₃), and 2.353 (d, 1 H, OH); ¹³C-n.m.r. (CDCl₃): δ 99.79 (C-1), 97.84 (C-1'), 51.33 (OCH₃), and 34.10 (CH₂CO₂).

Anal. Calc. for C₆₄H₇₆O₁₃: C, 72.98; H, 7.27. Found: C, 73.07; H, 7.32.

8-Methoxycarbonyloctyl 2-O-[2,3,4-tri-O-acetyl-6-O-(diphenoxy)phosphoryl- α -D-mannopyranosyl]-(1 \rightarrow 2)-O-(3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-3,4-di-O-benzyl-6-O-tert-butyldimethylsilyl- α -D-mannopyranoside (26). — Bromide 10 (0.40 mmol) in 1,2-dichloroethane (1 mL) was added to a stirred mixture of 20 (170 mg, 0.16 mmol), N,N,N',N'-tetramethylurea (71 μ L, 0.59 mmol), and silver trifluoromethanesulfonate (304 mg, 1.19 mmol) in 3 mL of the same solvent. After both 5 h and a further 15 h, more tetramethylurea (71 μ L) and 10 (0.40 mmol) were added. After an additional 36 h, the mixture was diluted with 1,2dichloroethane (10 mL) and 2,4,6-trimethylpyridine, followed by excess silver trifluoromethanesulfonate in order to remove any unreacted 10, as described for the preparation of 19. After a further 0.5 h, excess Ag was precipitated with tetraethylammonium bromide. Processing, as described for 19, followed by chromatography using 1:2 ethyl acetate-hexane gave 26 as a clear syrup (125 mg, 50%), $[\alpha]_{\rm D}^{22}$ +34.8° (c 0.81, chloroform), $R_{\rm F}$ 0.28 (3:2 ethyl acetate-hexane); ¹Hn.m.r. (CDCl₃): δ 5.440–5.405 (m, 2 H, H-2",3"), 5.328 (dd, $J_{3",4"} = J_{4",5"}$ 10 Hz), 5.215 (d, 1 H, $J_{1',2'}$ 1.5 Hz, H-1'), 4.873 (H-1", $J_{1',2"} < 2$ Hz), 4.862 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1), 3.660 (s, 3 H, OCH₃), 2.028, 2.003, 1.935 (each s, 3 H, COCH₃), and 0.885 [s, 9 H, C(CH₃)₃]; ¹³C-n.m.r. (CDCl₃); δ 100.87 (¹ $J_{\rm C,H}$ 171 Hz), 99.23 (¹ $J_{\rm C,H}$ 173 Hz) and 98.86 (¹ $J_{\rm C,H}$ 170 Hz) (C-1,1',1"), 67.16 (C-6", broadened by ³ $J_{\rm P,H}$), 62.73 (C-6), 51.35 (OCH₃), 34.11 (CH₂CO₂), and 26.10 [C(CH₃)₃]; ³¹P-n.m.r. (CDCl₃): δ -12.52.

Anal. Calc. for C₈₇H₁₀₉O₂₄PSi: C, 65.39; H, 6.87. Found: C, 65.39; H, 6.88. 8-Methoxycarbonyloctyl O-[2,3,4-tri-O-acetyl-6-O-(diphenoxy)phosphoryl-α-D-mannopyranosyl]-(1→2)-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1→3)-2-O-benzyl-4,6-O-benzylidene-α-D-mannopyranoside (**28**). — Disaccharide **22** (198 mg, 0.21 mmol) was condensed with bromide **10** (8 equiv.), added in three equal portions as described for the preparation of **26**. Chromatography using 2:3 ethyl acetate-hexane as eluent gave **28** as a syrup (170 mg, 56%), $[\alpha]_{D}^{22}$ +44.5° (c 0.31, chloroform), R_F 0.20 (2:3 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.523 (s, 1 H, C₆H₅CHO₂), 5.393–5.270 (4 H, H-1',2",3",4"), 5.010 (d, 1 H, J_{1"2"} 1.6 Hz, H-1"), 4.743 (d, 1 H, J_{1,2} 1.5 Hz, H-1), 4.367 (dd, 1 H, J_{2,3} 3.0, J_{3,4} 10.0 Hz, H-3), 3.655 (s, 3 H, OCH₃), 1.993, 1.977, and 1.937 (all s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 101.86 (C₆H₅CHO₂), 99.67 (¹J_{C,H} 173 Hz), 99.16 (¹J_{C,H} 167 Hz) and 98.47 (¹J_{C,H} 172 Hz) (C-1,1',1"), 66.40 (³J_{C,P} 5 Hz, C-6"), 51.32 (OCH₃), and 34.06 (CH₂CO₂); ³¹P-n.m.r. (CDCl₃): δ -12.59.

Anal. Calc. for C₈₁H₉₃O₂₄P: C, 65.66; H, 6.33. Found: C, 65.45; H, 6.30.

8-Methoxycarbonyloctyl O-[2,3,4-tri-O-acetyl-6-O-(diphenoxy)phosphoryl-α-D-mannopyranosyl]-(1→2)-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1→6)-2,3,4-tri-O-benzyl-α-D-mannopyranoside (29). — Disaccharide 24 (202 mg, 0.19 mmol) was condensed with bromide 10 (1.4 mmol), added in three portions, as described for the preparations of 26 and 28. Processing of the mixture as just described, followed by chromatography using 2:3 ethyl acetate-hexane as eluent, gave 29 as a syrup (195 mg, 65%), $[\alpha]_D^{22}$ +43.2° (c 0.33, chloroform), R_F 0.24 (2:3 ethyl acetate-hexane); ¹H-n.m.r. (CDCl₃): δ 5.448-5.410 (m, 2 H, H-2",3"), 5.348 (dd, 1 H, $J_{3",4"} = J_{4",5"}$ 10 Hz, H-4"), 5.080 (d, 1 H, $J_{1',2'}$ 1.5 Hz, H-1'), 4.910 (d, 1 H, $J_{1",2"}$ 1.5 Hz, H-1"), 4.748 (H-1, $J_{1,2} < 2$ Hz), 3.653 (s, 3 H, OCH₃), 2.020, 1.995 and 1.910 (each s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 99.37 ($^{1}J_{C,H}$ 170 Hz), 99.19 ($^{1}J_{C,H}$ 170 Hz) and 97.95 ($^{1}J_{C,H}$ 168 Hz) (C-1,1',1"), 67.35 (C-6", $^{3}J_{C,P}$ 5 Hz), 51.37 (OCH₃), and 34.11 (CH₂CO₂); ³¹P-n.m.r. (CDCl₃): δ -12.46.

Anal. Calc. for C₈₈H₁₀₁O₂₄P; C, 67.17; H, 6.47. Found: C, 67.03; H, 6.55.

8-Methoxycarbonyloctyl O-[2,3,4-tri-O-acetyl-6-O-(diphenoxy)phosphoryl-α-D-mannopyranosyl]-(1→2)-O-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1→2)-3,4-di-O-benzyl-α-D-mannopyranoside (27). — Compound 26 (125 mg, 0.08 mmol) was dissolved in dichloromethane (1 mL) and 80% aqueous acetic acid (15 mL) was added. After 24 h, the solvent was evaporated and chromatography of the residue using 2:3 ethyl acetate-hexane as eluent provided 27 as a syrup (100 mg, 86%), $[\alpha]_{D}^{2^2}$ +41.3° (c 0.40, chloroform), $R_{\rm F}$ 0.18 (1:2 ethyl acetate-hexane); ¹Hn.m.r. (CDCl₃): δ 5.324 (dd, $J_{3",4"} = J_{4",5"} = 10$ Hz. H-4"), 5.230 (d, 1 H, $J_{1',2'}$ 1.9 Hz, H-1'), 4.630 (H-1", $J_{1',2"} < 2$ Hz), 4.590 (d, 1 H, $J_{1,2} < 2$ Hz), 3.645 (s, 3 H, OCH₃), 2.075 (br, OH), 2.055, 2.008, and 1.932 (each s, 3 H, COCH₃); ¹³C-n.m.r. (CDCl₃): δ 100.30, 98.88 and 98.76 (C-1,1',1"), 67.07 (C-6", ³ $J_{C,P}$ 5 Hz), 62.15 (C-6), 51.27 (OCH₃), and 33.97 (CH₂CO₂).

Anal. Calc. for C₈₁H₉₅O₂₄P: C, 65.57; H, 6.46. Found: C, 65.42; H, 6.40.

8-Methoxycarbonyloctyl O- $(\alpha$ -D-mannopyranosyl disodium 6-phosphate)- $(1\rightarrow 2)$ -O- α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranoside (5). — Compound 27 (102 mg, 0.069 mmol) was dissolved in 95% ethanol (3 mL) containing 5% Pd-C (50 mg) and stirred under H_2 (0.1 MPa) for 15 h, by which time t.l.c. showed a major product (~80%) with $R_{\rm F}$ 0.80 (60:35:6 chloroform-methanol-water) and a more polar product (~20%) with R_F 0.60 (same solvent), presumably the monophenyl phosphate. The catalyst was removed by filtration and washed with 95% ethanol (25 mL), and the filtrate evaporated and redissolved in 95% ethanol (3 mL). Hydrogenation (0.1 MPa) in the presence of Adam's catalyst (PtO_{2} , 20 mg) for 3 h provided a product with $R_{\rm F}$ 0.37 (60:35:6 chloroform-methanol-water) which was devoid of u.v. absorption in t.l.c. Removal of the catalyst by filtration, followed by evaporation and drying for 15 h (P₂O₅), gave a glass which was dissolved in dry methanol containing a trace of sodium methoxide. The solution was kept at 0° until all the material was converted into a single compound ($R_{\rm F}$ 0.30; 4:1 2-propanol-water). After neutralization with IRC-50 (H^+) , removal of the resin, and evaporation, the residue was passed through a column of Bio-Gel P-2 (200-400 mesh) (50 \times 2.5 cm) with 10% ethanol as eluent. The carbohydrate-containing fractions were pooled, concentrated, and passed through a column of Dowex 50-X8 (Na⁺; 10 mL). The eluate was lyophilized to provide 5 (40.2 mg, 73%), white powder, $[\alpha]_D^{22}$ +50.6° (c 0.174, water); ¹H-n.m.r. (D₂O): δ 5.325 (d, 1 H, $J_{1'2'}$ 1.6 Hz, H-1'), 5.042 (d, 1 H, J_{1",2"} 1.6 Hz, H-1"), 4.985 (d, 1 H, J_{1,2} 1.4 Hz, H-1), 4.125 (dd, 1 H, $J_{2'3'}$ 3.2 Hz, H-2'), 4.060 (dd, 1 H, $J_{2'3'}$ 3.0 Hz, H-2"), 4.006 (dd, 1 H, J_{2.3} 3.2 Hz, H-2), 3.686 (s, OCH₃), 3.534 (m, 1 H, OCHHCH₂), and 2.387 (t, 2 H, CH_2CO_2); ¹³C-n.m.r. (D₂O): δ 178.04 (CO₂CH₃), 102.40 (¹J_{C,H} 170 ± 3 Hz, C-1"). 100.66 (${}^{1}J_{C,H}$ 170 ±3 Hz, C-1'), 98.54 (${}^{1}J_{C,H}$ 170 Hz, C-1), 78.18, 77.62, 73.53, 72.99, 72.77 (d, ³J_{C,P} 7 Hz, C-5"), 70.57, 70.21 (2 C), 70.16, 68.14, 67.10, 66.89, 66.48, 63.16 (d, ${}^{2}J_{CP}$ 4 Hz, C-6"), 61.14 and 61.06 (C-6,6'), 52.22 (OCH₃), 33.87 (CH₂CO₂), 28.58, 28.38, 28.33 (2 C), 28.29, 25.39, and 24.43; ³¹P-n.m.r. (D₂O): δ 4.23.

Anal. Calc. for $C_{28}H_{49}Na_2O_{21}P \cdot H_2O$: C, 41.17; H, 6.30. Found: C, 41.15; H. 6.32.

8-Methoxycarbonyloctyl O- $(\alpha$ -D-mannopyranosyl disodium 6-phosphate)- $(1\rightarrow 2)$ -O- α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranoside (6). — Compound 28 (101 mg, 0.068 mmol) was deprotected, as described for the preparation of 5, with 5% Pd-C (50 mg) for 40 h, followed by Adam's catalyst (20 mg) for 3 h. After deacetylation at 0°, Bio-Gel P-2 chromatography, and Dowex 50-X8 (Na⁺) treatment and lyophilization, 6 was obtained as a white powder (41 mg, 75%), $[\alpha]_{1}^{22}$ +65.1° (c 0.166, water), $R_{\rm F}$ (4:1 2-isopropanol-water); ¹H-n.m.r. (D₂O): δ 5.369 (d, 1 H, $J_{1'2'}$ 1.6 Hz, H-1'), 5.068 (d, 1 H, $J_{1'2'}$ 1.7 Hz, H-1"), 4.832 (d, 1 H, J_{12} 1.6 Hz, H-1), 4.120 (dd, 1 H, J_{2',3'} 3.2 Hz, H-2'), 4.068 (dd, 1 H, J_{2*,3*} 2.8 Hz, H-2"), 4.029 (dd, 1 H, J₂, 3.2 Hz, H-2), 3.687 (s, OCH₃), 3.537 (OCHHCH₂), and 2.388 (t, 2 H, J 7.4 Hz, CH₂CO₂); ¹³C-n.m.r. (D₂O): δ 178.01 (CO₂CH₃), 102.33 (¹J_{C,H}) 170 Hz, C-1"), 100.45 (¹J_{C,H} 171 Hz, C-1') and 99.71 (¹J_{C,H} 171 Hz, C-1), 77.67, 76.81, 73.52, 73.03, 72.73 (d, ³J_{CP} 7 Hz, H-5"), 70.37, 70.17, 70.10, 70.01, 68.14, 67.02, 66.69, 66.24, 63.16 (br., ${}^{2}J_{C,P} \approx 3-4$ Hz, C-6"), 61.12 and 60.80 (C-6,6'), 52.22 (OCH₃), 33.87 (CH₂CO₂), 28.50, 28.36, 28.34, 28.39, 25.34, and 24.42; ³¹Pn.m.r. (D_2O) : $\delta 3.51$.

Anal. Calc. for $C_{28}H_{49}Na_2O_{21}P \cdot 1.5 H_2O$: C, 40.73; H, 6.35. Found: C, 40.61; H, 6.28.

8-Methoxycarbonyloctyl O-(α-D-mannopyranosyl disodium 6-phosphate)-(1->2)-O-α-D-mannopyranosyl-(1->6)-α-D-mannopyranoside (7). — Compound **29** (120 mg, 0.08 mmol) was deprotected as described for the preparation of **5**. The disodium salt (R_F 0.30, 4:1 2-propanol-water) was isolated as white lyophilized powder (44 mg, 72%), $[\alpha]_D^{22}$ +47.1° (c 0.23, water); ¹H-n.m.r. (D₂O): δ 5.129 (d, 1 H, $J_{1',2'}$ 1.4 Hz, H-1'), 5.027 (d, 1 H, $J_{1',2''}$ 1.8 Hz, H-1''), 4.850 (d, 1 H, $J_{1,2}$ 1.6 Hz, H-1), 4.067 (dd, 1 H, $J_{2',3''}$ 3.2 Hz, H-2''), 3.984 (dd, 1 H, $J_{2',3''}$ 3.0 Hz, H-2'), 3.929 (dd, 1 H, $J_{2,3}$ 3.2 Hz, H-2), 3.688 (s, OCH₃), 3.555 (m, 1 H, OCHHCH₂), and 2.392 (t, 2 H, J 7.5 Hz); ¹³C-n.m.r. (D₂O): δ 178.55 (CO₂CH₃), 103.16 (¹J_{C,H} 169 Hz, C-1''), 100.64 (¹J_{C,H} 170 Hz, C-1'), 99.02 (¹J_{C,H} 172 Hz, C-1), 79.65, 73.63, 73.20 (d, ³J_{C,P} 7 Hz, C-5''), 72.20, 71.71, 71.15, 70.98 (2 C), 70.87, 68.84, 67.84, 67.64, 67.20, 67.13, 64.50 (br., ²J_{C,P} ~3-4 Hz, C-6''), 61.80 (C-6'), 52.91 (OCH₃), 34.56 (CH₂CO₂), 29.27, 29.02 (2 C), 28.95, 26.12, and 25.13; ³¹P-n.m.r. (D₂O): δ 4.12.

Anal. Calc. for $C_{28}H_{49}Na_2O_{21}P \cdot 2 H_2O$: C, 40.29; H, 6.40. Found: C, 39.93; H, 6.26.

ACKNOWLEDGMENTS

The authors thank the Natural Sciences and Engineering Research Council of Canada for support provided through an operating grant to O.H. (A2536), and continuing generous support of the Alberta Heritage Foundation for Medical Research.

REFERENCES

- 1 G. G. SAHAGIAN, Biol. Cell., 51 (1984) 207-214.
- 2 K. E. CREEK AND W. S. SLY, Lysosomes Biol. Pathol., 7 (1984) 63-82.
- 3 L. LANG, M. REITMAN, J. TANG, R. M. ROBERTS, AND S. KORNFELD, J. Biol. Chem., 259 (1984) 14 663-14 671.
- 4 A. KAPLAN, D. T. ACHORD, AND W. S. SLY, Proc. Natl. Acad. Sci., U.S.A., 74 (1977) 2026-2030.
- 5 A. R. ROBINS, R. MYEROWITZ, R. J. YOULE, G. J. MURRAY, AND D. M. NEVILLE, JR., J. Biol. Chem., 256 (1981) 10 618-10 622.
- 6 M. C. WILLINGHAM, I. H. PASTAN, G. G. SAHAGIAN, G. W. JOURDIAN, AND E. F. NEUFELD, Proc. Natl. Acad. Sci., U.S.A., 78 (1981) 6967-6971.
- 7 V. L. SHEPHERD, H. H. FREEZE, A. L. MILLER, AND P. D. STAHL, J. Biol. Chem., 259 (1984) 2257-2261.
- 8 C. A. GABEL AND S. KORNFELD, J. Biol. Chem., 257 (1982) 10 605-10 612.
- 9 K. VON FIGURA, A. WAHEED, AND A. HASILIK, J. Biosci., 5 (Suppl. 1) (1983) 19-23.
- 10 W. S. SLY, in M. I. HOROWITZ (Ed.), The Glycoconjugates, Vol. 4, Academic Press, New York, 1982, pp. 3-25.
- 11 J. DISTLER AND G. W. JOURDIAN, Proc. Int. Symp. Glycoconjugates, VIIIth, (1985) 139.
- 12 B. HOFLACK AND S. KORNFELD, Proc. Int. Symp. Glycoconjugates, VIIIth, (1985) 144-145.
- 13 A. VARKI AND S. KORNFELD, J. Biol. Chem., 255 (1980) 10 847-10 858.
- 14 A. VARKI AND S. KORNFELD, J. Biol. Chem., 258 (1983) 2808-2818.
- 15 M. NATOWICZ, J. V. BAENZIGER, AND W. S. SLY, J. Biol. Chem., 257 (1982) 4412-4420.
- 16 O. P. SRIVASTAVA AND O. HINDSGAUL, Proc. Int. Symp. Glycoconjugates, VIIIth, (1985) 182.
- 17 O. P. SRIVASTAVA AND O. HINDSGAUL, Carbohydr. Res., 155 (1986) 57-72.
- 18 R. U. LEMIEUX, D. R. BUNDLE, AND D. A. BAKER, J. Am. Chem. Soc., 97 (1975) 4076-4083.
- 19 R. U. LEMIEUX, D. A. BAKER, AND D. R. BUNDLE, Can. J. Biochem., 55 (1977) 507-512.
- 20 T. OGAWA, H. YAMAMOTO, T. NUKADA, T. KITAJIMA, AND M. SUGIMOTO, Pure Appl. Chem., 56 (1984) 779–795.
- 21 T. OGAWA AND T. NUKUDA, Carbohydr. Res., 136 (1985) 135-152.
- 22 T. OGAWA, K. KATANO, AND M. MATSUI, Carbohydr. Res., 64 (1978) C3-C9.
- 23 P. J. GAREGG AND L. MARON, Acta Chem. Scand., Ser. B., 33 (1979) 39-41.
- 24 T. POSTERNAK AND J. P. ROSSELET, Helv. Chim. Acta, 36 (1953) 1614-1623.
- 25 R. ALBERT, K. DAX, R. PLESCHKO. AND A. E. STUTZ, Carbohydr. Res., 137 (1985) 282-290.
- 26 H. B. BORÉN, P. J. GAREGG, AND N.-H. WALLIN, Acta Chem. Scand., 26 (1972) 1082-1086.
- 27 S. HANESSIAN AND J. BANOUB, Carbohydr. Res., 53 (1977) C13-C16.
- 28 T. OGAWA AND K. SASAJIMA, Carbohydr. Res., 93 (1981) 231-240.
- 29 T. OGAWA AND K. SASAJIMA, Carbohydr. Res., 93 (1981) 53-66.
- 30 K. BOCK AND C. PEDERSEN, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297.
- 31 T. OGAWA AND K. SASAJIMA, Carbohydr. Res., 97 (1981) 205-227.
- 32 G. H. DODD, B. T. GOLDING. AND P. V. IOANNOU, J. Chem. Soc., Chem. Commun., (1975) 249-250.
- 33 F. FRANKE AND R. D. GUTHRIE, Aust. J. Chem., 30 (1977) 639-647.